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INTRODUCTION

The discussion of electric fields has ignored the influ-

ence of matter on the  field except for the discus-

sion of  fields in electric conductors. The behavior

of matter in electric fields can greatly influence the

 field as shown for the case of a good conductor.

The response of matter to an electric field falls into

two main categories, polarization of bound charges in

atoms or molecules, and the flow of electric current

due to the existence of unbound charges in matter as

in conductors. A non-conducting material is called a

dielectric. All the charges in a dielectric are bound

and thus they cannot support an electric current. In

spite of this, the electric field is changed greatly by the

presence of a dielectric material. This chapter will dis-

cuss the properties of the electric dipole that underlies

the behaviour of dielectrics. This knowledge then will

be used to discuss the microscopic aspects of the influ-

ence of electric fields on atoms, which is needed to fully

understand the macroscopic behavior of dielectrics on

electric fields. This chapter finishes with a discussion

of some important practical consequences.

THE ELECTRIC DIPOLE FIELD

Prior to discussion of a dielectric it is necessary to be

able to consider the electric field of the electric dipole

as well as consider the torque and translational force

that can act on an electric dipole in an electric field.

Remember that an electric dipole comprises two equal

and opposite charges  separated by a distance . The

electric dipole moment of the dipole −→p is defined as:

Figure 1 Electric field components at P caused by an

electric dipole

−→p = 
−→
d

where
−→
d points from the negative to positive charge.

The concept of electric potential is especially useful for

calculating the electric field for the electric dipole.

The electric potential relative to infinity at the

point  in figure 1 is given by:
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where 2 is the angle for the positive charge and 1 for

the negative charge. Let    then 1 ≈ 2 ≈ ,

and the equation simplifies to:
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The electric dipole moment is given by:

−→p =bi
that is, the electric dipole moment is a vector quantity

as opposed to the monopole moment .

Thus the electric potential relative to infinity can

be written as:

 =
−→p · br
42

  

sincebi ·br = cos  where br point from the electric dipole
towards the point  .
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Figure 2 The electric potential and field for an electric

dipole.

Figure 3 Torque and translational forces for an electric

dipole in an electric field.

The electric field for the electric dipole, in the far-

field approximation, can be derived from the above

potential since
−→
E = −−→∇ as was discussed previously.

The electric field lines and equipotentials are shown in

figure 2.

FORCES ON AN ELECTRIC DIPOLE

When an electric dipole is in an electric field a torque

is generated by the opposing forces acting on the two

dipole charges which have opposite signs. As shown,

in figure 3, the torque  is given by:

−→τ = 2(


2
 sin ) = −→p ×−→E

Remember that the cross product implies that the

torque is a vector perpendicular to −→p and
−→
E . The

torque causes the electric dipole to align with the elec-

tric field just like a compass needle. Grass seeds, which

became small electric dipoles in an  field, were shown

to align with the  field in the earlier demonstration.

If the electric field is non-uniform then the net

translational force of the two charges of an electric

dipole are not equal and opposite leading to a transla-

tional force. It can be shown that the net force is given

by the gradient of the scalar product −→p ·−→E . That is
−−→
F =

−→∇
³−→p ·−→E´

When the dipole and electric field are aligned then this

simplifies to
−−→
F = 





that is, the gradient of the electric field times  just

equals the difference in in the opposing forces on the

two electric poles. This force will be used later when

discussing the electrostatic precipitator.

DIELECTRIC POLARIZATION

The polarization of a dielectric can be explained on

a microscopic scale by considering the polarization of

atoms and molecules.

Atomic polarization

The spatial distribution of atomic electrons is centered

on the positively charged nucleus when no external

electric field acts. Thus the center of the negative and

positive charge distributions are the same. However, in

the presence of an external electric field, the forces on

the positively-charge nucleus and negatively-charged

electrons induces a small relative displacement of the

two charge distributions leading to a non-zero dipole

moment. It turns out that the displacement is propor-

tional to the applied electric field. Thus the net elec-

tric dipole moment −→p = 
−→
E where  the constant

of proportionality, is called the atomic polarizability.

Typically the displacement of the two charge distribu-

tions is very small, that is, the order of 10−15 which

is comparable to the size of the nucleus.

Molecular polarization

Non-polar molecules are those without a permanent

electric dipole moment. As with an atom, when these

non-polar molecules are in an electric field they acquire

an induced dipole moment. Linear molecules, such as

CO2 are easier to polarize along the axis of the dipole

than perpendicular to axis of the molecule leading to

20 to 30 times larger polarization than in the atom.

That is, one is dealing with relative displacement of

the charges along the molecular axis of about 10−14

In this case, it is possible to have −→p = 
−→
E where −→p

and
−→
E are not parallel, that is, for some materials, 

may not be a simple scalar number.
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Figure 4 Atomic, molecular and polar molecule contri-

butions to polarization in dielectrics.

Align polar molecules

Polar molecules, such as HCl or H2O, have a per-

manent electric dipole moment since atomic binding

causes electrons to be preferentially bonded to one of

the atoms. Thus one is dealing with equal and opposite

electric charge displaced the order of 10−10, the size
of the molecule, which is 105 times larger that atomic

polarization. These polar molecules tend to be ran-

domly oriented in the absence of an external electric

field. An external electric field applies a torque tend-

ing to align these dipoles along the electric field. This

alignment torque, which is proportional to  is op-

posed either by the random thermal motion destroying

alignment or the elastic forces in the solid lattice. The

polarization in most materials leads to a net average

electric dipole moment −→p = 
−→
E where the coefficient

 is very much larger than for atomic polarization.

The polarizability of polar molecules is orders of mag-

nitude larger than the other two mechanisms. Note

that thermal motion tends to destroy alignment of po-

lar molecules. Thus the net dipole moment increases

as the temperature of the material is decreased. Also

note that the polarization is frequency dependent. At

low frequencies the polar molecules contribute a large

polarization. However, at high frequencies, the net po-

larization decreases because the polar molecules can-

not follow the rapidly-changing E field because of the

large moment of inertia of the polar molecules.

Most dielectrics are linear dielectrics, that is, where

all three mechanisms lead to the average electric dipole

moment being proportional to the electric field E, that

is,

−→p = 
−→
E linear dielectric

This has important consequences that appreciably sim-

plifies treatment of electric fields in matter as will be

discussed.

A nice example of −→p = 
−→
E is the electrostatic pre-

cipitator which uses a highly non-uniform electric field

near the high voltage comb of points to both polar-

ize the dielectric in smoke and then attract it in the

non-linear electric field near the points. For a linear

dielectric the translational force on a dipole in a non-

linear electric field is

−−→
F =

−→∇
³−→p ·−→E´ = −→∇ ¡2¢

This force attracts the dielectric into the region with

the highest gradient of 2 Thus any dielectric is at-

tracted to the sharp points. High-voltage equipment

becomes dirty near any high-field region for the same

reason.

ELECTRIC FIELD IN A DIELECTRIC

The response of a dielectric can be treated in macro-

scopic terms. The prior discussion showed that micro-

scopic polarization leads to an effective net separation

of the positive and negative charge distributions leav-

ing a surface charge distribution on the two surfaces of

the dielectric due to the fact that the displaced charge

distributions do not cancel at these surfaces.

For simplicity consider the case of a parallel-plate

capacitor shown in figure 5, the negative charge from

the induced dipole polarization is adjacent to the posi-

tive capacitor electrode while the positive induced charge

is adjacent to the negative electrode. The induced po-

larization charge density  is real charge but these

are bound charges as opposed to the free charge den-

sity  applied to the conducting electrode plates.

In the dielectric, the induced (bound) charge distribu-

tion causes an induced electric field  that is oppo-

site to the external electric field. Thus the net field in

the dielectric is  =  − The induced field

is zero outside of the dielectric.

The polarization, and thus the induced surface charge

density , of the dielectric in the parallel-plate ca-

pacitor, depends on  in the dielectric, not 

For linear dielectrics the proportionality can be writ-

ten as;

 = 0

where the factor  does not depend on 
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Figure 5 a) Induced charges for a dielectric in a paralle-

plate capacitor. b) The induced and external electric

fields.

Gauss’s law can be used to relate the surface charge

distributions to the electric fields. Taking an infin-

itessimal pillbox shaped Gaussian surface enclosing an

element of the capacitor plate, gives that ;

 =


0

Similarly a infinitessimal pillbox-shaped Gaussian sur-

face enclosing an element of the surface of the dielectric

gives:

 =


0

The net field in the dielectric is:

 =  − =
1

0
( − )

The problem with this dependence is that it is neces-

sary to know  to compute  in order to calculate

 This problem can be resolved by rewriting this

equation using the dependence of  on :

(1 + ) =


0
= 

Define the dielectric constant

 ≡ 1 + 

then we get:

Figure 6 Dielectric constant and dielectric strengths for

various materials.

 =


0
=





Thus  in the dielectric is a factor  weaker than

when there is no dielectric. Knowing  and the

known applied charge distribution  gives the in-

duced charge density :

 =
 − 1




As shown in figure 6, the dielectric constant  for

materials ranges from 100 for vacuum or air, to be-

tween 2 and 6 for plastics, and to 80 for water at low

frequencies. That is, the net field in the dielectric can

be substantially smaller than the external applied elec-

tric field and the induced surface charge distribution

can be comparable to the applied free charge distrib-

ution. These dielectrics are close to linear up to the

dielectric strength of over .

The above discussion considered the simple case of

a parallel-plate capacitor for which only surface distri-

butions of bound charge occur. In general, polariza-

tion leads to volume bound charge distributions which

will not be discussed. However the macroscopic con-

sequences are adequately described using the simple

case discussed here. Note that one can consider a good

conductor as having an infinite dielectric constant re-

sulting in the electric field in the conductor being zero.
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E FIELD AT DIELECTRIC

BOUNDARIES

In general, the polarization surface charge density 
leads to a polarization field  =


0

perpendicular

to the surface inside the dielectric. This weakens the

component of the external electric field perpendicular

to the surface inside the dielectric. From above, it was

shown that the normal component to the surface in

the air and in the dielectric are related by


⊥ = 


⊥

However, the parallel component of the electric field

at the surface is unchanged by the polarization of the

dielectric since the polarization charge produces a field

perpendicular to the surface. Thus


k = 

k

The boundary requirements for the normal and tan-

gential electric field vectors at the interface between a

dielectric and air are summarized in figure 7. As a re-

sult, as shown in figure 8, the electric field is refracted,

that is bent at an air-dielectric boundary. This is im-

portant, as will be shown later; this is the origin of the

refraction of light at an interface between a dielectric

such as glass and air.

Figure 7 Perpendicular and parallel components of the

electric field at an interface between a dielectric and

vacuum.

Figure 8 Refraction of electric field at boundary of

dielectric.

CAPACITANCE WITH DIELECTRICS

Consider a parallel-plate capacitor, spacing , partially

filled with a dielectric slab of thickness .

The surface charge distribution  on the surface

of the capacitor plate is related to 
⊥ by Gauss’s law,

that is


⊥ =





Inside the dielectric this field is reduced by the factor

, that is


⊥ =





Thus the potential difference between the capacitor

plates is given by the line integral:

∆ = −
Z −→
E ·−→l = (− )

⊥ + 
⊥

∆ = (− )
⊥ +





⊥

∆ =


0

∙
− ( − 1


)

¸
Since  =



we get that the net capacitance of the

partially-filled parallel-plate capacitor is:

 =


∆
=

0h
− (−1


)
i

A useful special case is when the space between the

plates is filled completely with dielectric, then  = 

and:

 =
0



The capacitance of a capacitor filled with dielectric of

constant  is a factor  times larger than when the

region between the capacitor plates is a vacuum. That

is;

 = 

This is the reason that the spacer in capacitors usu-

ally is made of an insulator having a high dielectric

constant.

Figure 9 Parallel plate capacitor partially filled with a

uniform thickness dielectric slab.
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ENERGY DENSITY IN E FIELDS

An important question is where in the capacitor is the

electrostatic energy stored and how is the electromag-

netic energy is transmitted through space from the sun

to earth. When discussing electromagnetic phenom-

ena, such as these, it is useful to use the concept of

energy stored in the electric field. It can be shown

that the energy density, energy per unit volume, in an

electric field is given by

 =
1

2
0

2 3

Thus the total stored energy can be expressed by in-

tegrating this energy density over all space;

 =

Z




1

2
0

2

The above definition of the energy density in the

electric field gives the correct answer  = 1
2
 2 for

the special case of a parallel-plate capacitor of area

, spacing  assuming the volume is filled with dielec-

tric with dielectric constant  The voltage difference

across the capacitor

 = 

Integrating over the volume  gives

 =
1

2
0

µ




¶2
=
1

2
 2

since  = 0

. That is, the energy density in an elec-

tric field gives the same answer for the energy stored in

a capacitor. For a capacitor filled with a dielectric, the

additional energy is stored in the polarization of the

dielectric. This is demonstrated by the dissectible ca-

pacitor. The capacitor can be disassembled and then

reassembled while retaining the stored energy in the

dielectric.

Stored energy for a uniformly-charged sphere

An important example of use of the energy density

is the stored electric energy for a uniformly-charged

sphere of charge. Consider a sphere of radius  and

charge , that is, uniform charge density  where

 = 4
3
3 The stored energy for a uniformly charge

sphere of charge is given by integrating

 =

Z




1

2
0

2

Note that this has to be integrated over all space,

which includes both inside the charged sphere and out-

side, since the electric field in non zero both inside and

outside the sphere. Using Gauss’s law it was shown

that:

−→
E =



42
br   

−→
E =



43
−→r   

The integral thus becomes:

 =
0

2

2

(4)
2

"Z 

0

242

6
+

Z ∞


42

4

#
That is:

 =
3

5

2

4

This potential energy is called the Coulomb energy.

This potential energy of a uniformly charged sphere

can be applied to compute the electrostatic energy

stored in a nucleus. The nuclear charge is  = ,

and the nuclear radius  = 12
1
3 × 10−15 Substi-

tution into the formula derived above gives,

 = 072
2


1
3



For a 235 uranium nucleus the Coulomb energy

is 987 which is enormous. The uranium nucleus

can split into two halves each having about half of the

mass. Each of these two pieces will have Coulomb en-

ergies of 309 , that is, the sum of the Coulomb en-

ergies of the two daughter nuclei is 370 lower than

the parent 235 nucleus. About half of this missing en-

ergy is liberated as kinetic energy and the remainder

in excitation energy of the daughter nuclei and kinetic

energy of the emitted neutrons. Nuclei heavier that

uranium do not occur naturally because it is energet-

ically more favourable for these nuclei to fission into

pairs of lighter nuclei.

SUMMARY

This lecture has focussed on the influence of matter on

electric fields. It was discussed earlier that the electro-

static electric field  is zero inside good conductors.

As a result electric conductors are equipotentials. Di-

electric materials also supress the electric field inside

the dielectric due to alignment of electric dipoles. An

electric dipole has an electric dipole moment given by−→p = d̄ The torque on such an electric dipole in an

electric field is given by,

−→τ = −→p ×−→E
For linear dielectrics the alignment of the electric

dipole moments is proportional to the electric field

−→p = 
−→
E

The electric field inside a dielectric,
−−→
E for a di-

electric constant  is related to the applied field
−−−→
E

by
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−−→
E =

−−−→
E



that is, the actual electric field inside the dielectric is

reduced by the factor 

The electric field at the boundary of a dielectric is

refracted since the normal component of the electric

field at the surface is reduced by the factor  in the

dielectric.

The concept of capacitance was discussed where

 =
∆

∆

The capacitance of a system of conductors usually is a

constant except at very high elecric fields. The capaci-

tance of a capacitor filled with a dielectric is increased

by a factor  relative to the same capacitor without

the dielectric.

 = 

The energy density in  fields was shown to equal

 =
1

2
0

2 3

Thus the total stored energy can be expressed by in-

tegrating this energy density over all space;

 =

Z




1

2
0

2

This relation will occur frequently when discussing the

energy transmitted by an electromagnetic field.

Reading assignment: Giancoli; Chapter 24
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