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Choosing a better move correctly and quickly is a

fundamental skill of living organisms that corresponds to

solving a computationally demanding problem. A unicellular

plasmodium of Physarum polycephalum searches for a solution

to the travelling salesman problem (TSP) by changing its

shape to minimize the risk of being exposed to aversive

light stimuli. In our previous studies, we reported the

results on the eight-city TSP solution. In this study, we

show that the time taken by plasmodium to find a

reasonably high-quality TSP solution grows linearly as the

problem size increases from four to eight. Interestingly,

the quality of the solution does not degrade despite the

explosive expansion of the search space. Formulating a

computational model, we show that the linear-time solution

can be achieved if the intrinsic dynamics could allocate

intracellular resources to grow the plasmodium terminals

with a constant rate, even while responding to the stimuli.

These results may lead to the development of novel analogue

computers enabling approximate solutions of complex

optimization problems in linear time.
1. Introduction
Biologically inspired computing devices and architectures are

expected to complement and in some cases surpass

conventional technologies for solving computationally
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Figure 1. Amoeba-based computing system. (a) Amoeboid organism P. polycephalum is placed in an Au-coated 64-lane chip resting
on a nutrient-rich agar plate. Because of its attraction to nutrient and aversion to metal, the plasmodium remains inside the chip
where the agar is exposed. For transmitted light imaging using a video camera, the organism and chip are illuminated from beneath
with an orange surface light source; this light did not affect the behaviour of the organism. Recorded images are digitally processed
using a PC to update greyscale image patterns for visible light stimulation with a projector (Material and methods). (b) Typical time
evolution of the area of the branch in a lane, where red and blue profiles show that the branches grew and were withdrawn because
of the absence and presence of the light stimulation, respectively.
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demanding problems, because of their ability to make correct decisions in uncertain environments [1,2]

and to reduce energy consumption [3,4]. The plasmodium of the true slime mould Physarum
polycephalum (figure 1a) has been actively investigated for this purpose because of its intriguing

decentralized computing capabilities. Deforming its amorphous body, the plasmodium searches for

the optimum route among food sources [5–9], forms regular graphs [10] and anticipates periodic

events [11].

These computing capabilities are considered to originate from autonomous oscillatory dynamics of

the plasmodium in which the volume of each part oscillates with a period of approximately 1 min

[12]. When placed in a multi-lane stellate chip shown in figure 1a, the plasmodium grows its

pseudopod-like branches by repeating the supply and withdrawal of its intracellular resource

(protoplasm) at each oscillation cycle (figure 1b). Although the time series of the growth movement of

the branch appears to be noisy, it contains temporal correlation comparable with the oscillation period

that fluctuates in a chaotic manner [13,14]. Furthermore, the oscillatory movements of distant branches

are spatially correlated, as they exhibit phase synchronizations that produce various spatio-temporal

patterns of travelling phase waves [15,16].

Aono et al. previously devised an ‘amoeba-based computing system’ [13,14,17,18] that harnesses the

shape-changing dynamics of the plasmodium in the stellate chip to solve combinatorial optimization
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Figure 2. TSP maps used in the experiments. (a – e) ‘Unrestricted’ instances of four-, five-, six-, seven- and eight-city TSP (left
panels). We designed each map such that its inter-city distances produce a unimodal-like distribution of lengths of possible
tours with a mean value of approximately 150 (right panels) and gives a unique shortest (blue) and longest tour of lengths
100 and 200, respectively. This is a natural approach for an unbiased evaluation of the dependence of the search ability on n.
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problems by introducing unique optical feedback control called ‘bounceback control’ (figure 1a). The

plasmodium normally grows in all the branches as the intracellular resource (inflow) is supplied from

the body, so that they occupy the entire region of the lanes and maximize nutrient absorption from

the agar plate. However, the branches retreat when stimulated by visible light (figure 1b); this is

caused by the withdrawal (outflow) of the intracellular resource from an illuminated region because of

a photoavoidance response. While the plasmodium changes its shape during our experiment, its total

resource volume of the single-celled body is approximately conserved; a volume decrease in one

branch is immediately compensated by a volume increase in one or more branches. Kim et al.
computationally demonstrated that this volume conservation law enables the branches to rapidly

exchange information about stimulated experiences in a spatially correlated manner [19,20]. The

bounceback control updates the light stimulation of all of the lanes at 6 s intervals, depending on the

change in the shape of the plasmodium. Accordingly, the plasmodium tries to deform into an optimal

shape, maximizing the body area for maximal nutrient absorption while minimizing the risk of being

exposed to aversive light stimuli.

In the bounceback control, the light stimulation is updated according to a model that is derived

from the Hopfield–Tank–Amari recurrent neural network [21] to search for a solution to the

travelling salesman problem (TSP) [14,17,18]. TSP is one of the best-studied combinatorial

optimization problems and is stated as follows: given a map of n cities (figure 2), find the shortest

tour for visiting each city exactly once and returning to the starting city [22]. There exist (n 2 1)!/2

possible tours referred to as ‘feasible solutions’. TSP is a non-deterministic polynomial time (NP)-

hard problem and all known sure methods for obtaining the exact optimal solution (the shortest

tour) among all the feasible ones for a ‘general’ or ‘unrestricted’ instance (i.e. its inter-city distances

are not restricted to be defined on the Euclidean plane that satisfies special conditions such as the

triangle inequality) require the time that grows as an exponential function of n [23–26]. By contrast,
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Figure 3. TSP solutions obtained by the amoeba-based computing system. (a – e) Examples of four-, five-, six-, seven- and eight-
city TSP tours obtained in the experiments, where each tour is coloured red in the corresponding map in figure 2. Left panels show
transmitted light images of initial states. All branches of the plasmodium (dark orange) were about to enter the lanes (light orange),
taking the value Xvk ≃ 0.0. Blue trapezoids indicate the illuminated regions. For n , 8, 64 2 n2 lanes of the chip were disabled
by applying constant illuminations, as indicated by blue trapezoids on unlabelled lanes. Right panels indicate digitally processed
images of satisfactory short tours found by the elongated branches of the plasmodium, where each red and yellow pixel indicates
that the thickness of the corresponding region of the plasmodium increased or decreased, respectively.
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many approximate search methods have been proposed to quickly obtain a high-quality solution

(a satisfactory short tour) such as the Lin–Kernighan algorithm [27], simulated annealing [28],

neural network [21], genetic algorithm [29], DNA computing [30] and ant colony optimization [1].

These approximate search methods face the trade-off between the time spent for the search versus

the quality of the solution.

As shown in figure 3, n-city TSP can be solved with the stellate chip having n � n lanes, each of which

is labelled with Vk. When the plasmodium sufficiently elongates its branch in lane Vk, this indicates that

city V was visited kth by the salesman. Thus, to represent one of the tours, the plasmodium needs to

elongate appropriate n branches exclusively. For example, the shape of the plasmodium shown in

figure 3e (right), which has eight branches elongated in lanes C1, H2, D3, E4, G5, F6, A7 and B8,

represents an eight-city TSP tour C! H! D! E! G! F! A! B! C. The bounceback control is

designed so that the shape of the plasmodium that minimizes the risk of being exposed to aversive

light stimuli is mapped to the shortest TSP tour and would become the most comfortable condition

for the plasmodium [17].

The challenge for the plasmodium to find the shortest tour is that its branches should not enter the

frequently illuminated lanes and should elongate into the optimal combination of the least frequently

illuminated lanes. However, the optimal combination cannot be found as long as the branches always

obey the control principle; if always the branches shrank when illuminated and expanded when not

illuminated, the plasmodium would not avoid falling into a local minimum. To better explore the

potential energy landscape and locate the global minimum (the shortest tour), the plasmodium needs

to misallocate the resource to its branches and the branches must violate the control principle with a

certain small probability, because the lengths of the tours can be compared only when the branches

operate contrary to their photoavoidance response [17]. That is, at appropriate timings, locations and
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frequencies, the branches should expand even when illuminated and should shrink even when non-

illuminated. In our experiment, owing to the intrinsic spatio-temporal oscillatory dynamics of the

plasmodium, each branch could vary its responses to light stimuli suitably depending on its

oscillation phase; in the upward phase, the branch expands even while illuminated, whereas in the

downward phase, it shrinks even while not illuminated. Consequently, the plasmodium found a

reasonably high-quality solution with a high probability and reached a more comfortable condition

for itself (figure 3).

In the context of biological computation, the biggest interest would be whether the search

performance of the plasmodium, the computational capability to choose the more comfortable

condition quickly and correctly, scales when its surrounding environment increases its complexity

dramatically. Thus, in this study, carrying out Experiment 1 that increases the problem size n from

four to eight, we investigate how the time required for the plasmodium to find a feasible solution

grows as a function of n and evaluate how the quality of the solution varies as the search space

expands explosively. According to the results shown in our previous work [18], it was conjectured

that the spatial and temporal correlations in the oscillatory dynamics of the plasmodium are essential

for enhancing its computational capability. To examine this hypothesis, in Experiment 2, we add

random noise in applying the bounceback control so that the spatio-temporal correlations in the

oscillatory dynamics are virtually damaged. The comparison between results obtained from

Experiments 1 and 2 reveals the significance of the spatio-temporal correlations for enhancing the

search performance. Then, to explore the solution-searching mechanism of the plasmodium, we

formulate a computational toy model of our amoeba-based computing system that couples the

dynamics of shape-changing movements of the plasmodium and that of the bounceback control. We

show that the simulation results obtained from the computational model reproduce the experimental

results well.
2. Material and methods
We followed the protocols described in our previous works [13,14,17,18].

2.1. Physarum culture
An amoeboid plasmodium, a plasmodium of the true slime mould Physarum polycephalum (strain:

HU195x200 provided from Hokkaido University), was maintained with oat flakes (Premium Pure Oat

Meal, Nippon Food Manufacturer) on a 1% agar plate at 258C in the dark. The nutrient-rich agar used

for the experiment included: ultrapure water (Milli-Q) 100 ml, BactoAgar 1.5 g, glucose 0.36 g, KCl

0.074 g, malt extract 1 g and peptone 0.1333 g. We added haemin solution (0.5 ml) to these ingredients

after autoclave sterilization (1208C, 20 min). The haemin solution contained haemin (25 mg) and

NaOH (1 g) diluted with ultrapure water (50 ml). The surface of a plate was covered with a plastic

layer (transparent sheet coloured with black) to prevent moisture evaporation, which resulted in a

decrease in the chip height.

2.2. Fabrication of stellate chip
A 64-lane stellate chip was made from an ultrathick photoresist resin (SU-8 3050) using a

photolithography technique. During fabrication, we used a release layer (Omnicoat), a remover

(XP 101A Developer) and a developer (SU-8 Developer) (all these reagents are products of

MicroChem Corp.). The top and bottom surfaces of the chip were coated with Au using a

magnetron sputterer (MSP-10, Shinkuu Device Co., Ltd). The dimensions of the chip were as

follows: thickness, approximately 0.1 mm; diameter, 23.5 mm; diameter of the centre disc, 12.5 mm;

and each lane, 0.45 � 3 mm.

2.3. Environmental conditions
The experiments were conducted in a dark thermostat and humidistat chamber (28+0.58C, relative

humidity 70+5%, THG102FB, Advantec Toyo Kaisha, Ltd). For transmitted light imaging, the sample

was placed on a surface light guide (MM80-1500, Suruga Seiki Co., Ltd) connected to a halogen lamp

light source (Techno Light KTX-100R, Kenko Co., Ltd) equipped with a bandpass filter (46159-F,
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Edmund Optics Inc.). The sample was illuminated with light (intensity 2mW mm22) at a wavelength of

600+ 10 nm, under which no influence on the behaviour of the plasmodium was observed [31].
sos.royalsocietypublishing.org
R.Soc.open
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2.4. Illumination conditions
The intensity of the white light (monochrome colour R255 : G255 : B255) illuminated from the projector

(W6000, BenQ; 2500 lm, contrast ratio 5000 : 1) was 352 mW mm22 for which we measured a white

pattern (R:G:B¼255 : 255 : 255) using a power meter (Power/Energy Meter Model 1825-C, Newport).

The outer edge of the stellate chip (border between the chip and the agar region) was always

illuminated to prevent the plasmodium from moving beyond the edge. The program codes for

real-time image processing for optical control were written in Visual Cþþ using a commercial

developer studio (Visual Studio 2008 Express Edition, Microsoft). Time-lapsed video images were

captured with a video camera (ARTCAM-036MI, Artray; resolution: 640 � 480) at an interval of 6 s.

The luminance (darkness) of each pixel in a recorded (pre-binarized) image reflected the vertical

thickness of the corresponding region of the plasmodium, as the image was recorded with

illuminating light transmitted from beneath the translucent agar plate.
396
2.5. Bounceback control
For each Vk at time t, the state XVk(t) [ [0.0, 1.0] is defined as the fraction of the area occupied by the

branch of the plasmodium inside the corresponding lane (i.e. XVk ¼ the area of branch Vk divided by

the area of the entire region of lane Vk) and is obtained by digital image processing. In the absence of

light stimuli, every branch would fully elongate to take the value XVk ≃ 1.0.

Illuminating lane Vk, we can inhibit the long-term growth of branch Vk, owing to the negative

phototaxis of the plasmodium. When lane Vk is illuminated with maximum light intensity, we denote

this status as LVk ¼ 1.0, whereas LVk ¼ 0.0 denotes no illumination. For large XVk, the long-term

decrease in XVk can be promoted by the illumination LVk . 0.5. The plasmodium is illuminated by

projecting a greyscale image pattern using a PC projector. The image pattern, which is referred to as

the ‘illumination pattern’, determines illuminated and non-illuminated lanes that are coloured white

and black, respectively.

All light stimuli LVk are updated synchronously on the basis of the following recurrent neural network

dynamics [14,17,18], which was derived from the Hopfield–Tank–Amari model [21].

LVk(tþ Dt) ¼ 1� s1000,�0:5

X
Ul

WVk,Ul � s35,0:6(XUl(t))
� �

, (2:1)

sg,u ¼ 1=(1þ exp (� g � (x� u))), (2:2)

WVk,Ul ¼

�l (if V ¼ U and k = l),
�m (if V = U and k ¼ l),
�n � dist(V, U) (if V = U and jk � lj ¼ 1),

0 (otherwise):

8>>><
>>>:

(2:3)

The sigmoid function s35,0.6 adjusts the sensitivity of the control, s1000,20.5 performs similar to the step

function and the inhibitory coupling weight WVk,Ul (¼WUl,Vk , 0) results in the decrease in XUl with

the increase in XVk and vice versa. Parameters l ¼ 0.5, m ¼ 0.5 and n impose the following constraints

on TSP, respectively: (i) prohibition of revisiting a once-visited city, (ii) prohibition of simultaneous

visits to multiple cities and (iii) minimization of the total distance, where dist(V, U ) is the distance

between cities V and U. To maximize the effect of (iii), it is necessary to set n as large as possible so

that differences in inter-city distances can be maximally amplified. However, n must be below an

upper limit nw, otherwise some branches are illuminated even when they select some possible

tours. The value of the limit nw ¼ �u=(dist(Vw, V0w)þ dist(V0w, V00w)) is obtained numerically, where

u ¼ 20.5 and {Vw, V0w, V00w} ¼ argmax{V,V0 ,V00}(dist(V, V0)þ dist(V0, V00)). Thus, l, m and n can be

automatically determined for given a map. For the eight-city map, we set n to be

nw ≃ 0:008197 . n ¼ 0:0081. Similarly, for the four-, five-, six- and seven-city maps, we set n ¼

0.00495, 0.00565, 0.0067 and 0.0076, respectively.
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3. Results

3.1. Experiment 1
We used an identical chip with 64 lanes for all n [ f4, 5, 6, 7, 8g to fix the physical size of the chip. This

was because we are interested in the problem-size scalability of the system but not the space-size

scalability and so the time required for communication between the branches of the plasmodium

should be equalized independent of n. Because we needed only n2 units for the n-city TSP, for n , 8,

64 2 n2 lanes of the chip were disabled by applying constant illuminations.

We began the experiment by placing the plasmodium inside the chip. All initial states should be

set as XVk(0) ≃ 0.0. Thus, we illuminated all lanes to block invasion by the plasmodium and waited

until the agar-exposed area in the centre disc of the chip was fully covered by the body of the

plasmodium.

After the computing started, the plasmodium expanded and shrank its branches in the enabled

n2 lanes. The plasmodium exhibited complex oscillatory movements of its branches with

spatio-temporally correlated fluctuations and evoked a variety of the illumination patterns so that it

can find the least frequently illuminated n branches to elongate exclusively in finding a tour. The

system was considered to have found the tour when the illumination pattern remained unchanged

for more than 3 min. We defined the search time required to find a tour as the time elapsed from

the moment some of the lanes are first illuminated to the moment the shape of the plasmodium

first represents the tour.

Using the maps shown in figure 2, we explored how the plasmodium manages the time-quality trade-

off when the problem size n was increased from 4 to 8. Each of these maps was constructed randomly to

have a normal distribution of tour lengths with a mean value of approximately 150, where the shortest

and longest lengths were set at 100 and 200, respectively.

For each n, we performed more than ten trials (table 1), where for each trial we used a different

plasmodium individual (figure 3) with initial volume equalized (average weight 11.97 mg)

independent of n. Although the number of all possible tours grew factorially from 3 to 2520 as a

function of n (figure 4a), the plasmodium successfully found a feasible solution with a high

probability (figure 4b). Despite the rapid growth in the number of solution candidates, the average

time required to find a feasible solution grew almost only linearly (figure 4c).

If it was supposed that the plasmodium has no capacity of ‘optimization’ and is only to choose one of

the tours randomly by chance, the average length of the tours found by the plasmodium should

approach the mean value (approx. 150) of the lengths of all possible (n 2 1)!/2 tours. However, as

shown in figure 4d, the average length of the tour found by the plasmodium remained significantly

shorter than the mean value for all n, where each red dot indicates the former value divided by the

latter value (black dot). That is, the quality of the solution found by the plasmodium did not degrade

even when the problem size got larger. These results suggest that the plasmodium has an ability to

search for a reasonably high-quality solution at a low exploration cost including the linearly

suppressed time.
3.2. Experiment 2
To undermine the spatio-temporal correlations in the search dynamics, we added white noise with a flat

power spectral density, jVk(t) [ [ 2 d, d ], to the measured value XVk(t), where d, called the ‘noise level’,

determines the maximal noise amplitude. That is, in the bounceback control dynamics, the argument

XVk(t) was replaced with the noise-added argument XVk(t) þ jVk(t). Figure 5a,b shows the original

evolution XVk(t) and noise-added evolution XVk(t) þ jVk(t), respectively. As the noise ji is generated

without any correlation, it damages the temporal correlation. As all ji are independent, the spatial

correlation among the branches is also damaged. To evaluate the impact of these damages on the

search performance, we focused on the eight-city instance shown in figure 2e and examined the

performance of two noise levels d ¼ 0.03 and 0.05 (table 1).

Testing the two noise levels, we observed that the decreased correlations lead to a significant

degradation of the success rate of finding a feasible solution (figure 4e) and lowered the quality of the

solution found (figure 4f ). These observations verify our conjecture that the spatial and temporal

correlations in the oscillatory dynamics of the plasmodium are essential for enhancing its search

performance.



Table 1. Statistics of Experiments 1 and 2. For each n, we show the number of total trials performed, number of trials that
succeeded in finding a tour, average search time required for finding the tour, length of the best and worst tours found and
average length of all the tours found along with its top quality in percentage. The two right-most columns show the results for
the non-zero noise levels d ¼ 0.03 and 0.05.

experiment 1 2

n 4 5 6 7 8 8 8

mean tour length Lmean (known in advance) 153.3 150.0 145.2 146.0 149.1 149.1 149.1

noise level d 0 0 0 0 0 0.03 0.05

number of experimental trials T 12 11 12 11 23 27 26

Av. weight of plasmodium (mg) 11.37 11.63 11.66 11.90 13.31 11.43 11.43

number of successful trials S 10 10 10 10 21 14 13

(succeeded in finding a feasible solution)

success rate S/T (%) 83.3 90.9 83.3 90.9 91.3 51.9 50.0

Av. search time (min) 21.6 24.9 34.9 39.6 45.9 55.9 73.7

best tour length (found in experiment) 100 112 100 121 117 127 131

worst tour length (found in experiment) 200 168 174 151 165 163 180

Av. tour length Lexp (found in experiment) 142.0 129.2 133.3 137.6 133.8 138.6 147.8

Lexp/Lmean 0.926 0.861 0.918 0.942 0.897 0.929 0.991

top quality (%) (33.3) (25) (33.3) (37.5) (20.7) (32.1) (52.3)
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3.3. Computer simulation
To understand the mechanism used by the plasmodium to find a feasible solution in linear time, we

formulated a computational toy model of our amoeba-based computing system, named ‘AmoebaTSP’

(see Appendix for its pseudo-code and electronic supplementary material for its Fortran code). In

AmoebaTSP, the intracellular resources required for the growth of the plasmodium branches are

supplied from the disc-shaped central region at a constant rate Din. The resources are supplied

constantly even while some of the branches retreat from the illuminated lanes. For each n ranging

from 10 to 20, we constructed a TSP map shown in figure 6 and performed 500 trial Monte Carlo

simulations by setting the resource inflow rate Din and outflow rate Dout to be 0.001. As shown in

figure 4g, the average number of iterations required for AmoebaTSP to find a feasible solution grows

almost linearly as a function of n. The quality of the solution found by AmoebaTSP was maintained

at a reasonable level independent of n (figure 4h). These results suggest that the linear-time search

ability of the plasmodium is due to its relatively simple response mechanism. Namely, even without a

sophisticated nervous system, not only the plasmodium but also any relatively simple physical

systems that are able to stock inbound resources and to redistribute them uniformly and constantly to

terminals would demonstrate the ability to find a reasonably high-quality solution of combinatorial

optimization problems in linear time.
4. Discussion and conclusion
One of our future subjects is to examine whether the linear-time search ability of the plasmodium could

be confirmed even when using different maps in which their tour lengths are not distributed normally as

can be seen in real-world applications. Informally, the randomly chosen maps with normally distributed

inter-city distances that we used in this study might be ‘harder’ than the ones with abnormally

distributed distances that reflect the real-world situations. In the results shown in [22], to solving

randomly constructed TSP instances with normally distributed tour lengths defined on the Euclidean

plane tended to require longer CPU time than to solving the benchmark instances provided at TSPLIB

[32] that includes a variety of industrial applications and geographical point sets.

The reason why in this study the number of cities n was limited to eight was that we were not able to

fabricate the chip with more than 64 lanes, owing to the size limit of the photolithography equipment.
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The width of each lane of the chip had to be 0.45 mm; below this width, the branch of the plasmodium

was not able to enter the lane, and above this width, we could not avoid the growth of more than one

branch in a lane. In nature, it is observed that the area of the plasmodium grows up to several square
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metres wide. Therefore, once we could fabricate the larger chip, the plasmodium would solve larger TSP

instances with several hundred cities, as the number of its branches would be estimated to scale to several

tens of thousands.

The oscillatory movements of distant branches of the plasmodium are spatially correlated, as they

exhibit phase synchronizations that produce various spatio-temporal patterns of travelling phase

waves [14]. We have experimentally shown that a shorter TSP tour can be found when the

plasmodium exhibits a lower number of the travelling phase waves, indicating that the dynamics are

highly coherent and correlated throughout the global body [18]. Although our computational model,

AmoebaTSP, in its current form does not introduce any correlation among the fluctuations of the

branches, a modification of the branch dynamics to involve the spatio-temporal correlations may

further enhance the ability to find a high-quality solution.

AmoebaTSP was formulated in such a way that it is scheduled to reach one of the feasible solutions

after the number of iterations that grows linearly as a function of n; for that purpose, we introduced a

constraint that the constant amount of resource has to be distributed to the non-illuminated branches

for every iteration by extinguishing the stock of retreated resources from the illuminated branches. It

was confirmed that this constraint ensures the linear growth in terms of the number of iterations.

When AmoebaTSP is simulated on a traditional digital computer, however, the CPU time required to

reach a feasible solution grows nonlinearly. A major reason is that the weight matrix (equation (2.3))

of the recurrent neural network dynamics to determine the illumination pattern has n4 elements,

which are to be processed serially in CPU. The CPU-simulated AmoebaTSP, therefore, would not be

used to obtain an approximate solution of TSP in linear practical time for the problem size larger than

several hundred cities.

But, using some other computing platforms whose physical processes allow us to update the states of

all AmoebaTSP branches in parallel when computing the neural network dynamics and constant-rate

resource distribution dynamics, we expect that the approximate solution of TSP would become

available in linear practical time. A promising candidate of such a computing platform is an analogue
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electronic circuit. In fact, some authors have explored the use of the amoeba-inspired electronic circuits

for tackling the constraint satisfaction problem [33], satisfiability problem [34], analogue-to-digital

conversion [35] and finding walking manoeuvre of a multi-legged robot [36]. Such an approach to

exploit physical parallelism may develop a novel analogue computing paradigm, providing powerful

approximation methods for solving complex optimization problems appearing in a wide spectrum of

real-world applications.
 ypublishing.org
R.Soc.open

sci.5:180396
Appendix A
A.1. AmoebaTSP
Under the bounceback control described by equation (2.1), AmoebaTSP stocks the resource outflows

from the retreated branches and redistributes them evenly to the branches in non-illuminated lanes.

We give the pseudo-code of AmoebaTSP as follows, where the resource inflow rate Din and outflow

rate Dout are constant parameters.

t ¼ 0 ;

FOR Vk ¼ City11 to Citynn, Ul ¼ City11 to Citynn
Determine coupling weight WVk,Ul according to Eq. (3) ;

FOR Vk ¼ City11 to Citynn
Initialize XVk(0) ¼ X0 such that s35,0.6(X0) ¼ 1/(n2 2 1) ;

Initialize S(0) ¼ 0 ;

WHILE t , tMax do

IF a configuration of all XVk(t) represents a consistent TSP tour
THEN RETURN the tour ;

ELSE

FOR Vk ¼ City11 to Citynn
Determine eVk(t) as a randomly chosen real number in (20.003, 0.003) ;

Determine LVk(tþ 1) ¼ 1� s1000,�0:5(
P

UlWVk,Ul � s35,0:6(XUl(t)þ eVk(t))) ;

IF lane Vk is illuminated (LVk(t þ 1) . 0.5)

THEN Determine OVk(tþ 1) ¼ 2 � Dout � s20,0:6(XVk(t)þ eVk(t)) ;

ELSE Determine OVk(t þ 1) ¼ 0 ;

CALL StockRedistribution ;

FOR Vk ¼ City11 to Citynn
IF lane Vk is not illuminated (LVk(t þ 1) � 0.5)

THEN Update XVk(t þ 1) ¼ XVk(t) þ IVk(t þ 1) ;

ELSE Update XVk(t þ 1) ¼ XVk(t) 2 OVk(t þ 1) ;

END WHILE

RETURN "Not Found" ;

SUBROUTINE: StockRedistribution

Determine Loff(t þ 1) as the number of non-illuminated (LVk(t þ 1) � 0.5) lanes ;

IF Loff(t þ 1) ¼ 0

THEN Update S(tþ 1) ¼ S(t)þ
P

VkOVk(tþ 1)þ Din ;

Determine IVk(t þ 1) ¼ 0 ;

ELSE Update S(t þ 1) ¼ 0 ;

Determine IVk(tþ 1) ¼ (S(t)þ
P

VkOVk(tþ 1)þ Din)=Loff (tþ 1) ;

END SUBROUTINE
A.2. Travelling salesman problem maps used in computer simulation
To evaluate the dependence of the search ability of AmoebaTSP on n in an unbiased manner, for each n,

we constructed a TSP map with a normal distribution of tour lengths and a mean tour length of

approximately 100n. For that purpose, we first prepared a set of normally distributed real numbers

with a mean value of approximately 100 and variance of approximately 17. Then for each n, we

constructed a TSP map by defining n(n 2 1)/2 inter-city distances assigned in the map, each of which

was randomly chosen from the set of the normally distributed real numbers. The distributions of

inter-city distances of the constructed TSP maps are shown in figure 6.
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