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Mathematical modeling is a key process to describe the behavior of biological networks.

One of the most difficult challenges is to build models that allow quantitative predictions

of the cells’ states along time. Recently, this issue started to be tackled through

novel in silico approaches, such as the reconstruction of dynamic models, the use

of phenotype prediction methods, and pathway design via efficient strain optimization

algorithms. The use of dynamic models, which include detailed kinetic information of

the biological systems, potentially increases the scope of the applications and the

accuracy of the phenotype predictions. New efforts in metabolic engineering aim at

bridging the gap between this approach and other different paradigms of mathematical

modeling, as constraint-based approaches. These strategies take advantage of the

best features of each method, and deal with the most remarkable limitation—the

lack of available experimental information—which affects the accuracy and feasibility

of solutions. Parameter estimation helps to solve this problem, but adding more

computational cost to the overall process. Moreover, the existing approaches include

limitations such as their scalability, flexibility, convergence time of the simulations, among

others. The aim is to establish a trade-off between the size of the model and the level of

accuracy of the solutions. In this work, we review the state of the art of dynamic modeling

and related methods used for metabolic engineering applications, including approaches

based on hybrid modeling. We describe approaches developed to undertake issues

regarding the mathematical formulation and the underlying optimization algorithms,

and that address the phenotype prediction by including available kinetic rate laws of

metabolic processes. Then, we discuss how these have been used and combined as

the basis to build computational strain optimization methods for metabolic engineering

purposes, how they lead to bi-level schemes that can be used in the industry, including

a consideration of their limitations.
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INTRODUCTION

Systems biology and bioinformatics tools help to analyze
relevant data and properties (e.g., genome sequencing) in
biological and biomedical research to make model-driven
discoveries. This has stimulated the interest to build genome-
scale networks, allowing to perform in silico simulations
of complex biological systems, and to understand the way
metabolic flux distributions change within a particular biological
network for predicting cellular phenotypes (McCloskey et al.,
2013). Moreover, mathematical modeling of cellular metabolism,
studied under various environmental and genetic conditions,
has started to reasonably support metabolic engineering (ME)
tasks, such as design of desirable strains, by optimal selection of
gene deletions or expression modulation for the overproduction
of industrial compounds (Stephanopoulos et al., 1998; Burgard
et al., 2003).

Metabolic network modeling can be based on the knowledge
of enzyme mechanisms and experimental data to build a
representation of a dynamic system, able to describe changes
on concentrations of metabolites over time by using systems
of ordinary differential equations (ODEs). These ODEs contain
initial values for metabolite concentrations, reaction rate
equations and kinetic parameters. These representations were
applied to model small-scale central metabolic pathways of well-
known organisms, such as Saccharomyces cerevisiae (Rizzi et al.,
1997) and Escherichia coli (Chassagnole et al., 2002). However,
dynamic representations for large-scale systems are not always
possible due to the lack of experimental kinetic information to
build proper reaction rate equations.

This framework, that tackles cell metabolism modeling tasks
using a formulation based on the dynamics of metabolic
processes, gives detailed and unique solutions in time for the
transient and the equilibrium states, from any initial metabolite
concentration condition. It is based on kinetic rate laws inferred
from biochemical and mechanistic information, while the values
of the final fluxes are obtained directly from the rate laws
and the metabolite concentrations at equilibrium. However, this
type of modeling requires considerable amounts of data that
are not always available, such as kinetic parameters or total
enzyme concentrations (Smallbone et al., 2010, 2013), and the
parameterization task for larger models can be time-consuming
and computationally intensive.

Opposite to the dynamic case, an alternative is to restrict
models to contain only reaction stoichiometry and reversibility,
based on the assumption of steady-state operation, thus unable
to express transient behaviors. In this approach, models use
formulations based on linear equation systems, which are
typically underdetermined, i.e., the number of equations is larger
than the number of variables, translated into an infinite number
of possible solutions. This leads to the imposition of certain

Abbreviations:CBM, constraint-basedmodel; CHO, chinese hamster ovary; CSO,

computational strain optimization; CSOM, computational strain optimization

method; DFBA, dynamic flux balance analysis; EA, evolutionary algorithm; EC,

elasticity coefficient; FBA, flux balance analysis; FCC, flux control coefficient;

MCA, metabolic control analysis; ME, metabolic engineering; ODE, ordinary

differential equation.

restrictions (constraints) and assumptions (objective functions)
to be able to find an optimal solution (Lewis et al., 2012). This
formulation is based on the stoichiometry, via constraint-based
modeling (CBM), helping to define limits on the behavior of a
system depending on physical and chemical restrictions, such as
fluxes, mass balance and thermodynamics. This approach yields
solutions that might not be unique, represented as steady-state
flux distributions, which are within the space of feasible solutions
called the flux hypercone (Wagner and Urbanczik, 2005). While
CBM approaches do not include physiological knowledge about
metabolite concentrations in time nor transient behavior, they
remove the need for a detailed mechanistic knowledge, since
only parameters for minimum and maximum flux bounds are
required. As a consequence, a solution space from a dynamic
formulation is a subset of a constraint-based solution, since they
use the same core constraints, knowing that the dynamic model
adds other constraints from specific values of kinetic information
(Machado et al., 2012).

Mathematical modeling can be used to explain or to predict
the behavior of a system. This work is mainly focused on
modeling frameworks based on the knowledge of systems’
dynamics to increase the accuracy of the predictions of strain
optimization methods, considering the limitations that the
approaches can present. Computational strain optimization
methods (CSOMs) depend both on mathematical models and
phenotype prediction methods. We will review phenotype
prediction methods that use kinetic rate laws for certain
metabolites, and these will be used to support CSOMs for
ME purposes. Additionally, hybrid approaches that include
the use of kinetic and stoichiometric information will also be
revised. Figure 1 describes the overall perspective of this review,
which can be divided in three main parts: models, simulation
(phenotype prediction) and strain optimization algorithms.

MODELING FORMALISMS AND
PHENOTYPE PREDICTION

Mathematical modeling is used to understand internal and
external cell interactions, and how they affect cell metabolism.
This is studied through the analysis and modeling of phenotypes,
as metabolite concentrations and reaction fluxes over metabolic
pathways, regulated by enzymes under different internal and
external conditions. The idea is to translate processes to
numerical problems with formal representations, aiming a high
level of accuracy and detail, since the goal is to reach enough
complexity and completeness on the description of the behavior
of a metabolic network.

The two types of approaches for mathematical representation
of biological networks differ on the state at which the system
is analyzed. Stationary modeling considers the system working
at an equilibrium point, where metabolite concentrations are
constant over time. On the other hand, dynamic modeling
acknowledges the changes metabolite concentrations suffer over
time. Both approaches for phenotype prediction will be discussed
and compared in this section.
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FIGURE 1 | Modeling framework based on dynamic systems. The process of engineering a wild-type strain starts by reconstructing a model from its genome

sequence complemented with information extracted from biological databases and literature. Then, the process can be divided in three main interacting blocks. (A)

Model: it can include stoichiometric information only, or a combination with kinetics, whose parameters need to be estimated. Both types are validated and improved

within an iterative process of curation. (B) Simulation: the model is used to predict the phenotype of the system. For kinetic approaches, the behavior of the steady

and transient states of metabolite concentrations and fluxes are calculated, while with purely stoichiometry approaches, typically, a sensible flux distribution obeying

the imposed constraints and optimizing a given biological assumption is sought. This flux distribution can be further delimited, in a hybrid fashion, by using information

from the solution of the ordinary differential equation (ODE) system, if available. (C) Strain optimization: the phenotype is evaluated and optimized until meeting a

termination criterion. The cycle consists in integrating solutions as perturbations to the model, in the form of changes to the kinetic parameters or to the constraints,

so that a new phenotype can be simulated. In the end, a set of candidate designs is obtained.

A straightforward approach for the prediction of metabolic
phenotypes is using CBM, in the stationary case, which yields
predictions usually close to experimental observations, and
more importantly, avoiding the hard task of estimating kinetic
rate equations and kinetic parameters, while requiring minimal
knowledge to infer systemic properties. The most widely used

mathematical approach to find an optimal value for the objective
function and a relevant flux distribution is Flux Balance Analysis
(FBA) (Orth et al., 2010). The main premise is to consider
the internal metabolite concentrations to be in quasi-steady
state under certain constraints, and formulating an optimization
problem by means of the inclusion of an objective function
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with a biological meaning, for example assuming organisms
evolve toward the maximization of their growth, which is usually
modeled as a biomass formation artificial flux that includes
proportions of cell constituents and their coefficients (Feist
and Palsson, 2010). The assumption of microbes maximizing
growth has been hard to assert, but it has been shown
that under experimental conditions, such as nutritionally rich
environments, there is a consistence between the optimization
of growth rates and evolutionary principles (Varma and Palsson,
1994). However, under certain media/environment conditions or
after genetic perturbations, the assumption might not be valid.
Thus, other methods have been developed, namely: minimization
of metabolic adjustment (MOMA), to test the hypothesis that
knockoutmetabolic fluxes undergo aminimal redistribution with
respect to the flux configuration of the wild type (Segrè et al.,
2002); and regulatory on/offminimization (ROOM), tominimize
the number of significant flux changes that have high growth rates
with respect to the wild type (Shlomi et al., 2005).

In these CBM formulations, constraints are typically linear,
such as capacity/reversibility constraints imposed by bounds on
the values of the fluxes, and flux balance constraints imposed by
stoichiometry. These constraints define an admissible solution
space, with a general form of a polytope. Then, through the
formulation of an optimization problem with a linear objective
function, FBA identifies an optimal flux distribution by solving a
linear programming problem.

Reviews and comparative analyses on available CBMmethods
have been performed, including procedures using different
constraints, types of data and objective functions (Lewis et al.,
2012), as well as studies on variants to address possible
issues such as solution redundancy by internal cycles within
networks (Smallbone and Simeonidis, 2009). However, besides
the development of CBM methods, the need of having more
detailed descriptions of biological networks has increased,
leading to the addition of kinetic information.

Dynamic Models for Phenotype Prediction
Dynamic models (also known as kinetics-based models) to
represent complex biochemical systems or processes have started
to create a wide impact in the biotechnology industry for the
design of novel cell factories (Wiechert and Noack, 2011). This
is due to their potential in accurately predicting the effects of
changing components in a metabolic network and to describe
processes such as variation in metabolite concentrations and
enzyme kinetics (Soh et al., 2012). The kinetics of a natural
process, such as cell metabolism, along time are not usually
linear or stationary; their representation inside a model uses
mathematical expressions that describe the rates at which
reactions are performed in the biochemical system in transient
or stationary phases (Almquist et al., 2014). In fact, efforts
to systematically construct dynamic models from genome-scale
metabolic models have been developed recently, based on the use
of data, such as reaction fluxes, metabolite concentrations and
kinetic constants (Stanford et al., 2013).

In the context of industrial biotechnology, the goal for most
cell factorymodels is linked to the comprehension and prediction
of the effects of genetic or environmental perturbations applied to

a system. Examples of these perturbations are the modulation of
the expression of ametabolic enzyme, or changing the parameters
of bioreactor processes, such as dilution rate or substrate uptake.
Models built for specific applications, in particular for strain
design, are focused in the production of industrial compounds,
with an interest in maximizing the flux of the reaction related
to the desired product among all outputs of the system. In
the real world, the desired amount of a product can also be
affected by cost, size of the model, initial substrates, nature
of the process (metabolism, regulation and signaling) and
environmental conditions (temperature, pH, type of bioreactor
and timescale) (Demin and Goryanin, 2010).

The definition of the composition of a dynamic model entails
the determination of the interaction mechanism subjacent to the
network and the decision on the type of representation for the
kinetic rate expressions. Then, the model can be described as
a set of ODEs, commonly non-linear, which outlines the time
trajectories of the represented processes and gets outputs that
can be corroborated by experimental data for multiple time
points, when they are available. In a deterministic and continuous
context, ODEs combine stoichiometric information from the
network organization, initial conditions and mathematical
expressions for reaction rates as follows (DiStefano, 2013):

dx (t)

dt
= S · r

(

x (t) , u (t) , p
)

y (t) = g(x (t) , u (t) , p)

with x (0) = x0
(

p
)

(1)

where S is a matrix with dimension i×j that contains the
stoichiometric coefficients for all the kinetic reactions in the
network; x(t) is a vector of dimension i containing the time-
dependent state variables; r(·) is a vector with dimension j
including: reaction rates that depend on the state variables, a
vector with input variables u(t) and a set of kinetic parameters
p; and g(·) is a vector to relate model outputs y(t) with x(t). For
certain models, this representation is equipped with algebraic
equations to complement the ODEs or with further differential
equations that include volume changes, such as intracellular
dilution for Equation (1) (Almquist et al., 2014).

One of the most used approaches to build a dynamic system
is the forward or bottom-up modeling, which helps to integrate
all the components and their interactions through mechanistic
descriptions of the behavior, and characterizing the properties of
the particular entities, frommolecular to systemic levels, followed
by experimental validation and refinement of the model. The
components of kinetic models, seen as networks, are the rate
expressions and parameter values that can be obtained from
literature, experimental practices or data repositories. However,
sometimes, parameters are unknown or undefined within certain
ranges, which require the application of methods for parameter
estimation, often a requirement of bottom-up approaches.

In contrast, top-down approaches, another way to address
the reconstruction of dynamic models, use experimental data
to improve pre-existing models that predict measured data
successfully. In this way, unidentified mechanisms, interactions
and properties can be integrated into the model. The trend
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will always be to formulate objectives using models able to
capture high-level mechanisms with simpler rate expressions,
taking into account essential links between network components
(Bruggeman and Westerhoff, 2007).

In the next subsections, we will examine two key points
to build dynamic models for phenotype prediction: the
network structure, including interactions, and the mathematical
expressions to represent the change in reactions. Afterwards, the
possible techniques to study kinetic parameters are studied.

Interaction Network
The internal and external components of the model
communicate through a network that can be represented
using a diagram, as a group of links between metabolites,
enzymes, reactions, among others. This representation collects
the required and available biological information to be converted
into a mathematical system, allowing functionality to be
derived from the structure. Biological systems are usually
seen as networks, since different properties can be analyzed
as an engineered system, such as robustness, closed-loops and
modularity (Villaverde and Banga, 2014). However, dynamic
behavior, stoichiometry and parameters are not accounted
for in interaction-based approaches, for which the use of
different mathematical tools is introduced to improve their
description, according to the type of analysis. An overview of
the key computational and statistical concepts and methods to
reconstruct cellular networks has been provided by Markowetz
and Spang (2007).

Kinetic Rate Expressions
Mathematical expressions can describe behavior of interactions
as rates of change. Their complexity depends on the degree
of detail of the reactions and on the scope of the model,
taking into account that future model reductions can be
performed after finding a balance between the model and
the validation data. Kinetic rates are representations derived
from deterministic or stochastic formulations. However, this
distinction can be arbitrary, since all types of kinetic expressions
are approximations, as will be described next. In the deterministic
case, there are mechanistic expressions from physico-chemical
reaction processes, or approximate kinetic expressions that are
mostly qualitative (Demin and Goryanin, 2010).

Mechanistic expressions
The primary kind of mechanistic reaction kinetics is based on
the mass action law, stating that a reaction rate is proportional
to the concentrations of the reactants. This representation is
used for one-step or elementary reactions, or the combination of
their mass actions for multi-step reactions, e.g., for enzymatic or
transporter reactions.

Michaelis-Menten. The basic mechanistic expressions are the
Michaelis-Menten kinetics (Bertolazzi, 2005), that are derived
from one-step reactions by splitting fast and slow dynamics. They
are commonly used for cases where the enzyme concentration is
much lower than the substrate concentration, using the following

form to describe the rate of the enzymatic reaction:

r =
d[X]

dt
= rmax

[S]

[S]+ km
(2)

where r is the reaction rate, [S] is the concentration of the
substrate, [X] is the concentration of the product, rmax represents
the maximum rate reached by the system, and the Michaelis
constant km represents the substrate concentration at which the
reaction rate is at half-maximum (r= 0.5rmax). The mechanisms
in this formulation are often very complex and not well-known,
and can include nutrients and inhibitors as limiting substances;
these considerations and analytical derivation of laws are detailed
in Bertolazzi (2005). For this reason, the determination of kinetic
rate expressions is complex and processes have to be carefully
studied by experimental means under the same conditions
assumed by the model. In these cases, there are a large number
of parameters to determine, usually a set of maximum rates
and kinetic constants for each reaction. In addition, the level
of uncertainty has to be analyzed, because predicted fluxes and
metabolite concentrations should be within acceptable ranges.
The uncertainty ofmathematical models represents limitations in
applicability and in completeness, as well as in the effect of other
factors, such as temperature, pH, ionic strength, among others
(Almquist et al., 2014).

Hill rate laws. Hill rate laws are used as a modeling
approximation for transfer functions that involve regulation
within a biological system (DiStefano, 2013). A Hill function of
order n with associated parameters p = {n, k, λ} can represent
activity as follows:

dxact(t)

dt
= fact

[

x(t, p)
]

= λ
xn

xn + kn
(3)

dxinh(t)

dt
= finh

[

x(t, p)
]

= λ
kn

xn + kn
(4)

where Equation (3) represents an activation, Equation (4)
represents an inhibition, xact and xinh are (respectively) the
activated and inhibited substrates (depending on time and certain
parameters), λ is the maximum regulation rate, k is the activation
or inhibition coefficient, and x is the substrate concentration. It
is noticeable that if n = 1, the Hill function for activation is the
same as the Michaelis-Menten equation (known also as Monod
equation).

Approximate kinetic expressions
In comparison with mechanistic expressions, there are some
alternatives to describe the behavior of biological systems in a
simpler way, using analytic functions as power series that always
converge avoiding unstable systems. Also, a small amount of
parameters needs to be determined, since most rate expressions
are not known or are difficult to quantify, but a universal
formula can be applied to the reaction kinetics (Borger et al.,
2007). This is translated into less efforts to estimate parameter
values, added to a possible few experimental data available. These
approximate formulations were compared with mechanistic
approaches for some modeling cases, resulting in similar model
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behavior with respect to transient and steady states, even with
the use of general formulations and less parameters. Additionally,
hybrid approaches have been studied to combine mechanistic
and approximate kinetics having also suitable results (Bulik
et al., 2009). Relevant approximate rate expressions for dynamic
modeling are described next.

Lin-log kinetics. Lin-log kinetics is a linear representation
of logarithms for large concentrations of species, such as
enzyme mechanisms, with the rate of catalyzed enzyme reaction
proportional to its concentration and dependent on parameters
andmetabolite concentrations (Heijnen, 2005). These are a factor
of the linear sum and are able to provide analytic solutions for the
steady states (del Rosario et al., 2008). The Lin-log rate law r of
the jth enzyme catalyzed reaction,N, in a network withM species,
is expressed as:

rj =
ej

e0j
J0j

(

1+

M
∑

k=1

ε0j,k log
Nk

N0
k

)

(5)

where superscripts denote steady-state, e/e0 is the enzyme
activity relative to the reference steady-state (e0), J is the flux
for the corresponding reaction, ε is the elasticity coefficient
(EC) that measures sensitivities of metabolite concentrations
on the reaction rate, and N/N0 is the relative concentration of
metabolites for metabolite k.

Log-lin kinetics. Similar to lin-log, this formulation allows to get
analytic solutions through linear and logarithmic expressions
on reactants and effectors to approximate reaction rates
(Hatzimanikatis and Bailey, 1997). In this case, the reaction rate
is not proportional to the enzyme concentrations since the last
ones are inside the linear terms.

Power-laws. Here, substrates and products are related to
approximate the reactions rates as:

r = λ

nsubs
∏

j=1

(

Sj

S0j

)mj

−µ

nprod
∏

k=1

(

Pk

P0
k

)nk

(6)

where λ and µ are the aggregations of the forward and
reverse rates that interact with substrate S and product P,
respectively, superscripts denote a reference state,m and n are the
kinetic orders of the respective compound, corresponding to the
exponents in the reaction equation by which each concentration
term is powered to, while nsubs and nprod are the number of
substrates and products, respectively.

There are two main types of forms for power-law kinetics
(Savageau, 1970): 1) Generalized mass-action, describing
reactions with non-integer exponents and rates unfolded for
each reaction that interacts with the species (similar to mass-
action formulation), allowing at the same time an analytic
solution at steady-state; 2) S-systems, for forward and reverse
kinetics, where individual reaction rates aggregate two reactions
for every mass balanced species, capturing non-linearities at the
local state, and giving analytic solutions of steady-states.

Convenience rate laws. These approximations are derived
from an enzyme mechanism without order, assuming a fast
equilibrium between substrates, products and enzymes. The
formulation allows concentrations close to zero, which can
bring problems with logarithmic representations. The rate
laws assume an enzyme mechanism of random order and
can be applied to reactions with any number of substrates
and products. This is a more general form of Michaelis–
Menten kinetics that involves extensive reaction stoichiometries
(Liebermeister and Klipp, 2006).

Modular rate laws. These expressions are approximate kinetics
that involves the representation of a family of semi-mechanistic
approaches (Liebermeister et al., 2010) in the standard form:

r = T
E0 · fr

D+ Dreg
(7)

where r is the modular rate law, T is a stoichiometric
parameterization term, E0 is the initial concentration of the
enzyme, fr is a complete or partial regulation, D is a denominator
term for every rate law and Dreg is the particular regulation term.

Cooperativity and saturation. Biochemical networks and their
processes can be modeled with cooperativity and saturation by
using a canonical formalism including equations similar to Hill
rate laws. They include a local representation given an operating
point, based on a functional form derived from Taylor series
approximations in a special transformation space, defined by
power-inverses and logarithms of power-inverses (Sorribas et al.,
2007). Moreover, the formalism can be used as an extension of
power laws with a bigger accuracy for numerical simulations, and
to explore predicted solutions coming from constraints of local
sensitivities and different saturation fractions.

Stochastic kinetic expressions
Deterministic formulations of reaction kinetics are realistic when
the number of reacting molecules is large per reactant, which is
the case of the most common modeled cell factories. However,
for small numbers of chemical species in relevant applications,
stochastic behavior may happen, such as in signaling or gene
expression, for which stochastic simulation approaches are taken
into account. The most common formulation for stochastic
models is the chemical master equation (Ullah andWolkenhauer,
2010). This approach introduces new insights to the field since
solutions can satisfy conditions that change in time. Deviations,
in the form of noise, are included in a chemically reacting system,
which can explain connections between stochastic equations and
deterministic rate laws. This kind of biochemical networks can
exist in continuous or discrete state spaces as explained next.

For continuous spaces, stochastic simulations use analytic
approximations for the influence of randomness on the
behavior of a system. The representation is through stochastic
differential (or Langevin) equations, which can be derived from
corresponding deterministic partial differential equations for
the kinetics of the probability distribution of the molecules
(Gillespie, 2000).
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In the case of discrete spaces, the basic idea is that the state
of the system comes from the exact numbers of molecules, where
the changes of reaction states are described by the probabilities
of the transitions between every possible state (property known
as reaction propensity). The formulation also includes a master
differential equation that holds the time evolution of the state
probabilities, which can be described by a non-trivial stochastic
simulation algorithm (Gillespie, 1976).

Discussion
To summarize approaches for phenotype prediction, Table 1
provides an overview of the dynamic modeling methods
described in this review. It provides information about the
reasons for using the different algorithms, their advantages
and disadvantages, and proposes illustrative examples of their
application. In the three following paragraphs, one example
from each class of methods—mechanistic, approximate and
stochastic—is detailed showing how each modeling approach
helped to better understand metabolic pathways for phenotype
prediction.

Mechanistic modeling methods do not demand knowledge
of the detailed mechanisms of a system by using conventional
expressions to describe structural features of metabolic systems,
as well as to model the added effect of two or more reversible
inhibitors or activators. This approach is combined with the
fact of kinetic parameters able to be estimated with traditional
methods since they are not always available. One notable example
is the generalized Hill function that can be used when molecular
mechanisms are not well understood. The methods consider
experimental data regarding structural/functional features of
a system, and descriptive data of its dynamics. For instance,
available data was used to describe the expression regulation of
the cydAB operon in E. coli to further understand metabolic
activity of its cells under different conditions (Likhoshvai
and Ratushny, 2007). The method describes the changes of
transcription factor concentrations that affect the rate of
enzymatic reactions, depending on oxygen concentrations. The
result is a model predicting the level of cydAB expression
in agreement with available experimental data and simulation
results. The use of generalized Hill functions allowed to bypass
the problems of reconstructing the detailed mechanisms of the
molecular subsystems.

Approximate modeling methods are typically used to facilitate
the analysis and design of strongly non-linear pathways, using
simpler universal expressions in the form of analytical functions.
One example of their use is the log-linear approach, used together
with available data on elasticities and control coefficients,
to understand glycolytic pathways in yeast, which present a
strong non-linear behavior (Hatzimanikatis and Bailey, 1997).
The analytical solution of the log-linear model for a number
of metabolites and enzymatically catalyzed reactions, depends
explicitly on information frommetabolic control analysis (MCA)
(Fell, 1992). This solution considers a linearization around a
steady-state using logarithmic deviations of the state variables
and parameters. Studies can be performed regarding the effect
of modifications of the catalytic properties of an enzyme with
respect to its substrate (or regulatory effector), by changing

the value of the corresponding elasticity. Time-response of
fluxes show an excellent agreement between the original non-
linear model and the log-linear model (Hatzimanikatis and
Bailey, 1997). However, the average performance has limitations
under quasi steady-state, for which the prediction of metabolic
functions can be deteriorated.

Stochastic modeling methods are commonly applied for
systems with small number of chemical species, to describe
processes that present deviations, e.g., noise in gene expressions
or signaling, giving solutions that can satisfy conditions that
change in time. Moreover, applied as a non-deterministic
approach in continuous spaces, these methods can be used
to describe common stiff reaction motifs in cellular metabolic
systems, for instance, the enzyme-catalyzed conversion of a
substrate into a product or its decay into its original constituents.
The reactions can be divided in fast and slow time scales, and
the simulations can reach very accurate levels under certain
conditions (Cao et al., 2005). The time trajectories of the
species of the model are simulated using random sampling, an
approach that results in satisfying the formulation given by the
deterministic Michaelis-Menten derivation. Thus, this stochastic
method is useful when a difference of speed can be found in the
stages of the reaction, with the advantage of having simulations
dramatically faster without noticeable loss of computational
accuracy.

The different classes of kinetics-based methods used for
phenotype prediction (explained in the previous subsections)
are illustrated in Figure 2, and a qualitative comparison is
made with respect to interaction networks, constraint-based
methods and hybrid approaches. The classification takes into
account the complexity in size (vertical axis) and the level of
detail/accuracy (horizontal axis) to describe the systems, and
places each method within these coordinates, where positions
toward upper levels mean genome-scale networks. Interaction
networks are placed at the top in terms of network complexity,
but contain few information and details of the behavior of the
entities. Similarly, constraint-based models not only consider a
big amount of interactions, but also provide more information
about the properties of reaction rates happening; however, the
detail on how the behavior of the reactions in time is low.
On the other hand, kinetics-based models are split in the
graph space according to their deterministic or non-deterministic
nature. Deterministic approaches include approximate and
mechanistic methods, which have in average a medium level of
complexity and degree of detail/accuracy, since they take into
account dynamic information. Non-deterministic methods refer
to stochastic approaches, which can describe the operation of the
systems with high detail and accuracy, but are typically limited
in network size. Finally, hybrid approaches, a combination of
stoichiometric and dynamic information, are positioned with a
high level of accuracy on the description of high-sized networks,
since the best features of two approaches are integrated into
a single one. The trend of research is to find methods that
can predict behavior of bigger networks with more detail and
accuracy. Examples of applications of kinetics-based and hybrid
approaches are shown in the graph. Interaction networks and
constraint-based approaches are only included in the qualitative
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TABLE 1 | Classification of kinetic rate expressions.

Type Rate

law

When to use it? Advantages (+)/Disadvantages (–) Example References

Mechanistic Michaelis-

Menten

To have the basic mechanistic

expressions. With kinetics where

enzyme concentration is much

lower than the substrate

concentration. To model the

summation of the effects of two

or more reversible inhibitors or

activators

(+) For very complex and not

fully-understood mechanisms.

(+) Knowledge of kinetic constants

for substrates or regulators is not

required since they can be estimated

Pharmacokinetic model Sheiner and Beal,

1980

Hill rate

laws

To model structure functional

features of molecular genetic

systems that do not demand

knowledge of their detailed

mechanism

(+) Suitable for not well-known

molecular mechanisms by using

generalized functions

Regulation of the

expression of the

cydAB operon in E. coli

Likhoshvai and

Ratushny, 2007

Approximate Lin-log In gene regulatory systems

where rates are proportional to

enzyme levels. With number of

parameters as small as possible

(+) Analytic solution of steady-state

network balances are desirable.

(-) Parameter estimation methods not

always fit satisfactory the data,

especially when having small

concentrations.

Glycolisis in

Lactococcus lactis

del Rosario et al.,

2008

Log-lin For metabolic systems subject to

spatiotemporal variations of

system parameters and the

process operating conditions.

(+) Accurately describes dynamic

responses of strongly non-linear

systems with analytic solutions.

(+) Based on metabolic control

analysis data to study parameters.

(–) Quasi-steady-state approximation.

Yeast glycolytic system Hatzimanikatis and

Bailey, 1997

Power

laws

For arbitrary systems of

enzyme-catalyzed reactions.

Able to simply model aggregation

and consumption processes

(+) Suitable solution approximation

for enormous non-linear chemical

systems using conventional numerical

methods

Basic growth of

complex systems

Savageau, 1979

Convenience

rate laws

To represent enzyme saturation

and regulation by activators and

inhibitors. It uses

thermodynamically independent

system parameters

(+) Small number of parameters that

can be easily computed with

least-squares estimation methods

Chinese hamster ovary

cell metabolism

Nolan and Lee,

2011

Modular

rate laws

In reversible rate laws for

reactions with arbitrary

stoichiometries and various

types of regulation

(+) Simplifies thermodynamic-kinetic

modeling formalisms being flexible

and biochemically plausible. (−) Less

accurate than detailed kinetic

equations

Cycle of three reactions

(illustrative example)

Liebermeister

et al., 2010

Cooperativity

and

saturation

To fit experimental data using

systems with saturable form

(+) Expected to be accurate over a

wider range around the operating

point if the approximated functions

are saturated. (−) Need of a large

number of parameters (increased

estimation efforts). (−) Common

canonical formalisms do not have

saturable form

Illustrative example of

metabolic network with

one positive

feedforward and one

negative feedback

Sorribas et al.,

2007

Stochastic Continuous

space

For stiff systems, which can

evolve on slow and fast time

scales, and having stability in the

fastest modes

(+) Able to describe the common

enzyme-catalyzed conversion of a

substrate into a product. Dramatically

speeds up the stiff reactions.

Simulation of the

general stiff

enzyme-substrate

reaction

Cao et al., 2005

Discrete

space

For problems with identifiability

issues, when changes in the

species are discrete and

random, rather than continuous

and deterministic

(+) Capture variability for bistable

systems; able to deal with noise

(randomness)

Isomerization of

proteins

Ullah and

Wolkenhauer,

2010

A summary of dynamic modeling methods, condensing information about the cases for using the different methods, their advantages and disadvantages, and an illustrative example of

their application.
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comparisons and are not considered further, since they are out of
the scope of this review and have been thoroughly examined in
other reviews (Markowetz and Spang, 2007; Lewis et al., 2012).

Parameterization Techniques
Themeasurements obtained from experiments help to determine
the values of individual parameters for kinetic rate expressions,
initial conditions and outputs. These values can be found in
data repositories that compile this information such as BRENDA,
which gives a collection of enzyme and metabolic information
(Schomburg et al., 2004), and SABIO-RK, that stores information
about biochemical reactions and their kinetic properties (Wittig
et al., 2012). In case measurements are not available, parameter
values can be estimated by inference, using existing experimental
data, and estimation methods that can be constrained with
thermodynamic and physical/chemical conditions to assure that
values are unique (Chakrabarti et al., 2013).

Kinetic parameters are found either all simultaneously, by
making the model fit the measurements of the whole system, or
one by one considering individual components and processes.
Furthermore, both approaches are usually combined by fixing
parameters to already known values and fitting the remaining
ones. However, different parameter values are often found from
different sources, in distinct experimental conditions, which
brings compatibility problems. In addition to the parameter
estimation, a study can be done on how changes on parameters
affect the behavior of a model. Both methods will be reviewed in
the next subsections.

Parameter Estimation
To avoid compatibility problems from finding parameters from
different sources, parameter estimation techniques are used,
indirect methods allowing optimal values of parameters to be
calibrated as a solution to an estimation problem, making
the model reproduce experimental measurements of different
values instead of the parameter themselves. Moreover, there
are numerical optimization algorithms, with stochastic or
deterministic approaches, that allow to determine the quality of
experimental data in an efficient and automated way, making
the data generated by different measurement methods reliable
for quantitative dynamic modeling (Raue et al., 2013). The
critical consequences of the limited availability of kinetic data in
metabolic dynamic modeling have been discussed with respect to
specific organisms. The study concludes a remarkable necessity
for producing curated data to approximate in vitro conditions to
the in vivo ones, so that an integration of available kinetic data
into a complete large scale model is possible (Costa et al., 2011).

Parameter estimation follows an optimization algorithm that
searches through a large set of possible values, under certain
constraints and non-linear structures, which can imply complex
objective functions with multiple solutions in the form of local
optima. The goal of optimization algorithms is to locate a global
optimal in a feasible time, using local or global methods.

Local methods have to initiate the optimization with reference
parameters that can be measured experimentally or found in
literature, and then improved after repeating the execution of the
algorithm. The algorithms are commonly based on the Hessian

and gradient of an objective function, usually computed by
numerical methods, such as finite difference approximations.
However, this can bring problems with speed of convergence
for complex structures. In addition, local methods find optimal
solutions in some feasible neighborhood that are not always the
global solution, unless the region of feasible solutions is convex
(Nocedal and Wright, 2006).

On the other hand, global methods are based on
metaheuristics, such as simulated annealing (Kirkpatrick
et al., 1983), genetic or evolutionary algorithms (EAs) (Sarkar
and Modak, 2003; Yüzgeç et al., 2009). The combination of
global and local methods has been the most successful tool
to explore the parameter space when solutions are close to an
optimal (Moles et al., 2003). The objective of metaheuristic
methods used for the parameter estimation task is to accelerate
the process for large-scale systems biology models (that are
usually non-linear dynamic systems). This can be achieved with
parallel and self-adaptive cooperative strategies based on scatter
search optimization, which can significantly reduce computation
times, and improve performance and robustness (Penas et al.,
2017).

The classical approach for the objective function, when
performing the estimation of parameters, consists in minimizing
the difference between the model output and the experimental
data (Chou and Voit, 2009). The formulation considers model
outputs in vector y(·), M data points in a vector p = (p1. . . pM)
measured at times (t1. . . tM), θ as the set of parameters to be
estimated, and an objective functionΦ(θ ) defined by the distance
of the vector residuals [p1 - y(t1, θ ), . . . , pM - y(tM , θ )], that
usually is seen as the weighted sum of squares. The formulation
of the objective function is described as follows:

8(θ) =

M
∑

j=1

(

pj − y(tj, θ)
)2

σ 2
j

(8)

where σ 2
j is the error weight for the j-th data point. Then, the

values to be estimated, θ∗ are the ones that minimize Φ(θ ) (Raue
et al., 2009).

Furthermore, the parameter estimation can be seen as a
geometrical problem, as stated previously, or also as a statistical
formulation (Ljung. L., 1987) that takes the experimental data
as events of random variables. The model deviation on the
prediction is defined as εj and added to the output for each data
point as pj = y(tj)+ εj, with which the observed output in Eq. (1)
is modified to y(t) = g(x(t), u(t), θ ) + ε. Assuming independent
and normally distributed deviations, the likelihood3 of observed
data points p with the rest of variables defined in Equation (8) is:

3(θ) = k

M
∏

j=1

exp

[

−

(

pj − y(tj, θ)
)2

2σ 2
j

]

(9)

where k is a constant that does not affect the optimal likelihood.
Additionally, θ∗ is defined as the maximum likelihood estimate
for θ that optimizes 3(θ ), which leads to rewrite the problem
as the minimization of the negative logarithm of the likelihood
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FIGURE 2 | Phenotype prediction approaches: interaction networks, constraint-based and kinetics-based methods can be classified qualitatively according to the

level of detail and accuracy (horizontal axis), and the usual size of network (vertical axis). Position toward upper levels means genome-scale networks.

Constraint-based and kinetics-based approaches can be joined in hybrid methods that aim at taking the best advantages of each of them. Examples of applications

of kinetics-based and hybrid approaches are given (from Tables 1, 3, respectively).

function, that is equivalent to the geometrical formulation.
Likelihood theory is equivalent to least squares theory, and it
yields identical estimators of the structural parameters (except
for the variance) for linear and nonlinear models when the error
terms are assumed to be independent and normally distributed
(Burnham and Anderson, 2002)

Other ways to find optimal values for parameters include
using adjoint sensitivity analysis for the purpose of accurate
gradient estimation, with a superior scalability compared to the
standard forward sensitivity-based optimization, which has a
level of complexity of systems independent of the number of
parameters to estimate (Fröhlich et al., 2017a). Additionally,
optimal parameters can be found by exploiting the local
geometry of the steady-state manifold and its stability properties,
due to the dynamics of the process restricted by steady-state
constraints, such as initial conditions at equilibrium (Fiedler
et al., 2016). Moreover, optimization of parameters can be
achieved by describing the sensitivity equations for a gradient
computation problem that includes event-resolved data using

event triggered observations (Fröhlich et al., 2017b). Further,
there are computational optimization tools available that
implement metaheuristic methods for parameter estimation that
can be applied to multiple domains of systems biology and
bioinformatics, such as the MEIGO toolbox (Egea et al., 2014).
Finally, global optimization for non-linear dynamic models has
been presented as a solution for improving computation times
in comparison with deterministic global methods (Rodriguez-
Fernandez et al., 2006).

An important procedure performed in parallel to parameter
estimation is to study the uniqueness and level of confidence of
the variables that are going to be computed. For that, performing
identifiability analysis, local or global, is essential to evaluate the
goodness of experimental data to determine model parameters.
However, certain models are not identifiable according to their
structure, based on known inputs and measured outputs, which
turns parameter estimationmeaningless. Structural identifiability
analysis helps to know which quantities have to be measured
and which are able to be estimated. Theory and tools available
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for the study of identifiability have been previously reviewed
and discussed, together with related concepts such as sensitivity
to parameter perturbations, observability, distinguishability, and
optimal experimental design (Villaverde and Barreiro, 2016).

Many algorithms have been developed for this task, one in
particular using observability, to know how the internal states
of a rational model can be inferred by the nature of its outputs.
This method is based on computing the rank of a numerically
instantiated Jacobian matrix (observability/identifiability matrix)
to evaluate the local structural identifiability (Sedoglavic, 2002;
Karlsson et al., 2012). Moreover, computational tools have been
exploited to analyze the structural identifiability of a very general
class of nonlinear models by extending previous methods, and
also showing how to modify unidentifiable models to make them
identifiable (Villaverde et al., 2016a). Besides these tools, methods
to analyze global structural identifiability for arbitrary model
parameterization have been developed (Ljung and Glad, 1994),
as well as to assess local structural identifiability for a general
non-linear state-space model (Stigter and Molenaar, 2015).

Furthermore, to evaluate the accuracy of estimated
parameters, it is common to analyze standard parameter
confidence intervals, defined as a quadratic approximation of
the logarithmic likelihood around the optimal value (Raue et al.,
2011) or, alternatively, calculating exact confidence intervals
from a threshold level in the likelihood, where parameter
directions are explored, while likelihood is minimized with
respect to other parameters (Raue et al., 2009).

The general parameter estimation procedure is described
in Figure 3, considering the main types of approaches. Before
estimating parameters, a study of the dynamic data has to
be performed using structural identifiability. This process
helps to qualitatively assess if the available data is useful to
make suitable predictions. After this, the search for optimal
values that follows depends on the type of approach chosen:
geometrical, minimizing the distance between the model output
and experimental data, which is equivalent to the statistical
formulation that minimizes the likelihood function of observed
data, or metaheuristic, that performs a parallel and self-adaptive
search within a solution space.

Local Parameter Sensitivity Analysis
This type of study allows to identify how a model varies
its behavior, such as changes in fluxes and metabolite
concentrations, in response to a perturbation around some
points in the parameter space. This analysis can be done
through genetic modifications affecting enzyme concentrations,
which will allow to identify reasonable ME targets that affect
positively the behavior of a cell factory. This kind of sensitivity
analysis for dynamic models can be performed through methods
such as MCA (Fell, 1992). MCA quantifies, through two
different dimensionless indices, how the control of a flux in
equilibrium state is distributed among the enzyme reactions in a
particular pathway, namely elasticity coefficients (ECs) and flux
control coefficients (FCCs). ECs are defined using metabolite
concentrations and reaction rates catalyzed by enzymes with
particular concentrations. FCCs for any flux in steady-state show

the degree of control of enzymes on the pathway of that specific
flux.

ECs and FCCs help to connect properties of the system and
components, using the fact that for each metabolite k, the sum
of the product of ECs and FCCs is zero with respect to that
metabolite. Larger values of FCCs indicate that the corresponding
reactions are primarily controlling the flux, leading to target
those enzymes for a successful ME of the corresponding
pathways; details on MCA method are further discussed in Fell
(1992). Moreover, MCA can be applied to steady-state fluxes
and metabolite concentrations, and combined with parameter
sampling approaches to analyze parameter uncertainties (Wang
et al., 2004). Some extensions of MCA have been developed
for more significant modifications (Nikolaev, 2010), since a
model with good predictive power is required to simulate larger
changes in structure or parameters of the model, which means
robustness with respect to different operating references. For
instance, candidate targets, after MCA increases the production
of some compound, can suggest large changes in two or more
enzyme concentrations by firstly simulating a deletion strategy.
Then, by overexpressing an enzyme and analyzing how pathways
were affected, this results in a combination of two modifications
that can improve a certain flux in the desired direction, compared
to the results of the wild-type strain (Hoefnagel et al., 2002).

Efforts on Modeling the Metabolism of
E. coli
The development of dynamic models to quantitatively describe
the systemic behavior of essential microbial functions is crucial
for the rational design of ME applications. The study of the
central carbon metabolism of species, which redirects carbon
fluxes to the formation of carbon products, has become of great
importance for systems biology approaches. E. coli is the most
widely studied microbial organism, and an important species
in the fields of microbiology and biotechnology, because it is
used to produce useful materials in the industry and its central
carbon metabolism has been studied for many years as the hub
on which many catabolic and biosynthetic processes are built
(Kurata et al., 2014).

The use and improvement of different mathematical
techniques to describe the kinetics of the central carbon
metabolism of E. coli has been increasing considerably over
time. This can be seen as a case study to discuss the insights of
this review regarding the use and evolution of dynamic models
of E. coli, often describing its aerobic growth in continuous
culture with a limiting concentration of carbon source. One
of the first remarkable attempts was made by Chassagnole
and coworkers, who presented the design and experimental
validation of a dynamic model that deals with the lack of
kinetic information on the dynamics of the metabolic reactions.
This model uses experimental observations of intracellular
metabolite and co-metabolite concentrations to validate the
model structure and to estimate kinetic parameters (Chassagnole
et al., 2002). The kinetic types and regulations of the different
enzymatic reactions, with non-linear feedback/feedforward,
linked for the first time the sugar transport system with the
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FIGURE 3 | Description of the overall parameter estimation procedure. First, quality of experimental data is studied to determine suitable parameters via structural

identifiability analysis. Then, parameter estimation is performed, locally or globally, according to the type of problem formulation. The equivalence between the

geometrical and statistical formulations is noted.

reactions of glycolysis and the pentose-phosphate pathway,
using reversible Michaelis-Menten equations, Hill equation,
allosteric regulation and activation, among others. Some years
later, a similar approach was developed, with the integration
of pathways for the tricarboxylic acid cycle and anaplerotic
reactions, and including analysis of metabolic changes inside
the cell in response to specific pathway gene knockouts
(Kadir et al., 2010).

Although these kinetic models study and evaluate in detail
many biochemical pathways, reactions and cycles, they share
drawbacks, and use simplifications of complex enzymatic
activities. Also, they disregard system regulatory properties, such
as metabolic regulation networks, and a weak evaluation of
the models by insufficient or limited types of experimental
data. Peskov and collaborators proposed a more extensive and
detailed model to solve these problems. They use several stages
according to Cleland’s classification to develop and evaluate
their model (Cleland, 1963), which allowed to use in vitro and
in vivo experimental data, based on fluxomics and metabolomics,
to avoid the ambiguity shown in previous models caused by
comparing the coincidence between predicted and experimental
data (Peskov et al., 2012).

To model the kinetic behavior of the system, the reaction rate
complexities depend on the catalytic mechanism, the regulatory
properties allowed and the amount of experimental data available
for evaluation of the predictions. Therefore, they use four
levels of detail: (1) when the mode of action is simple, not
metabolic regulated or when no experimental data is available to
evaluate the effect of parameters (Michaelis-Menten equations);
(2) when different quantitative data is available, and enzymes
have complex catalytic or regulatory mechanisms, but without
any allosteric properties (generalized Cleland equations); (3)
when enzymes have allosteric properties (Hill equation, Monod
equation, among others); and, (4) when reaction rates of enzymes
cannot be expressed by a single equation, rather with a separated
ODE system, considering effect of pH on enzyme activity, and
using in vitro experimental data (Cornish and Bowden approach,
Cornish-Bowden, 1979). This model is capable to suggest better
hypotheses about system regulatory and functional properties,
since it uses analyses of different types of experimental data.
However, it takes into account a small number of reactions
compared with the thousands present in a genome-scale model.
Amore detailed descriptions of the formalisms used can be found
in (Peskov et al., 2012).
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Later on, Khodayari and his team made a good effort
to facilitate the construction of a larger-scale kinetic model
of E. coli, introducing an ensemble modeling procedure to
address the challenge of identifying kinetic parameter values
and kinetic rate laws. The model integrates all the reactions
used in previous discussed models (Chassagnole et al., 2002;
Kadir et al., 2010; Peskov et al., 2012). Their method consists
in decomposing metabolic reactions into elementary reaction
steps and incorporating phenotypic observations (including
genetic perturbations) in a parameterization scheme. The model
satisfies steady-state experimental fluxomics and metabolomics
data, and minimizes discrepancies between model predictions
and experimental measurements. The estimation of parameters
problem is solved using genetic algorithms taking into account
wild-type and mutant flux data. A Michaelis-Menten equivalent
formalism of the model, shows that the predicted fluxes and
metabolite concentrations are within acceptable uncertainty
ranges (Khodayari et al., 2014). Nevertheless, this kind of
study requires the availability of additional experimental flux
measurements for mutant strains having perturbations in
different parts of the metabolism, in order to perform more
robust parameterization of a genome-scale kinetic model.
Moreover, its application is restricted to the steady state with a
constant cell growth rate.

The extension and integration of new insights to previous
dynamic models is a trend to improve the power of predictions.
Jahan and coworkers proposed a kinetic model that uses
detailed kinetic equations, with gene regulations to reproduce
the dynamics of wild-type and multiple genetically modified
mutants under aerobic conditions in a batch culture. At the
same time, the model estimates a specific cell growth rate that
is linear to the total production of adenosine triphosphate,
which reflects the reconstituted metabolic pathways caused by
genetic changes (and avoiding the use of Monod equation as in
previous models). The values of parameters are estimated using
a constrained evolutionary search method to be able to predict
allosteric effectors and gene expressions. The values estimated
are fixed for all the mutant cases, an improvement with respect
to previous models that use different parameter values for each
mutant. The dynamic model uses the structure of the batch or
continuous culture based on mass balance equations in a system
of ODEs, and a cell growth rate estimation connected to the flux
of production of adenosine triphosphate (Jahan et al., 2016).

Another effort to include new knowledge and to improve
capabilities of a dynamic model of E. coli was performed by
Millard and his group. They developed and validated amodel that
links metabolism to environment and cell proliferation through
intracellular metabolite levels. Also, the study explores the fact of
metabolic regulation producing robust properties and a control
widely distributed across the network, from a molecular level to
the overall cellular physiology level. The model is based on the
ones published by Kadir and Peskov, but it increases the number
of pathways and the level of mechanistic detail, and also includes
exchange reactions and a single reaction tomodel growth coupled
to glucose uptake. MCA was used to validate control properties
and impact of a small change in the rate of each reaction, flux and
metabolite concentration (Millard et al., 2017). This study shows

that deeper analyses have to be performed to ensure the validity
of proposed structures.

We have seen that different mathematical models describing
the same organism, do not ensure full capabilities individually.
Different studies and considerations at local and global levels
have to be evaluated for a dynamic model to be competitive
for genome-scale applications. There has been an interest in
supporting existing predictive models using approximate kinetic
rate expressions and well-known structures. One example is
using the lin-log approach in the kinetic model developed by
Chassagnole and coworkers. This work was performed by Visser
and collaborators, who compares the validity of a mechanistic
model and a lin-log model derived from the mechanistic one.
The study demonstrated the value of lin-log approaches as MCA
extensions, since it allows to build kinetic models, based on
MCA parameters, that can be used for constrained optimization
problems, being valid for large changes of metabolite and enzyme
levels (Visser et al., 2004; Tušek and Kurtanjek, 2010).

COMPUTATIONAL STRAIN OPTIMIZATION
(CSO)

CSO is usually seen as a bi-level framework, because its tasks
are commonly divided into two stages or layers: one to perform
the phenotype prediction (described in a previous section)
encompassing the biological objectives of the problem, and
another where the bioengineering objective is tackled in the form
of an optimization problem. The objective is to find the optimal
set of genetic modifications applied to an organism to achieve a
desirable goal (Burgard et al., 2003).

Possible solutions need to fulfill feasibility specifications, and
thus the optimization algorithm also deals with the definition
of solution spaces that can be implemented in vivo. These
CSOMs, can be based on purely constraint-based or kinetics-
based modeling, or the combination of both. CSOM comprises a
myriad of methods that generate possible solutions to ME tasks,
namely: (1) gene deletion, by canceling fluxes related to specific
genes making their reaction rates equal to zero; (2) heterologous
insertion, by adding new genes or pathways, and redirecting
fluxes in the desired directions; (3) gene modulation, tuning the
level of contribution of enzymes by over or under expressing
the activity of their reaction rates; and (4) cofactor binding
specificity modulation, by exchanging the cofactor specificities
of certain reactions in a network. These tasks can also be used
in combination with each other to find more complex ME
strategies. The solutions are translated into modifications in the
network applied to the flux constraints or kinetic parameters,
for constraint-based and kinetics-based models, respectively. A
complete description and discussion regarding application of
CSOMs for constraint-based models, with a special classification
as exact bilevel mixed-integer, metaheuristic and elementary-
mode analysis-based programming methods, is provided in
(Maia et al., 2016).

The use of metaheuristic approaches in CSOMs brings
some important advantages with respect to exact methods,
such as providing a framework that can easily scale well for
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bigger models and larger numbers of modifications, which
is computationally less costly and possibly faster for finding
sufficiently good solutions. Another remarkable feature is to
gain a level of flexibility to implement complex frameworks,
with an independent implementation of phenotype prediction
and strain optimization layers, which can allow, for example,
to implement nonlinear, or even discontinuous, objective
functions in the optimization layer to define more significant
problems. Common approaches combine the assumption that
microorganisms naturally maximize their growth, with simulated
annealing or EAs to select genetic manipulations that will result
in a desirable high productivity goal (Rocha et al., 2008).

CSO Using Dynamic Models
For industrial biotechnology purposes, a mathematical model
must be able to simulate, predict and examine a variety of
scenarios where a biological system is operating under certain
assumptions and environmental conditions. It is possible to
design CSOMs based on dynamic models through the study of
the transient and equilibrium states of the system. The main goal
of these CSOMs is to find forms of reaction rates, i.e. parameter
values for defined kinetic expressions, for which a system has
the best fitness with respect to a certain phenotype, e.g., an
improvement in the production of a particular compound.

In silico ME strategies are designs that represent a way of
improving the performance of an organism toward a specified
goal. They can include the use of dynamic models that predict the
behavior of the system under the influence of perturbations, such
as gene deletions, enzymemodulations or changes in themedium
conditions. The selection of a dynamic model with high power
of prediction benefits the design of newly engineered microbial
strains. CSO using dynamic models aims at identifying proper
gene deletions or levels of enzymatic activity applied to microbial
processes.

The methods can be based on two types of formulations,
exact or stochastic. On the side of exact formulations, a basic
approach involves linear programming problems with linear
objectives and constraints defined in a convex space. However,
most of the optimization problems applied to biological systems
introduce non-linear programming problems over continuous or
discrete variables. This means that the search process can take
place in non-convex spaces, resulting in the possible existence
of multimodality, i.e., the existence of multiple local solutions.
This type of problems belongs to the class of non-deterministic
polynomial-time hard problems, which are computationally
more complex and less efficient to solve than polynomial-time
ones (Erickson, 2009).

Exact methods are always able to yield the optimal solutions,
but their computational time increases exponentially with
the size of networks and of the solutions, thus, demanding
the development of approximate and faster algorithms. These
include exact Mixed-Integer Linear Programming formulations,
that can be combined with approximation methods such as
generalized linearization of kinetic models (Vital-Lopez et al.,
2006). Further, global optimization of non-linear dynamic
models has been explored by recasting the system into an
equivalent generalized mass action model, which facilitates the

numerical computation for the optimization task to identify
genetic modifications (Pozo et al., 2011).

On the other hand, stochastic global optimization can be used
to locate solutions near to the global optimum, including EAs
which have shown acceptable performance for applications in
biological systems (Banga, 2008; Rocha et al., 2008). Examples of
stochastic optimization include: applications of robust methods
for parameter estimation in nonlinear dynamic systems, that
outperform significantly methods previously used for three
specific benchmark problems (Rodriguez-Fernandez et al., 2006);
EAs for predicting optimal reaction knockouts and enzyme
modulation strategies for the maximization of serine production
by E. coli (Evangelista et al., 2013); and, the exploration of
a computational environment where dynamical models are
used to support simulation and optimization tasks, by using
metaheuristics to identify modifications of parameters so that
the production of dihydroxyacetone phosphate is maximized in
E. coli (Evangelista et al., 2009). Usual alternatives to characterize
targets include making a local parameter sensitivity analysis, or
simulating more significant changes in enzyme levels or other
elements.

Moreover, novel algorithms use multi-objective dynamic
optimization to identify combinations of targets (enzymatic
modifications) and the degree of modulation to optimize a set of
pre-defined performance metrics, subject to process constraints
(Villaverde et al., 2016b). These methods were demonstrated on a
realistic metabolic model of chinese hamster ovary (CHO) cells,
used for antibody production, while sustaining a robust growth
in CHO cells, increasing biomass production, product titer, and
keeping the concentrations of lactate and ammonia at low levels.
Additionally, exhaustive studies of dynamic models have been
developed, such as a kinetic model of CHO cell metabolism
(Nolan and Lee, 2011), together with a novel framework for
simulating the dynamics of metabolic and biosynthetic pathways
of these cells grown in fed-batch culture. The authors later
complemented their study with a method to simultaneously
identify processes and cell modifications that improve antibody
production, by exploring combinations of process variables and
knock-outs applied to the CHOmodel (Nolan and Lee, 2012).

Table 2 summarizes examples of applications of CSOMs
using dynamic modeling, using the exact or stochastic methods
mentioned above. The type of formulation includes the
phenotype prediction method and programming approach
used to solve the optimization problem. From a comparative
perspective, we will analyze two examples of strain optimization
that have the same objective, the maximization of serine
production in E. colimodel (Chassagnole et al., 2002), but that use
a different formulation to find a set of modifications to reach such
goal. One uses a linear approximate version of the non-linear
model and gets an exact solution for the overproduction problem,
and the other one uses the non-linear model and a metaheuristic
approach to solve the strain optimization part.

Vital-Lopez and collaborators used dynamic modeling of
metabolism to find optimal engineering interventions. The
procedure relies on the generalized linearization of a dynamic
model, by employing a Lagrange expansion, and the iterative
application of mixed-integer linear programming optimization
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TABLE 2 | Applications of computational strain optimization methods using dynamic models.

Description Type of formulation Case studies Evaluation References

Linearization of kinetic

model and iterative

optimization

Approximate, mixed-integer

linear programming

Serine overproduction in

E. coli

Theoretical

(experimental

evidence)

Vital-Lopez

et al., 2006

Metaheuristics to identify

modifications of parameters

Stochastic, evolutionary

computation

Maximize production of

dihydroxyacetone

phosphate in E. coli

Theoretical

(experimental

evidence)

Evangelista

et al., 2009

Brute-force to

simultaneously identify

process and cell

modifications

Exact, exhaustive search Improvement of antibody

production in Chinese

Hamster Ovary cells

Experimental Nolan and

Lee, 2012

Metaheuristics to identify

modifications of parameters

Stochastic, evolutionary

computation

Maximization of serine

production by E. coli

Theoretical

(experimental

evidence)

Evangelista

et al., 2013

Multi-objective dynamic

optimization

Exact, mixed-integer nonlinear

programming

Sustained and robust

growth of Chinese Hamster

Ovary cells

Theoretical

(experimental

evidence)

Villaverde

et al., 2016b

to hierarchically identify reaction eliminations and/or enzyme
level modulations (Vital-Lopez et al., 2006). The authors find
that the resulting engineering strategies and robustness depends
mostly on the range of bounds defined for the metabolite
and enzyme levels. Narrow bounds on concentrations generate
accurate predictions, while for larger concentration ranges there
was substantial divergence between the non-linear and the
linearized model predictions. This means that local information
is not sufficient to identify optimal manipulations when wider
changes in enzyme levels are allowed. The strategy permits to find
strategies with good results, since the flux product was increased
in some cases for more than twice its value with respect to
the wild-type. The linearization approach helps to simplify the
optimization problem, and its exact formulation ensures that the
solution is optimal. This procedure is a tool that can be used for
any dynamic model.

In an alternative approach, Evangelista and co-workers used
EAs for predicting optimal reaction knockouts and enzyme
modulation strategies for the same case study. The algorithm
used a non-linear model to reach a set of solutions with higher
quality, as compared to the one described above, concluding that,
as the number of reaction modification increases, the marginal
product flux gain usually tends to decrease (Evangelista et al.,
2013). The solutions are not constrained by flux or concentration
bounds since the non-linear model ODEs are simply integrated,
assuming that the model depicts adequately the subjacent reality.
This approach does not ensure finding the optimal solution, but
improves the quality of solutions in most cases, with respect to
the linearization approach.

The evaluation of results from strain optimization methods
with respect to experimental data is a key process to determine
how effective an approach based on dynamic models is.
The methods described in Table 2 contain strain optimization
procedures that were mostly demonstrated theoretically, despite
some experimental evidence being presented for all of them.
In the work by Nolan and Lee (2012) involving CHO
cells and antibody production, the authors produced an

experimental evaluation, confirming that changes in parameters
are supported by experimental results on the modulation of
lactate dehydrogenase activity. They show that by reducing the
enzyme activity, lactate production decreases, and cell density
and antibody production increase (>2-fold titer improvement),
in good agreement with experimental data. The authors
conclude that the benefits of cell engineering (enzyme activity
modulations) directly depend on the process parameters, and
that dynamic metabolic model is necessary to efficiently explore
design spaces for cell and process modifications.

HYBRID MODELS

During the last decades, there has been an interest in
combining the advantages of distinct types of modeling to
improve phenotype prediction, using hybrid models. These
hybrid approaches suggest promising ways to tackle limitations
from dynamic and constraint-based models, merging capabilities
and exploiting knowledge of already well-known processes,
parameters and constraints, and to decrease costs, improve
efficiency and reach desirable phenotypes. It is expected to
have future results using methods focused on improving
limitations of the most promising approaches, especially the
ones incorporating kinetic models and detailed information
(i.e., network structures, kinetic rate expressions and parameter
values). These quantitative methods are able to describe, predict
and optimize the behavior of a biological system, in comparison
with the approach that CBM offers for pathway-oriented analysis
that involves only prediction of the steady state fluxes.

Different researchers have developed hybrid models joining
stoichiometric information with good-quality kinetic data.
Table 3 shows examples of using hybrid models only for
phenotype prediction or for strain optimization; the type of
formulation includes the programming approach used to solve
the optimization problem, and whether they were not only
theoretically, but also experimentally evaluated. These methods
were originally proposed by Covert and collaborators to improve
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TABLE 3 | Examples of hybrid models used only for phenotype prediction or for computational strain optimization.

Description Type of

formulation

Task Case studies Availability Evaluation References

Dynamic Flux

Balance Analysis

(DFBA)

Exact, nonlinear

programming

Phenotype

prediction

Diauxic growth in E. coli The COBRA

Toolbox1

implemented in

MATLAB

(Schellenberger

et al., 2011)

Experimental

(Hanly et al., 2013;

Flassig et al.,

2016)

Mahadevan et al.,

2002

Integrated DFBA Exact, linear

programming

Phenotype

prediction

Integrated signaling,

metabolism and

transcription regulation

in S. cerevisiae

Not available Theoretical

(experimental

evidence)

Lee et al., 2008

Integrated Flux

Balance Analysis

Exact, linear

programming

Phenotype

prediction

Metabolism, regulation

and signaling of E. coli

model

SimTK2

implemented in

MATLAB

Theoretical

(experimental

evidence)

Covert et al., 2008

Integration of

kinetic expressions

as constraints into

DFBA

Exact, nonlinear

programming

Strain optimization Production of glycerol

and ethanol in E. coli

Not available Theoretical

(experimental

evidence)

Gadkar et al.,

2005

Dynamic strain

scanning

optimization for

balanced yield,

titer and

productivity

Exact, nonlinear

programming

Strain optimization Production of succinate

and 1,4-butanediol in

E. coli

Framed GitHub

repository3

(implementation in

Python)

Theoretical

(experimental

evidence)

Zhuang et al.,

2013

k-OptForce:

integration of

kinetics with Flux

Balance Analysis

Exact,

mixed-integer

nonlinear

programming

Strain optimization Production of L-serine

in mutant E.coli and

triacetic acid lactone in

mutant S. cerevisiae

Not available Experimental

Khodayari et al.,

2015

Chowdhury et al.,

2014

1The COBRA Toolbox. “Dynamic FBA”. Opencobra.github.io. https://opencobra.github.io/cobratoolbox/stable/modules/analysis/dynamicFBA/index.html? highlight=dynamicfba
2SimTK. “Integrated Flux Balance Analysis Model of Escherichia coli”. SimTK.org. https://www.simtk.org/projects/ifba/
3Framed GitHub repository. “A python FRAmework for Metabolic Engineering and Design”. Github.com. https://github.com/cdanielmachado/framed.

FBA predictions, in the case of having regulatory effects with a
dominant influence, for which transcriptional regulatory discrete
events are included as time-dependent restrictions to constraint-
based models, and applied to the illustration of systemic effects
such as catabolite repression, the aerobic/anaerobic diauxic
shift and amino acid biosynthesis pathway repression (Covert
et al., 2001). Later on, a complete hybridization was made by
Mahadevan and coworkers, describing the dynamic behavior
of a metabolic system using an extension of FBA, namely
dynamic FBA (DFBA). This approach was focused on the
analysis of diauxic growth in E. coli, by reprogramming the
metabolic network and studying the transience of metabolism
(Mahadevan et al., 2002). DFBA takes into account dynamic
information, and can provide useful insights for the design of
cell factories in ME applications. However, the optimization
problem formulated as a non-linear programming problem
results in low scalability, since, as the size of the network
increases, the number of variables also increases leading
to a problem with much higher complexity to be solved.
Moreover, thermodynamics have been added to constraint-
based models by Beard and collaborators, who improved the
power of prediction of stoichiometric models for large-scale
metabolic networks, coupling steady-state information with
dynamic equations of thermodynamic constraints, such as energy

conservation, enthalpy, entropy and Gibbs free energy. Classical
concepts in equilibrium thermodynamics are generalized to
non-equilibrium settings (Beard et al., 2002; Qian and Beard,
2005).

Moreover, Lee and collaborators propose an integrated
DFBA strategy which requires an integrated stoichiometric
reconstruction of signaling, metabolic and regulatory process
in S. cerevisiae, and incorporating kinetic parameters based
on typical time scales observed in literature. The method
quantitatively analyzes systematic effects of extracellular cues
on cellular phenotypes and generates comparable time-course
predictions when contrasted with an equivalent kinetic model
(Lee et al., 2008). In addition, Covert and co-workers
combined FBA with regulatory Boolean logic, and ODEs
to create an integrated model of E.coli to describe in
detail carbohydrate uptake control and behavior of diauxic
growth. This approach was able to give more accurate
phenotypes than a purely ODE-based model (Covert et al.,
2008).

In addition, DFBA method has not only been confirmed
theoretically, but also evaluated experimentally, explained in
the two following examples. One example of this is its use
for optimization of yeast models using a parallel bioreactor
system to determine the optimal aerobic and anaerobic switching
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time and level of oxygen for maximal ethanol production
in batch culture, and comparing results after experimental
procedures. The conclusions of this study shows that parallel
fermentation is a powerful tool for batch culture optimization
when used in conjunction with dynamicmetabolicmodels, where
a batch culture bioreactor can be scaled-up to 5-fold change
(Hanly et al., 2013). The second example is DFBA modeling
formulation for accumulation of high-value storage molecules in
microalgae that provides quantitative predictions under various
light and nutrients. The accuracy of predictions is evaluated
through independent experimental data followed by a fed-batch
optimization, showing an increase of biomass and β-carotene
density by factors of about 2.5 and 2.1, respectively (Flassig et al.,
2016).

CSO Using Hybrid Models
Hybrid models can be incorporated into CSOMs to improve
ME tasks, since kinetic information is used to perform more
descriptive phenotype predictions as discussed before. Some
efforts that have used this hybrid approach start with the
work by Gadkar and his group, who added kinetic expressions
as constraints into DFBA to optimize the concentration of a
certain product yield (maximization of glycerol and ethanol
concentrations in E. coli model). This was possible by analyzing
an optimal temporal flux profile of a manipulated reaction. They
also examined growth inhibition due to variations in the end
production, concluding that genetic alterations are critical from
the standpoint of productivity (Gadkar et al., 2005). Another
contribution was made by Zhuang and collaborators, who built
a dynamic strain scanning optimization for designing microbial
strains with balanced yield, titer and productivity, applied to a
study case for the maximization of succinate and 1,4-butanediol
in E. coli. This method uses DFBA to evaluate the relationship
between growth yield, growth rate, product yield, volumetric
productivity, titer and economic viability of designed strains
(Zhuang et al., 2013).

One outstanding effort to build CSO using hybrid models
is k-OptForce (Chowdhury et al., 2014), a hybrid approach for
the integration of kinetics with FBA for strain design, developed
recently to increase the accuracy of predictions and conveniently
using kinetic rate expressions. This framework redistributes
fluxes in the metabolic network instead of aiming at an optimal
value of an objective function, in contrast with pure CBM
methods. The method segments the reactions of the studied
metabolic network in two sets: (1) φstoic, information, restricted
by mass balance and thermodynamics, and (2) φkin, that
contains the reactions for which kinetic information is known,
such as enzyme activity, kinetic parameters and metabolite
concentrations, representing them as a system of nonlinear
ODEs.

Afterwards, the problem to be solved with k-OptForce is
formulated in two steps: (1) the wild-type behavior is defined
by using flux variability analysis (Mahadevan and Schilling,
2003) for φstoic, and by solving the system of ODEs to get
a flux distribution at steady-state for φkin. Additionally, the
overproducing strain is defined under the available restrictions
for concentrations and kinetics; (2) the problem is formulated

similarly to the one described by the predecessor CSOM
OptForce (Ranganathan et al., 2010), by transforming it into
a mixed-integer nonlinear optimization problem. Taking into
account the kinetic constraints, the solution comes from
the computation of MUST and FORCE sets, i.e. the set of
reactions required to achieve a user-defined production yield
and the minimal set of reactions that need to be forced via
genetic manipulation, respectively. k-OptForce was theoretically
evaluated in comparison to OptForce, an exact CSOM based on
pure constraint-based models, for the prediction of L-serine in
mutant E. coli and triacetic acid lactone in mutant S. cerevisiae.
The study revealed that the non-intuitivemodifications identified
for key enzymes by k-OptForce, produce less rearrangements
of the flux distribution toward the product of interest, which
will not exceed concentration bounds and cannot be captured
by stoichiometry-alone analysis. The method is versatile enough
to incorporate available omics information to further improve
prediction fidelity. However, sensitivity analysis has to be
performed since it is shown that the required number of
interventions can be significantly affected by changing the
imposed bounds on metabolite concentrations (Chowdhury
et al., 2014).

Furthermore, among the methods for strain optimization
presented in Table 3, which were theoretically evaluated, the
developers of k-OptForce also discuss a case study that
is evaluated with experimental data. Khodayari and his
team use a hybrid model of E. coli to study succinate
overproduction through strain design. The method identifies
minimal interventions that improve succinate yield under both
aerobic and anaerobic conditions to test the fidelity of model
predictions under both genetic and environmental perturbations.
Under aerobic condition, this method identifies interventions
that match existing experimental strategies, finding unexplored
flux re-directions such as routing glyoxylate flux through
the glycerate metabolism to improve succinate yield. These
interventions are able to be pointed by using kinetic descriptions
that would not be discoverable by a purely stoichiometric
formulation. However, under anaerobic condition, k-OptForce
cannot identify key interventions because the pathways were not
properly parameterized as only aerobic flux data were used in
the model construction. In conclusion, this study reveals the
importance of condition-specific model parameterization and
provides insight on how to use kinetic models to correctly
analyze the response to multiple environmental perturbations.
In general, however, the number of intervention strategies when
implementing hybrid approaches is a trade-off for improving
computational performance (Khodayari et al., 2015).

DISCUSSION

In this work, we have explored the importance of developing
detailed dynamic models able to support accurate phenotype
predictions and their use in efficient strain optimization
algorithms, a field that has the potential to produce significant
impact in industrial biotechnology. Methods to fulfill these
tasks and to generate new knowledge are emerging and being
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evaluated, with the intention of exploring and bridging the
gap between different (bio)mathematical modeling frameworks.
Systems biology provides strategies for ME to take advantage of
the best simulation and optimization method features, and to
deal with the most remarkable limitation regarding the lack of
available experimental information, which affects accuracy and
feasibility of solutions (Machado et al., 2012). Another identified
issue is the addition of more detailed information to already
existing genome-scale models, to increase their scalability and
the range of industrial applications for strain design. The global
challenge consists in generating high quality models that make
a difference in the improvement of performance of CSOMs
for larger scales. However, this task becomes a challenge since
metabolic simulation has to deal with thousands of reaction rates
and metabolite concentrations.

Moreover, current research trends point to the inclusion
of parameter uncertainty to increase the level of flexibility,
using kinetic models built with stochastic optimization methods,
and also improvement of phenotype predictions by using
complementary data, such as various types of omics data,
particularly gene expressions (Jahan et al., 2016). Furthermore,
some methodologies include evaluation of stability, robustness
and other type of analyses of dynamic features, such as
oscillations (Schaefer et al., 1999). Additionally, identifiability
analysis helps to drive dynamic models to the development
of better experimental techniques and to polish methods to
solve the optimization problems, focusing on exact or stochastic
formulations (Villaverde and Barreiro, 2016).

The revised dynamic modeling approaches are supported
by the use of optimization methods for two main identified
tasks. On one hand, we have the development of models for
phenotype prediction, particularly for parameter estimation. This
task requires model calibration through the minimization of
differences between predicted and experimental values (Banga,
2008). On the other hand, we have the strain design task,
which aims at finding the optimal interventions strategies for
producing strains with enhanced capabilities (Vital-Lopez et al.,
2006). Both tasks have to deal with choosing the most suitable
optimization method, which depends on the type of problem
or application. However, it has been noticed that stochastic
optimization approaches seem to be an acceptable option to avoid
issues with scalability, flexibility or convergence time. Involving
metaheuristics, the search of alternatives in bigger solution spaces
is more efficient for complex (multi)objective functions. For
example, finding the optimal kinetic parameters to reach desired
phenotypes in a genome scale, once a suitable known model
structure is identified, such as central carbon metabolism of
E. coli or S. cerevisiae (Rocha et al., 2008).

Kinetic models can also be studied within hybrid models for
phenotype prediction, which allows the integration of available
kinetic relations with genome-scale constraint-based model
formalisms. This idea results in more detailed descriptions of
large-scale models, since the effect of metabolite concentrations
and substrate-level enzyme regulation cannot be captured with
stoichiometry-only metabolic models and analysis methods
(Chowdhury et al., 2014). These models can be used as a base
for optimization methods for strain design to identify genetic

perturbations that are consistent with enzyme expressions and
metabolite concentrations. In principle, the algorithms can
perform the combination of CSOMs that use only constraint-
based or only kinetics-based models. The integration of
approaches has become very promising to accelerate the process
of innovation in the world of ME, leading to the targeted
overproduction of desired chemicals.

The mentioned CSOMs using hybrid models, such as the
one used by Chowdhury and coworkers, attempt to identify a
minimal set of interventions on enzymatic parameter changes
and reaction flux changes, such that less rearrangements of
the flux distribution are required, and concentration bounds
are not violated (Chowdhury et al., 2014). An important
remark is that CSOMs with hybrid approaches can always be
improved incorporating available omics information, to sharpen
the prediction fidelity. More constraints can be added to the
optimization problems to restrict more the flux ranges and
to decrease the space of possible solutions. Also, temporal
consideration can be addressed by integrating hybrid CSOMs
with the DFBA framework (Mahadevan et al., 2002) to explore
the variation of metabolic modifications as a function of time
suggesting similar actions of ribonucleic acid interference type of
interventions.

We emphasize as one of the major outcomes from the revision
of phenotype prediction and strain optimization methods, the
fact that the selection of a specific dynamic modeling approach
is always subject to the prospective application, as well as the
amount and type of experimental data available. While and
adequate path is difficult to define for all cases, Table 1 can
provide an aid in this process. For instance, mechanistic dynamic
modeling has been widely used to have conventional expressions
describing the structural features of metabolic systems. However,
this represents a general approach that might not be able to detail
specific biological processes, for which other methods can be
used. One example of this is the use of log-linear approximations
to accurately describe dynamic responses of poorly known non-
linear systems, however, parameter estimation methods might be
limited in their ability to satisfactorily fit data from observations
when small concentration of metabolites are present. This
kind of problem can be tackled using convenience rate laws,
since they require a small number of parameters that can
be easily computed. Additionally, cooperativity and saturation
expressions are used to fit experimental data for systems
with a saturable form, while modular rate laws can simplify
thermodynamic-kinetic modeling formalisms. By providing
analytical solutions and avoiding the use of non-linear problems,
the computational burden and convergence times are greatly
reduced.

Furthermore, stochastic approaches are able to capture
variability in the described species, for very well-known
structural features, such as stiff systems. The dynamics are
simulated by knowing the probabilities of transitions between
every possible state. However, the formulation can become a
non-trivial stochastic simulation algorithm for networks when
the number of reacting molecules is large per reactant, which
is common for most of realistic kinetic models. The aim will be
always to establish a trade-off between the size of the model and
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the level of accuracy of the solutions, depending on the type of
experimental data, which is not always available in the literature.
Finally, efforts for enforcing the inclusion of experimental data
as Supplementary Material when publishing new findings should
be taken by publishers, a measure that would greatly improve the
development of these type of methods.

Also, studying kinetic models, especially used within hybrid
models, has revealed strengths and limitations of model-driven
strain design, and indicated that kinetic models have the
potential to substantially over-perform FBA-based predictions
when parameterized under similar conditions, but may perform
worse than FBA when predicting a significantly different
metabolic phenotype. Studies have also demonstrated the need
to perform model parameterization for a diverse range of
genetic or environmental perturbations, and the tight integration
of transcriptional level along with substrate-level regulatory
interactions. At a fundamental level, kinetic models must be
a priori provided with the quantitative description and as
many as possible regulatory switches in response to genetic
or environmental perturbations. The quality of mechanistic
information enables a detailed description of metabolism such
as dynamics, enzyme activities, and metabolite concentrations
but can result in erroneous predictions since some modeling
assumptions can be missing or incorrect. Nevertheless, by
studying failure modes of kinetic models, valuable information
can be uncovered for restoring prediction consistency for new
phenotypes (Khodayari et al., 2015). These findings, together
with reported experimental evaluations of constraint-based
CSOMs, available in the literature since the last two decades
(Maia et al., 2016), help building the case for the combination of
these approaches with kinetics-based models, becoming tools for
the optimization of bioprocesses for a wide range of industrially
relevant chemicals.

Additional studies, not covered in detail in this review,
point to the use of artificial intelligence as a different
approach to analyze mathematical models for ME purposes.
Novel technologies applied to metabolomics can substantially
improve search algorithms to increase the dynamic range,
number of carbon-carrying metabolites and possible pathways
to transform a given source metabolite into a given target
metabolite (Kell, 2006). One example of the use of artificial
intelligence to accelerate the design of microbial cell factories,
is the development of an efficient workflow for combinatorial
optimization of the large biosynthetic genotypic space of
heterologous metabolic pathways in yeast. This method is
able to precisely tune the expression level of genes with a
machine learning algorithm based on an artificial neural network
ensemble to avoid over-fitting, and it is also able to predict
strains with titer improvements among several possible designs
(Zhou et al., 2018). Another recent advance on exploiting
artificial intelligence techniques is an approach that combines
machine learning and abundant multiomics data (proteomics
and metabolomics) to effectively predict pathway dynamics.
The method outperforms a classical Michaelis–Menten kinetic

model, and produces qualitative and quantitative predictions
that can be used to productively guide bioengineering efforts,
by using only two time-series as training data. This work shows
that, given sufficient data, the dynamics of complex coupled
non-linear systems can be systematically learned (Costello and
Martin, 2018). Finally, the development of biological models
based on artificial intelligence has been analyzed in a recent
review, which highlights the scope of information collections,
database constructions, and machine learning techniques that
can facilitate strain design (Oyetunde et al., 2018).

In this review, we analyzed the mainmathematical formalisms
used for dynamic/hybrid modeling of microbial metabolism,
scrutinized their inclusion into strain optimization applications
and made a critical evaluation of future steps in this research
topic. The ladder toward more realistic strain engineering
strategies seems to be undeniably limited by more detailed
representation of the dynamics of the biological systems.
However, as was thoroughly discussed in this work, these are
still hindered by the lack of appropriate parameters even for
the most studied organisms such as E. coli and S. cerevisiae.
Thus, the advancement of the field will always be dependent on
incremental investments in fundamental research geared toward
the deeper understanding of biological mechanisms, including
local phenomena. For this purpose, the use of hybrid models as
flexible vessels for the cumulative inclusion of knowledge will be
of major importance in the coming years.
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