
On Geometric Objects, the Non-Existence of a Gravitational

Stress-Energy Tensor, and the Uniqueness of the Einstein

Field Equation†

Erik Curiel‡

ABSTRACT

The question of the existence of gravitational stress-energy in general relativity has ex-

ercised investigators in the field since the inception of the theory. Folklore has it that

no adequate definition of a localized gravitational stress-energetic quantity can be given.

Most arguments to that effect invoke one version or another of the Principle of Equiv-

alence. I argue that not only are such arguments of necessity vague and hand-waving

but, worse, are beside the point and do not address the heart of the issue. Based on a

novel analysis of what it may mean for one tensor to depend in the proper way on an-

other, which, en passant, provides a precise characterization of the idea of a “geometric

object”, I prove that, under certain natural conditions, there can be no tensor whose

interpretation could be that it represents gravitational stress-energy in general relativity.

It follows that gravitational energy, such as it is in general relativity, is necessarily non-

local. Along the way, I prove a result of some interest in own right about the structure

of the associated jet bundles of the bundle of Lorentz metrics over spacetime. I conclude

by showing that my results also imply that, under a few natural conditions, the Einstein

field equation is the unique equation relating gravitational phenomena to spatiotemporal

structure, and discuss how this relates to the non-localizability of gravitational stress-

energy. The main theorem proven underlying all the arguments is considerably stronger
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than the standard result in the literature used for the same purposes (Lovelock’s theorem

of 1972): it holds in all dimensions (not only in four); it does not require an assumption

about the differential order of the desired concomitant of the metric; and it has a more

natural physical interpretation.

Keywords: general relativity; gravitational energy; stress-energy tensors; concomitants; jet bun-

dles; principle of equivalence; geometric objects; Einstein field equation
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As soon as the principle of conservation of energy was grasped, the physicist practically

made it his definition of energy, so that energy was that something which obeyed the

law of conservation. He followed the practice of the pure mathematician, defining energy

by the properties he wished it to have, instead of describing how he measured it. This

procedure has turned out to be rather unlucky in the light of the new developments.

Arthur Eddington

The Mathematical Theory of Relativity, p. 136

1 Gravitational Energy in General Relativity

There seems to be in general relativity no satisfactory, localized representation of a quantity whose

natural interpretation would be “gravitational (stress-)energy”. The only physically unquestionable

expressions of energetic quantities associated solely with the “gravitational field” we know of in
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general relativity are quantities derived by integration over non-trivial volumes in spacetimes satis-

fying any of a number of special conditions.1 These quantities, moreover, tend to be non-tensorial

in character. In other words, these are strictly non-local quantities, in the precise sense that they

are not represented by invariant geometric objects defined at individual spacetime points (such as

tensors or scalars).

This puzzle about the character and status of gravitational energy emerged simultaneously with

the discovery of the theory itself.2 The problems raised by the seeming non-localizability of gravita-

tional energy had a profound, immediate effect on subsequent research. It was, for instance, directly

responsible for Hilbert’s request to Noether that she investigate conservation laws in a quite general

setting, the work that led to her famous results relating symmetries and conservation laws (Brading

2005).

Almost all discussions of gravitational energy in general relativity, however, dating back even to

the earliest ones, have been plagued by vagueness and lack of precision. The main result of this paper

addresses the issue head-on in a precise and rigorous way. Based on an analysis of what it may mean

for one tensor to depend in the proper way on another, I prove that, under certain natural conditions,

there can be no tensor whose interpretation could be that it represents gravitational stress-energy

in general relativity. It follows that gravitational stress-energy, such as it is in general relativity, is

necessarily non-local. Along the way, I prove a result of some interest in its own right about the

structure of the associated first two jet bundles of the bundle of Lorentz metrics over spacetime. I

conclude with a discussion of the sense in which my results also show that the Einstein field equation

is, in a natural sense, the unique field equation in the context of a theory such as general relativity,

and discuss how this fact relates to the non-localizability of gravitational stress-energy.

The main theorem (7.1) underlying all the arguments is considerably stronger than the standard

result in the literature used to argue for the uniqueness of the Einstein field equation (the classic

theorem of Lovelock 1972, stated in footnote 35): it holds in all dimensions, not only in four; it

does not require an assumption about the differential order of the desired concomitant of the metric;

and it has a more natural physical interpretation. The theorem also has interesting consequences

for a proper understanding of the cosmological-constant term in the Einstein field equation, and for

higher-dimensional Lanczos-Lovelock theories of gravity, which I discuss at the end of the paper.

2 The Principle of Equivalence: A Bad Argument

The most popular heuristic argument used to attempt to show that gravitational energy either

does not exist at all or does exist but cannot be localized invokes the “principle of equivalence”.

1Weyl (1921, pp. 271–272) and Eddington (1923, pp. 134–137) were perhaps the first to grasp this point with real

clarity. Schrödinger (1950, pp. 104–105) gives a particularly clear, concise statement of the relation between the fact

that the known energetic, gravitational quantities are non-tensorial and the fact that integration over them can be

expected to yield integral conservation laws only under restricted conditions.
2The first pseudo-tensorial entity proposed to represent gravitational stress-energy dates back to Einstein (1915),

the paper in which he first proposed the final form of the theory.
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Choquet-Bruhat (1983, p. 399), for example, puts the argument like this:

This ‘non local’ character of gravitational energy is in fact obvious from a formulation of

the equivalence principle which says that the gravitational field appears as non existent

to one observer in free fall. It is, mathematically, a consequence of the fact that the

pseudo-riemannian connexion which represents the gravitational field can always be made

to vanish along a given curve by a change of coordinates.

Trautman (1976, pp. 135-6) and Goldberg (1980, pp. 469-70) also made essentially the same argu-

ment.3 Indeed, the making of this argument seems to be something of a shared mannerism among

physicists who discuss gravitational energy in general relativity; it is difficult to find an article on

the topic in which it is not at least alluded to.4

The argument has a fundamental flaw. It assumes that, if there is such a thing as localized grav-

itational energy or stress-energy, it can depend only on “first derivatives of the metric”—that those

first derivatives encode all information about the “gravitational field” relevant to stress-energy—for

it is only entities depending only on those first derivatives that one can make vanish along curves.

But that seems wrong on the face of it. If there is such a thing as a localized gravitational energetic

quantity, then surely it depends on the curvature of spacetime and not on the affine connection (or,

more precisely, it depends on the affine connection at least in so far as it depends on the curvature),

for any energy one can envision transferring from the gravitational field to another type of system

in a different form in general relativity (e.g., as heat or a spray of fundamental particles) must at

bottom be based on geodesic deviation,5 and so must be determined by the value of the Riemann

tensor at a point, not by the value of the affine connection at a point or even along a curve. There

is no solution to the Einstein field-equation that corresponds in any natural way to the intuitive

Newtonian idea of a constant non-zero gravitational field, i.e., one without geodesic deviation; that,

however, would be the only sort of field that one could envision even being tempted to ascribe grav-

itational energy to in the absence of geodesic deviation, and that attribution is problematic even

in Newtonian theory. Indeed, a spacetime has no geodesic deviation if and only if it is everywhere

locally isometric to Minkowski spacetime, which we surely want to say has vanishing gravitational

energy if any spacetime does, if one can make such a statement precise in the first place.6

3Goldberg’s formulation of the argument makes explicit a feature at least implicitly common in the many instances

I have found in the literature, the conclusion that a local gravitational energy scalar density does not exist and not

that a gravitational stress-energy tensor does not exist. One cannot have a scalar energy density for a physical field

in general relativity, however, without an associated stress-energy tensor. Such a state of affairs would violate the

thermodynamic principle that all energy is equivalent in character, in the sense that any one form can always in

principle be tranformed into any other form, since all other known forms of physical field do have a stress-energy

tensor as the fundamental representation of their energetic content. I discuss this in more detail in §6, especially

footnote 22.
4Bondi (1962), Penrose (1966) and Geroch (1973) are notable exceptions. I take their discussions as models of how

one should discuss energetic phenomena in the presence of gravitational fields.
5Penrose (1966) and Ashtekar and Penrose (1990) rely on the same idea to very fruitful effect.
6One might be tempted by the stronger claim that Minkowski spacetime ought to be the unique spacetime with

vanishing gravitational energy. I do not think that can be right, however. If the existence of gravitational energy is
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An obvious criticism of my response to the standard line, related to a popular refinement of

the argument given for the non-existence or non-locality of gravitational energetic quantities, is

that it would make gravitational stress-energy depend on second-order partial derivatives of the

field potential (the metric, so comprehended by analogy with the potential in Newtonian theory),

whereas all other known forms of stress-energy depend only on terms quadratic in the first partial

derivatives of the field potential. To be more precise, the argument runs like this:

One can make precise the sense in which Newtonian gravitational theory is the “weak-

field” limit of general relativity (Malament 1986). In this limit, it is clear that the metric

field plays roughly the role in general relativity that the scalar potential φ does in Newto-

nian theory. In Newtonian theory, bracketing certain technical questions about boundary

conditions, there is a more or less well-defined energy density of the gravitational field,

proportional to (∇φ)2. One might expect, therefore, based on some sort of continuity

argument, or just on the strength of the analogy itself, that any local representation of

gravitational energy in general relativity ought to be a “quadratic function of the first

partials of the metric”.7 The stress-energy tensor of no other field, moreover, is higher

than first-order in the partials of the field potential, so surely gravity cannot be different.

No invariant quantity at a point can be constructed using only the first partials of the

metric, however, so there can be no scalar or tensorial representation of gravitational

energy in general relativity.

(No researcher I know makes the argument exactly in this form; it is just the clearest, most concise

version I can come up with myself.) As Pauli (1921, p. 178) forcefully argued, however, there can be

no physical argument against the possibility that gravitational energy depends on second derivatives

of the metric; the argument above certainly provides none. Just because the energy of all other

known fields have the same form in no way implies that a localized gravitational energy in general

relativity, if there is such a thing, ought to have that form as well. Gravity is too different a field

from others for such a bare assertion to carry any weight. As I explain at the end of §6, moreover,

a proper understanding of tensorial concomitants reveals that an expression linear in second partial

derivatives is in the event equivalent in the relevant sense to one quadratic in first order partials.

This illustrates how misleading the analogy with Newtonian gravity can be.

3 Geometric Fiber Bundles, Concomitants, and Geometric

Objects

The introduction of a coordinate system to geometry is an act of violence.
indeed intimately tied with the presence of geodesic deviation (as argued forcefully by Penrose 1966), then any flat

spacetime, such as that of Kasner (1921), also ought to have vanishing gravitational energy.
7In this light, it is interesting to note that gravitational energy pseudo-tensors do tend to be quadratic in the

first-order partials of the metric (Einstein 1915; Møller 1972; Landau and Lifschitz 1994).
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I have argued that, if there is an object that deserves to be thought of as the representation of

gravitational stress-energy in general relativity, then it ought to depend on the Riemann curvature

tensor. Since there is no obvious mathematical sense in which a general mathematical structure

can “depend” on a tensor, the first task is to say what exactly this could mean. I will call a

mathematical structure on a manifold that depends in the appropriate fashion on another structure

on the manifold, or set of others, a concomitant of it (or them).

The reason I am inquiring into the possibility of a concomitant in the first place, when the

question is the possible existence of a representation of gravitational stress-energy tensor, is a simple

one. What is wanted is an expression for gravitational energy that does not depend for its formulation

on the particulars of the spacetime, just as the expression for the kinetic energy of a particle in

classical physics does not depend on the internal constitution of the particle or on the particular

interactions it may have with its environment, and just as the stress-energy tensor for a Maxwell

field has the same form as a function of the Faraday tensor in every spacetime irrespective of its

particulars.8 If there is a well-formed expression for gravitational stress-energy, then one should be

able in principle to calculate it whenever there are gravitational phenomena, which is to say, in any

spacetime whatsoever—it should be a function of some set of geometric objects associated with the

curvature in that spacetime, in some appropriately generalized sense of ‘function’. This idea is what

a concomitant is supposed to capture.

The term ‘concomitant’ and the general idea of the thing is due to Schouten (1954, p. 15).9

The definition Schouten proposed is expressed in terms of coordinates: depending on what sort of

concomitant one deals with, the components of the concomitant in a given coordinate system must

satisfy various conditions of covariance under certain classes of coordinate transformations, when

those transformations are also applied to the components of the objects the concomitant is defined

as a “function” of. His work was picked up and generalized by several other mathematicians, such

as Aczél (1960), who extended Schouten’s work to treat more generalized classes of higher-order

differential concomitants.10 The definitions provided by this early work is clear, straightforward and

easy to grasp in the abstract, but becomes difficult to work with in particular cases of interest—

8This property of (stress-)energy for other types of physical systems already stands in contradistinction to the

properties of all known rigorous expressions for global gravitational energy in general relativity, e.g., the ADM mass

and the Bondi energy, which can be defined only in asymptotically flat spacetimes (Wald 1984), and all such quasi-local

expressions, which can be defined only in stationary or axisymmetric ones (Szabados 2009).
9The specific idea of proving the uniqueness of a tensor that “depends” on another tensor, and satisfies a few

collateral conditions, dates back at least to Weyl (1921, pp. 315–318) and Cartan (1922). In fact, Weyl proved that

the only two-index symmetric covariant tensors one can construct at a point in any spacetime, using only algebraic

combinations of the components of the metric and its first two partial derivatives in a coordinate system at that point,

that are at most linear in the second derivatives of the metric, are linear combinations of the Ricci curvature tensor,

the scalar curvature times the metric and the metric itself. In particular, the only such divergence-free tensors one

can construct at a point are linear combinations of the Einstein tensor and the metric with constant coefficients.
10I thank an anonymous referee for drawing my attention to the work of Aczél and others who developed Schouten’s

work.
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Schouten’s covariance conditions translate into a set of partial differential equations in a particular

coordinate system, which even in seemingly straightforward cases turn out to be forbiddingly com-

plicated. This makes it not only unwieldy in practice and inelegant, but, more important, it makes

it difficult to discern what of intrinsic physical significance is encoded in the relation of being a

concomitant in particular cases of interest. It is almost impossible to determine anything of the

general properties of a particular kind of concomitant of a particular (set of) object(s) by looking

at those equations.11 I suspect that it is because in particular cases the conditions are so complex,

difficult and opaque that use is very rarely made of concomitants in arguments about spacetime

structure in general relativity. This is a shame, for the idea is, I think, potentially rich, and so calls

out for an invariant formulation.12

I use the machinery of fiber bundles to characterize the idea of a concomitant in invariant terms.

I give a (brief) explicit formulation of the machinery, because the one I rely on is non-standard.

(We assume from hereon that all relevant structures, mappings, etc., are smooth; nothing is lost

by the assumption and it simplifies exposition—all germane constructions and proofs can easily be

generalized to the case of topological spaces and continuous structures.)

Definition 3.1 A fiber bundle B is an ordered triplet, (B,M, π), such that:

FB1. B is a differential manifold

FB2. M is a differential manifold

FB3. π : B →M is smooth and onto

FB4. For every q, p ∈M, π−1(q) is diffeomorphic to π−1(p) (as submanifolds of B)

11For a good example of just how hairy those conditions can be, see du Plessis (1969, p. 350) for a complete set

written out explicitly in the case of two covariant-index tensorial second-order differential concomitants of a Lorentz

metric.
12There is a tradition, initiated in the 1970s by Nijenhuis (1972), that attempts a more invariant formulation of a

notion similar to Schouten’s original one, introducing the idea of “natural bundles” as a setting for the definition and

study of structures closely related to what I call here geometrical objects. That work was elaborated and extended

by, e.g., Epstein (1975) and Epstein and Thurston (1979), inter alia. That work is similar to the constructions and

arguments I give here. I did not know of it when I developed my own work. (Again, I thank the anonymous referee

for drawing my attention to it.) There are two novelties I can claim for my definitions and constructions (besides the

fact that it is now all presented in a purely invariant way, with no use of coordinates). First is my definition of fiber

bundles without reference to an associated group of transformations, and so the consequent development of what I call

geometric bundles based on the idea of inductions. Second, the idea of an induction allows for a simple generalization

of my definition for concomitants to more general structures than just tensorial-like objects, e.g., projective structures

as characterized by an appropriate family of curves; I do not develop that generalization here as it is not needed.

Also, to the best of my knowledge, the main result of §5, theorem 5.2, is new, and of some interest in its own right,

besides the use I put it to in proving theorem 7.1. (There is some contemporary work being done on so-called natural

transformations—e.g., Kolář, Michor, and Slovák 1993 and Fatibene and Francaviglia 2003, dating back to Palais and

Terng 1977—that bears some similarity to all these ideas, but I do not discuss it, first because it is formulated in

category theory and so is fundamentally algebraic in nature, whereas I aim for a formulation with clear and intuitive

geometric content, and second because my idea of an induction differentiates my work in important ways from it.)
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FB5. B has a locally trivial product structure, in the sense that for each q ∈ M there is a

neighborhood U 3 q and a diffeomorphism ζ : π−1[U ]→ U × π−1(q) such that the action of π

commutes with the action of ζ followed by projection on the first factor.

B is the bundle space,M the base space, π the projection and π−1(q) the fiber over q. By a convenient,

conventional abuse of terminology, I will sometimes call B itself ‘the fiber bundle’ (or ‘the bundle’

for short). A cross-section κ is a smooth map fromM into B such that π(κ(q)) = q, for all q in the

mapping’s domain.

This definition of a fiber bundle is non-standard in so far as no group action on the fibers is

fixed from the start; this implies that no correlation between diffeomorphisms of the base space and

diffeomorphisms of the bundle space is fixed.13 One must fix that explicitly. On the view I advocate,

the geometric character of the objects represented by the bundle arises arises not from the group

action directly, but only after the explicit fixation of a correlation between diffeomorphisms on the

base space with those on the bundle space—only after, that is, one fixes how a diffeomorphism

on the base space induces one on the bundle. For example, depending on how one decides that a

diffeomorphism on the base space ought to induce a diffeomorphism on the bundle over it whose fibers

consist of 1-dimensional vector spaces, one will ascribe to the objects of the bundle the character

either of ordinary scalars or of n-forms (where n is the dimension of the base space). The idea is

that the diffeomorphisms induced on the bundle space then implicitly define the group action on the

fibers appropriate for the required sort of object.14

I call an appropriate mapping of diffeomorphisms on the base space to those on the bundle space

an induction. (I give a precise definition in a moment.) In this scheme, therefore, the induction

comes first conceptually, and the relation between diffeomorphisms on the base space and those

they induce on the bundle serves to fix the fibers as spaces of geometric objects, viz., those whose

transformative properties are tied directly and intimately to those of the ambient base space.15 This

way of thinking of fiber bundles is perhaps not well suited to the traditional mathematical task of

classifying bundles, but it turns out to be just the thing on which to base a perspicuous and useful

definition of concomitant. Although a diffeomorphism on a base space will naturally induce a unique

one on certain types of fiber bundles over it, such as tensor bundles, in general it will not. There is

not known, for instance, any natural way to single out a map of diffeomorphisms of the base space

into those of a bundle over it whose fibers consist of spinorial objects.16 Inductions neatly handle

such problematic cases.

I turn now to making this intuitive discussion more precise. A diffeomorphism φ] of a bundle

13See, e.g., Steenrod (1951) for the traditional definition and the way that a fixed group action on the fibers induces

a correlation between diffeomorphisms on the bundle space and those on the base space.
14I will not work out here the details of how this comes about, as they are not needed for the arguments of the

paper.
15See Anderson (1962, 1967), Friedman (1983) and Belot (2011) for other approaches to defining geometric or (as

they refer to them) absolute objects.
16See, e.g., Penrose and Rindler (1984).
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space B is consistent with φ, a diffeomorphism of the base space M, if, for all u ∈ B,

π(φ](u)) = φ(π(u))

For a general bundle, there will be scads of diffeomorphisms consistent with a given diffeomorphism

on the base space. A way is needed to fix a unique φ] consistent with a φ so that a few obvious

conditions are met. For example, the identity diffeomorphism on M ought to pick out the identity

diffeomorphism on B. More generally, if φ is a diffeomorphism onM that is the identity on an open

set O ⊂M and differs from the identity outside O, it ought to be the case that the mapping picks

out a φ] that is the identity on π−1[O]. If this holds, we say that that φ] is strongly consistent with

φ.

Let DM and DB be, respectively, the groups of diffeomorphisms on M and B. Define the set

D]
B = {φ] ∈ DB : ∃φ ∈ DM such that φ] is strongly consistent with φ}

It is simple to show that D]
B forms a subgroup of DB. This suggests

Definition 3.2 An induction is an injective homomorphism ι : DM → D]
B.

φ will be said to induce φ] (under ι) if ι(φ) = φ].17

Definition 3.3 A geometric fiber bundle is an ordered quadruplet (B,M, π, ι) where

GFB1. (B,M, π) satisfies FB1-FB5

GFB2. ι is an induction

Geometric fiber bundles are the appropriate spaces to serve as the domains and ranges of concomitant

mappings.

Most of the fiber bundles one works with in physics are geometric fiber bundles. A tensor bundle

B, for example, is a fiber bundle over a manifoldM each of whose fibers is diffeomorphic to the vector

space of tensors of a particular index structure over any point of the manifold; a basis for an atlas

is provided by the charts on B naturally induced from those on M by the representation of tensors

on M as collections of components in M’s coordinate systems. There is a natural induction in this

case fixed by the pull-back action of a diffeomorphism φ of tensors on M. Spinor bundles provide

interesting examples of physically important bundles that have no natural, unique inductions, though

there are classes of them.

We are finally in a position to define concomitants. Let (B1,M, π1, ι1) and (B2,M, π2, ι2) be

two geometric bundles with the same base space.18

17In a more thorough treatment, one would characterize the way that the induction fixes a group action on the

fibers, but we do not need to go into that for our purposes.
18One can generalize the definition of concomitants to cover the case of bundles over different base spaces, but we

do not need this here.
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Definition 3.4 A mapping χ : B1 → B2 is a concomitant if

χ(ι1(φ)(u1)) = ι2(φ)(χ(u1))

for all u1 ∈ B1 and all φ ∈ DM.

In intuitive terms, a concomitant is a mapping between bundles that commutes with the action

of the induced diffeomorphisms that lend the objects of the bundles their respective geometrical

characters, i.e., the structure in virtue of which they are, in a precise sense, geometric objects. It

is easy to see that χ must be fiber-preserving, in the sense that it maps fibers of B1 to fibers of

B2. This captures the idea that the dependence of the one type of object on the other is strictly

local; the respecting of the actions of diffeomorphisms captures the idea that the mapping encodes

an invariant relation. By another convenient abuse of terminology, I will often refer to the range of

the concomitant mapping itself as ‘the concomitant’ of the domain.

4 Jet Bundles, Higher-Order Concomitants, and Geometric

Objects

Just as with ordinary functions from one Euclidean space to another, it seems plausible that the

dependence encoded in a concomitant from one geometric bundle to another may take into account

not only the value of the first geometrical structure at a point of the base space, but also “how

that value is changing” in a neighborhood of that point, something like a generalized derivative of

a geometrical structure on a manifold. The following construction is meant to capture in a precise

sense the idea of a generalized derivative in such a way so as to make it easy to generalize the idea

of a concomitant to account for it.

Fix a geometric fibre bundle (B,M, π, ι), and the space of its sections Γ[B]. Two sections

γ, η :M→ B osculate to first-order at p ∈M if Tγ and Tη (the differentials of the mappings) agree

in their action on TpM.19 (They osculate to zeroth-order at p if they map p to the same point in

the domain.) This defines an equivalence relation on Γ[B]. A 1-jet with source p and target γ(p),

written ‘j1
p [γ]’, is such an equivalence class. It is not difficult to show that the set of all 1-jets,

J1B :=
⋃

p∈M,γ∈Γ[B]

j1
p [γ]

naturally inherits the structure of a differentiable manifold (Hirsch 1976). One can naturally fibre

J1B over M. The source projection σ1 : J1B →M, defined by

σ1(j1
p [γ]) = p

gives J1B the structure of a bundle space over the base space M, and in this case we write the

bundle (J1B,M, σ1). A section γ of B naturally gives rise to a section j1[γ] of J1B, the first-order

19See, e.g., Hirsch (1976, p. 18) for the definition of the differential of a mapping.
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prolongation of that section:

j1[γ] :M→
⋃
p∈M

j1
p [γ]

such that σ1(j1[γ](p)) = p. (We assume for the sake of simplicity that global cross-sections exist;

the modifications required to treat local cross-sections are trivial, albeit tedious.)

The points of J1B may be thought of as coordinate-free representations of first-order Taylor

expansions of sections of B. To see this, consider the example of the trivial bundle (B, R2, π) where

B := R2 × R and π is projection onto the first factor. Fix global coordinates (x1, x2, v1) on B,

so that the induced (global) coordinates on J1B are (x1, x2, v1, v1
1 , v

1
2). Then for any 1-jet j1

q [γ],

define the inhomogenous linear function γ̂ : R2 → R by

γ̂(p) = v1(γ(p)) + v1
1(j1

q [γ])(p1 − q1) + v1
2(j1

q [γ])(p2 − q2)

where γ ∈ j1
q [γ], and p, q ∈ R2 with respective components (p1, p2) and (q1, q2). Clearly γ̂ defines

a cross-section of J1B first-order osculant to γ at p and so is a member of j1
q [γ]; indeed, it is the

unique globally defined, linear inhomogeneous map with this property.

A 2-jet is defined similarly, by iteration, as an equivalence class of sections under the relation of

having the same first and second differentials (as mappings) at a point. More precisely, γ, η ∈ Γ[B]

osculate to second order at p ∈M if they are in the same 1-jet and if their second-order differentials

equal each other, T (Tγ) = T (Tη). Again, this defines an equivalence relation on Γ[B]. A 2-jet with

source p and target γ(p), written ‘j1
p [γ]’, is such an equivalence class. The set of all 2-jets,

J2B :=
⋃

p∈M,γ∈Γ[B]

j2
p [γ]

also inherits the structure of a differentiable manifold. J2B is naturally fibered overM by the source

projection σ2 : J2B →M, defined by

σ2(j2
p [γ]) = p

giving J2B the structure of a bundle space over the base space M, (J2B,M, σ2). Again, a section

γ of B gives rise to a section j2[γ] of J2B, the second-order prolongation of that section:

j2[γ] :M→
⋃
p∈M

j2
p [γ]

such that σ1(j2[γ](p)) = p. Jet bundles of all higher orders are defined in the same way.

There is a natural projection from J2B to J1B, the truncation θ2,1, characterized by “dropping

the second-order terms in the Taylor expansion”. More precisely, for j2[γ], the truncation is the

unique j1[η] such that Tj1[η] = TTγ, which guarantees that j1[η] = j1[γ].20 In general, one has the

natural truncation θn,m : JnB → JmB for all 0 < m < n.

20One might worry that the truncation is not unique, because two 1-jets may “differ only by a constant” and so still

give the same 2-jet, as may happen with ordinary derivatives in calculus. Because there is no privileged derivative

operator on J1B, however, there is no well defined notion of two 1-jets “differing by a constant”.
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For our purposes, the most important fact about these spaces is that the jet bundles of a geometric

bundle are themselves naturally geometric bundles. Fix a geometric bundle (B,M, π, ι) and a

diffeomorphism φ onM. Then ι[φ] not only defines an action on points of B, but, as a diffeomorphism

itself on B, it naturally defines an action on the cross-sections of B and thus on the 1-jets. by the

natural pull-back of differentials of mappings. It is easy to show that the mapping ι1 so specified from

DM to D]
J1B is an injective homomorphism and thus itself an induction; therefore, (J1B,M, σ1, ι1)

is a geometric fiber bundle. One defines inductions for higher-order jet bundles in the same way.

We can now generalize our definition of concomitants. Let (B1,M, π1, ι) and (B2,M, π2, ) be

two geometric fiber bundles over the manifold M.

Definition 4.1 An nth-order concomitant (n a strictly positive integer) from B1 to B2 is a smooth

mapping χ : JnB1 → B2 such that

1. (∀u ∈ JnB1)(∀φ ∈ AM) (φ)(χ(u)) = χ(ιn(φ)(u))

2. there is no (n− 1)th-order concomitant χ′ : Jn−1B1 → B2 satisfying

(∀u ∈ JnB1) χ(u) = χ′(θn,n−1(u))

A zeroth-order concomitant (or just ‘concomitant’ for short, when no confusion will arise), is defined

by 3.4.

An important property of concomitants is that, in a limited sense, they are transitive.

Proposition 4.2 If χ1 : JnB1 → B2 is an nth-order concomitant and χ2 : B2 → B3 is a smooth

mapping, where B1, B2 and B3 are geometric bundles over the same base space, then χ2 ◦ χ1 is an

nth-order concomitant if and only if χ2 is a zeroth-order concomitant.

This follows directly from the fact that inductions are injective homomorphisms and concomitants

respect the fibers.

It will be of physical interest in §6 to consider the way that concomitants interact with multi-

plication by a scalar field. (Since we consider in this paper only concomitants of linear and affine

objects, multiplication of the object by a scalar field is always defined.) Towards that end, let us

say that a concomitant is homogeneous of weight w if for any constant scalar field ξ

χ(ι1(φ)(ξu1)) = ξwι2(φ)(χ(u1))

5 Concomitants of the Metric

As a specific example that will be of use in what follows, consider the geometric fiber bundle

(Bg,M, πg, ιg), with M a 4-dimensional, Hausdorff, paracompact, connected, smooth manifold

(i.e., a candidate spacetime manifold), the fibers of Bg diffeomorphic to the space of Lorentz met-

rics at each point of M, all of the same signature (+, −, −, −), and ιg the induction defined by
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the natural pull-back. Since the set of Lorentz metrics in the tangent plane over a point of a 4-

dimensional manifold, all of the same signature, is a 10-dimensional manifold,21 the bundle space

Bg is a 14-dimensional manifold. A cross-section of this bundle defines a Lorentz metric field on the

manifold.

The following proposition precisely captures the statement one sometimes hears that there is no

scalar or tensorial quantity one can construct depending only on the metric and its first-order partial

derivatives at a point of a manifold.

Proposition 5.1 There is no first-order concomitant from Bg to any tensor bundle over M.

To prove this, it suffices to remark that, given any spacetime (M, gab) and any two points p, p′ ∈M,

there are open neighborhoods U of p and U ′ of p′ and a diffeomorphism φ : M → M, such that

φ(p) = p′, φ](g′ab) = gab at p, and φ](∇agbc) = ∇agbc at p, where ∇a is any derivative operator other

than the Levi-Civita one associated with gab, and φ] is the map naturally induced by the pull-back

action of φ.

This is not to say, however, that no information of interest is contained in J1Bg. Indeed, two

metrics gab and hab are first-order osculant at a point if and only if they have the same associated

covariant derivative operator at that point. To see this, first note that, if they osculate to first

order at that point, then ∇̂a(gbc − hbc) = 0 at that point for all derivative operators. Thus, for the

derivative operator ∇a associated with, say, gab, ∇a(gbc − hbc) = 0, but ∇agbc = 0, so ∇ahbc = 0 at

that point as well. Similarly, if the two metrics are equal and share the same associated derivative

operator ∇a at a point, then ∇̂a(gbc − hbc) = 0 at that point for all derivative operators, since their

difference will be identically annihilated by ∇a, and gab = hab at the point by assumption. Thus

they are first-order osculant at that point and so in the same 1-jet. This proves that all and only

geometrically relevant information contained in the 1-jets of Lorentz metrics onM is encoded in the

fiber bundle over spacetime the values of the fibers of which are ordered pairs consisting of a metric

and the metric’s associated derivative operator at a spacetime point.

The second jet bundle over Bg has a similarly interesting structure. Clearly, if two metrics are in

the same 2-jet, then they have the same Riemann tensor at the point associated with the 2-jet, since

the result of doubly applying an arbitrary derivative operator (not the Levi-Civita one associated

with the metric) to it at the point yields the same tensor. Assume now that two metrics are in the

same 1-jet and have the same Riemann tensor at the associated spacetime point. If it follows that

they are in the same 2-jet, then essentially all and only geometrically relevant information contained

in the 2-jets of Lorentz metrics onM is encoded in the fiber bundle over spacetime the points of the

fibers of which are ordered triplets consisting of a metric, the metric’s associated derivative operator

and the metric’s Riemann tensor at a spacetime point. To demonstrate this, it suffices to show that

if two Levi-Civita connections agree on their respective Riemann tensors at a point, then the two

associated derivative operators are in the same 1-jet of the bundle whose base-space isM and whose

fibers consist of the affine spaces of derivative operators at the points of M (because they will then

21In fact, it is diffeomorphic to a connected, convex, open subset—an open cone with vertex at the origin—in R10,

and has the further structure of a Fréchet manifold (Curiel 2017).
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agree on the result of application of themselves to their difference tensor, and thus will be in the

2-jet of the same metric at that point).

Assume that, at a point p of spacetime, gab = g̃ab, ∇a = ∇̃a (the respective derivative operators),

and Rabcd = R̃abcd (the respective Riemann tensors). Let Cabc be the symmetric difference-tensor

between ∇a and ∇̃a, which is itself 0 at p by assumption. Then by definition ∇[b∇c]ξa = Rabcnξ
n

for any vector ξa, and so at p

Rcabnξ
n = ∇[a∇̃b]ξc

= ∇a(∇bξc + Ccbnξ
n)− ∇̃b∇aξc

= ∇a∇bξc +∇a(Ccbnξ
n)−∇b∇aξc − Ccbn∇aξn + Cnba∇nξc

but ∇b∇cξa −∇c∇bξa = 2Rabcnξ
n and Cabc = 0, so expanding the only remaining term gives

ξn∇aCcbn = 0

for arbitrary ξa and thus ∇aCbcd = 0 at p; by the analogous computation, ∇̃aCbcd = 0 as well. It

follows immediately that ∇a and ∇̃a are in the same 1-jet over p of the affine bundle of derivative

operators over M. We have proven

Theorem 5.2 J1Bg is naturally diffeomorphic to the geometric fiber bundle over M whose fibers

consist of pairs (gab, ∇a), where gab is the value of a Lorentz metric field at a point of M, and ∇a
is the value of the covariant derivative operator associated with gab at that point, the induction being

defined by the natural pull-back. J2Bg is naturally diffeomorphic to the geometric fiber bundle over

M whose fibers consist of triplets (gab, ∇a, Rabcd), where gab is the value of a Lorentz metric field at

a point of M, and ∇a and Rabc
d are respectively the covariant derivative operator and the Riemann

tensor associated with gab at that point, the induction being defined by the natural pull-back.

It follows immediately that there is a first-order concomitant from Bg to the geometric bundle

(B∇,M, π∇, ι∇) of derivative operators, viz., the mapping that takes each Lorentz metric to its

associated derivative operator. (This does not contradict proposition 5.1, as the bundle of derivative

operators is an affine not a tensor bundle.) Likewise, there is a second-order concomitant from Bg
to the geometric bundle (BRiem,M, πRiem, ιRiem) of tensors with the same index structure and

symmetries as the Riemann tensor, viz., the mapping that takes each Lorentz metric to its associated

Riemann tensor. (This is the precise sense in which the Riemann tensor associated with a given

Lorentz metric is “a function of the metric and its partial derivatives up to second order”.) It is

easy to see, moreover, that both concomitants are homogeneous of degree 0.

It follows from theorem 5.2 and proposition 4.2 that a concomitant of the metric will be second

order if and only if it is a zeroth-order concomitant of the Riemann tensor:

Proposition 5.3 A concomitant of the metric is second-order if and only if it can be expressed as

a sum of terms consisting of constants multiplied by the Riemann tensor, the Ricci tensor, the Ricci

scalar curvature, and contractions and products of these with the metric itself.
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6 Conditions on a Possible Gravitational Stress-Energy Ten-

sor

We are almost in a position to state and prove the main result of the paper, the nonexistence of a

gravitational stress-energy tensor. In order to formulate and prove a result having that proposition

as its natural interpretation, one must first lay down some natural conditions on the proposed object,

to show that no such object exists satisfying the conditions. In general relativity, the stress-energy

tensor is the fundamental invariant quantity encoding all known localized energetic properties of

all known types of matter field, in the sense that each known type of matter field has a canonical,

unique form of stress-energy tensor associated with it, and all other invariant energetic quantities

associated with the matter field are derivable from that object. The canonical form of a stress-energy

tensor is a two-index, symmetric, covariantly divergence-free tensor.22 Not just any such tensor will

do, however, for that gives only the baldest of formal characterizations of it. From a physical point

of view, at a minimum the object must have the physical dimension of stress-energy for it to count

as a stress-energy tensor. That it have the dimension of stress-energy is what allows one to add two

of them together in a physically meaningful way to derive the physical sum of total stress-energy

from two different sources. In classical mechanics, for instance, both velocity and spatial position

have the form of a three-dimensional vector, and so their formal sum is well defined, but it makes no

physical sense to add a velocity to a position because the one has dimension length/time and the

22Thus, the Bel-Robinson tensor is ruled out from the start, as it is a 4-index tensor. (For characterization and

discussion of the Bel-Robinson tensor and its properties, including the way it gives rise to energy-like quantities, see

Senovilla 2000, 2002, Garecki 2001 and Garćıa-Parrado Gómez-Lobo 2008.) There are indeed several other “energetic

quantities” that have in general relativity invariant representation in some form other than a stress-energy tensor,

e.g., the ADM mass and various so-called quasi-local quantities (Szabados 2009). Since none of those are localized

quantities, I do not consider them to be relevant to the purposes of this paper. (One might also reasonably complain,

so far as my purposes go, that all of those quantities do not differentiate between gravitational and non-gravitational

forms of energy, but rather represent only total, aggregate energy.) Starting with Komar (1959) and Finkelstein

and Misner (1959), there is another tradition in the context of general relativity of searching for quantities that one

might hope to be able to interpret as energetic quantities, possibly associated in a physically relevant way with the

“gravitational field”, viz., the search for scalar and 1-index objects satisfying various forms of “conservation laws”.

(See as well, e.g., Trautman 1962 and Goldberg 1980.) As interesting as that work is from a mathematical point of

view, and as potentially interesting as it may be from a physical point of view, I do not consider here any of those

quantities as viable candidates for representations of a localized gravitational energetic quantity, for several reasons.

If there are localized energy-like quantities associated with “the gravitational field” in general relativity that do not

have the structure of (0, 2)-index tensor, quantities which are found from investigation of various possible forms of

conservation laws, then it seems to me there are two possibilities: there is in fact a gravitational stress-energy tensor,

and one can derive those quantities from it, even though that is not how they were discovered; or those quantities are

in fact representative of localized gravitational stress-energy, but the claim that they are energetic in some important

physical sense has to be articulated and justified, with a particular eye to explaining how such an energy-like quantity

interacts with (or not) and is fungible with (or not) the stress-energy content of ordinary matter. I do not know how

to do it for any of the objects associated with the search for single-index conservation laws. Indeed, it is striking that

none of the researchers who have investigated such objects discuss in any detail the possible physical interpretation

of the mathematical structures they were investigating, and in particular how such quantities may relate to what we

understand about ordinary stress-energy.
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other the dimension length. (I will give a precise characterization of “physical dimension” below.)

An essential, defining characteristic of energy in classical physics is its obeying some formulation

of the First Law of Thermodynamics. The formulation of the First Law I rely on is somewhat

unorthodox: that all forms of stress-energy are in principle ultimately fungible—any form of energy

can in principle be transformed into any other form23—not necessarily that there is some absolute

measure of the total energy contained in a system or set of systems that is constant over time.

In more precise terms, this means that all forms of energy must be represented by mathematical

structures that allow one to define appropriate operations of addition and subtraction among them,

which the canonical form of the stress-energy does allow for.24 I prefer this formulation of the First

Law in general relativity because there will not be in a generic spacetime any well-defined global

energetic quantity that one can try to formulate a conservation principle for. In so far as one wants

to hold on to some principle like the classical First Law in a relativistic context, therefore, I see no

other way of doing it besides formulating it in terms of fungibility. (If one likes, one can take the

fungibility condition as a necessary criterion for any more traditional conservation law.) This idea

is what the demand that all stress-energy tensors, no matter the source, have the same physical

dimension is intended to capture.25

To sum up, the stress-energy tensor encodes in general relativity all there is to know of ponderable

(i.e., non-gravitational) energetic phenomena at a spacetime point:

1. it has 10 components representing with respect to a fixed pseudo-orthonormal frame, say, the

6 components of the classical stress tensor, the 3 components of linear momentum and the

scalar energy density of the ponderable field at that point;

2. that it has two covariant indices represents the fact that it defines a linear mapping from

timelike vectors at the point (“worldline of an observer”) to covectors at that point (“4-

momentum covector of the field as measured by that observer”), and so defines a bi-linear

mapping from pairs of timelike vectors to a scalar density at that point (“scalar energy density

of the field as measured by that observer”), because energetic phenomena, crudely speaking,

are marked by the fact that they are quadratic in velocity and momental phenomena linear in

velocity;

23Maxwell (1877, ch. v, §97) makes this point especially clearly, including its relation to the principle of energy

conservation. See also Maxwell (1888, chs. i, iii, iv, viii, xii).
24This kind of linear structure is a requirement even if one takes a more traditional view of the First Law as making

a statement about conservation of a magnitude measuring a physical quantity.
25For what it’s worth, this conception has strong historical warrant—Einstein (implicitly) used a very similar idea

in one of his first papers laying out and justifying the general theory (Einstein 1916, p. 149):

It must be admitted that this introduction of the energy-tensor of matter is not justified by the relativity

postulate alone. For this reason we have here deduced it from the requirement that the energy of the

gravitational field shall act gravitatively in the same way as any other kind of energy.

Møller (1962) also stresses the fact that the formulation of integral conservation laws in general relativity based on

pseudo-tensorial quantities depends crucially on the assumption that gravitational energy, such as it is, shares as

many properties as possible with the energy of ponderable (i.e., non-gravitational) matter.
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3. that it is symmetric represents, “in the limit of the infinitesimal”, the classical principle of

the conservation of angular momentum; it also encodes part of the relativistic equivalence of

momentum density and the flux of scalar energy density;

4. that it is covariantly divergence-free represents the fact that, “in the limit of the infinitesimal”,

the classical principles of energy and linear momentum conservation are obeyed; it also encodes

part of the relativistic equivalence of momentum-density and scalar energy density flux;

5. the localization of ponderable stress-energy and its invariance as a physical quantity are em-

bodied in the fact that the object representing it is a tensor, a multi-linear map acting only

on the tangent and cotangent planes of the point it is associated with;26

6. finally, the thermodynamic fungibility of energetic phenomena is represented by the fact that

the set of stress-energy tensors forms a vector space—the sum and difference of any two is

itself a possible stress-energy tensor, and there is a distinguished zero element—all elements

of which have the same physical dimension.

Consequently, the appropriate mathematical representation of localized gravitational stress-energy,

if there is such a thing, is a two covariant-index, symmetric, covariantly divergence-free tensor having

the physical dimension of stress-energy.27 (That we demand it be covariantly divergence-free is a

delicate matter requiring further discussion, which I give at the end of this section.)

Now, in order to make precise the idea of having the physical dimension of stress-energy, recall

that in general relativity all the fundamental units one uses to define stress-energy, namely time,

length and mass, can themselves be defined using only the unit of time (or equivalently, using only

units of length or mass); these are so-called geometrized units (Misner, Thorne, and Wheeler 1973,

p. 36).28 For time, this is trivially true: stipulate, say, that a time-unit is the time it takes a certain

26More generally, the notion of localized quantity I use here means to be represented by a tensor-like object (scalar,

tensor, spinor, affine, conformal, projective, . . . ), one that has values attributable to individual spacetime points and

that in some sense or other has properties or actions that ramify into the tangent plane over that point in a way that

can be made sense of by restricting attention to the tangent plane.
27Pitts (2010) has proposed an infinite number of ways to define quantities that he calls representations of localized

gravitational energies (all inequivalent). I exclude Pitts’s proposal because I cannot see any physical content to his

constructed quantities. How, e.g., could one use one of them to compute the energy a gravitational-wave sensor would

absorb from ambient gravitational radiation? Precisely because his quantities depend on the frame one fixes to make

the computation, there can be no invariant, physically well defined answer to such a question. If I stick a rod of

piezoelectric material in my cup of coffee and use it to warm the coffee from the heat it generates by being deformed

by a passing gravitational wave, then surely the rise in temperature of the coffee does not depend on which frame I

use to perform the calculation. How should the piezoelectric “know” which of Pitts’s “localized energies” it should

draw on? Since there seems to be no way to answer such basic physical questions in an unambiguous way, I do not

see that what he has done is to characterize a physical quantity.
28Aldersley (1977) contains an interesting discussion of geometrized units, and proves a result superficially similar

to theorem 7.1, albeit in a very different way than I give here. I have trouble understanding many of his arguments

and conclusions, however, as he seems to imply that the physical dimensions of the components of a quantity depend

on the physical dimensions of the coordinates in a coordinate system in which the quantity is represented. This makes

no sense to me. A quantity simply has a physical dimension, and how one represents it in a coordinate system, if one

does at all, is physically irrelevant to that fact.
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kind of atom to vibrate a certain number of times under certain conditions. A unit of length is then

defined as that in which light travels in vacuo one time-unit. A unit of mass is defined as that of

which two, placed one length-unit apart, will induce in each other by dint of their mutual gravitation

alone an acceleration towards each other of one length-unit per time-unit per time-unit.29 These

definitions of the units of mass and length guarantee that they scale in precisely the same manner

as the time-unit when new units of time are chosen by multiplying the time-unit by some fixed

real number λ−
1
2 . (The reason for the inverse square-root will become clear in a moment). Thus,

a duration of t time-units would become tλ−
1
2 of the new units; an interval of d units of length

would likewise become dλ−
1
2 in the new units, and m units of mass would become mλ−

1
2 of the new

units. This justifies treating all three of these units as “the same”, and so expressing acceleration,

say, in inverse time-units. To multiply the length of all timelike vectors representing an interval

of time by λ−
1
2 , however, is equivalent to multiplying the metric by λ (and so the inverse metric

by λ−1), and indeed such a multiplication is the standard way one represents a change of units in

general relativity. This makes physical sense as the way to capture the idea of physical dimension:

all physical units, the ones composing the dimension of any physical quantity, are geometrized in

general relativity in the most natural formulation, and so depend only on the scale of the metric

itself. By Weyl’s theorem, however, a metric times a constant represents exactly the same physical

phenomena as the original metric (Malament 2012, ch. 2, §1).30

Now, the proper dimension of a stress-energy tensor can be determined by the demand that the

Einstein field-equation, Gab = γTab, where γ is Newton’s gravitational constant, remain satisfied

when one rescales the metric by a constant factor. γ has dimension
(length)

3

(mass) (time)
2 , and so in

geometrized units does not change under a constant rescaling of the metric. Thus Tab ought to

transform exactly as Gab under a constant rescaling of the metric. A simple calculation shows that

Gab (= Rab − 1
2Rgab) remains unchanged under such a rescaling. Thus, a necessary condition for

a tensor to represent stress-energy is that it remain unchanged under a constant rescaling of the

metric. It follows that the concomitant at issue must be homogeneous of weight 0 in the metric,

whatever order it may be.

29This definition may appear circular, in that it would seem to require a unit of mass in the first place before one

could say that bodies were of the same mass. I think the circularity can be mitigated by using two bodies for which

there are strong prior grounds for positing that they are of equal mass, e.g., two fundamental particles of the same

type. It also suffers from a fundamental lack of rigor that the definition of length does not suffer from. In order

to make the definition rigorous, one would have to show that there exists a solution of the Einstein field-equation

(approximately) representing two particles in otherwise empty space (as defined by the form of Tab)—viz., two timelike

geodesics—such that, if on a spacelike hypersurface at which they both intersect 1 unit of length apart (as defined

on the hypersurface with respect to either) they accelerate towards each other (as defined by relative acceleration of

the geodesics) one unit length per unit time squared, then the product of the masses of the particles is 1. I will just

assume, for the purposes of this paper, that such solutions exist. Another possibility for geometrizing a unit of mass

would be to define one as that of a Schwarzschild black hole with spatial radius one unit of length, as measured with

respect to a fixed radial coordinate respecting the spherical and timelike symmetries of the spacetime. It would be of

some interest to determine the relation between these two different ways of defining a geometrized unit of mass.
30Recall that Weyl’s Theorem states that the projective structure and the conformal structure determine the metric

up to a constant.
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We must still determine the order of the required concomitant, for it is not a priori obvious. In

fact, the weight of a homogeneous concomitant of the metric suffices to fix the differential order of

that concomitant.31 This can be seen as follows, as exemplified by the case of a two covariant-index,

homogeneous concomitant Sab of the metric. A simple calculation based on definition 4.1 and on

the fact that the concomitant must be homogeneous shows that the value at a point p ∈ M of an

nth-order concomitant Sab can be written in the general form

Sab =
∑
α

kα g
qx . . . gxr

(
∇̃(n1)
x gqx

)
. . .
(
∇̃(ni)
x gxr

)
(6.1)

where: ∇̃a is any derivative operator at p other than the one naturally associated with gab; ‘x’

is a dummy abstract index; ‘∇̃(ni)
x ’ stands for ni iterations of that derivative operator (obviously

each with a different abstract index); α takes its values in the set of all permutations of all sets of

positive integers {n1, . . . , ni} that sum to n, so i can range in value from 1 to n; the exponents of

the derivative operators in each summand themselves take their values from α, i.e., they are such

that n1 + · · ·+ ni = n (which makes it an nth-order concomitant); for each α, kα is a constant; and

there are just enough of the inverse metrics in each summand to contract all the covariant indices

but a and b.

Now, a combinatorial calculation shows

Proposition 6.1 If, for n ≥ 2, Sab is an nth-order homogeneous concomitant of gab, then to rescale

the metric by the constant real number λ multiplies Sab by λn−2.

In other words, the only such homogeneous nth-order concomitants must be of weight n− 2.32 So if

one knew that Sab were multiplied by, say, λ4 when the metric was rescaled by λ, one would know

that it had to be a sixth-order concomitant. In particular, Sab does not rescale when gab → λgab only

if it is a second-order homogeneous concomitant of gab, i.e., (by theorem 5.2 and proposition 5.3) a

zeroth-order concomitant of the Riemann tensor. There follows from proposition 4.2

Lemma 6.2 A 2-covariant index concomitant of the Riemann tensor is homogeneous of weight zero

if and only if it is a zeroth-order concomitant.

Thus, such a tensor has the physical dimension of stress-energy if and only if it is a zeroth-order

concomitant of the Riemann tensor. It is striking how powerful the physically motivated assumption

that the required object have the physical dimensions of stress-energy is: it guarantees that the

required object will be a second-order concomitant of the metric.

We now address the issue whether it is appropriate to demand of a potential gravitational stress-

energy tensor that it be covariantly divergence-free. In general, I think it is not, even though that is

31I thank Robert Geroch for pointing this out to me.
32The exponent n − 2 in this result depends crucially on the fact that Sab has only two indices, both covariant.

One can generalize the result for tensor concomitants of the metric of any index structure. A slight variation of the

argument, moreover, shows that there does not in general exist a homogeneous concomitant of a given differential

order from a tensor of a given index structure to one of another structure—one may not be able to get the number

and type of the indices right by contraction and tensor multiplication alone.
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one of the defining characteristics of the stress-energy tensor of ponderable matter in the ordinary

formulation of general relativity.33 To see this, let Tab represent the aggregate stress-energy of all

ponderable matter fields. Let Sab be the gravitational stress-energy tensor, which we assume for

the sake of argument to exist. Now, we ask: can the “gravitational field” interact with ponderable

matter fields in such a way that stress-energy is exchanged? If it could, then, presumably, there

could be interaction states characterized (in part) jointly by these conditions:

1. ∇n(Tna + Sna) = 0

2. ∇nTna 6= 0

3. ∇nSna 6= 0

It is true that, as ordinarily conceived, condition 2 is incompatible with general relativity as stan-

dardly understood and formulated. The existence of a gravitational stress-energy tensor, however,

would necessarily entail that we modify our understanding and formulation of general relativity.

That is why this argument is only ex hypothesi, and not meant to be one that would make sense in

general relativity as we actually know it. (One possible way to understand it, e.g., would be that the

ways we currently use to calculate the stress-energy tensor of ordinary matter are mistaken, precisely

in so far as they do not take into account possible interactions with gravitational phenomena.)

The most one can say, therefore, without wading into some murkily deep and speculative waters

about the way that a gravitational stress-energy tensor (if there were such a thing) might enter

into the righthand side of the Einstein field-equation or that its existence might modify the ways

we calculate stress-energy for ordinary matter, is that we expect such a thing would have vanishing

covariant divergence when the aggregate stress-energy tensor of ponderable matter vanishes, i.e.,

that gravitational stress-energy on its own, when not interacting with ponderable matter, would be

conserved in the sense of being covariantly divergence-free. This weaker statement will suffice for

our purposes, so we can safely avoid those murky waters.

Finally, it seems reasonable to require one more condition: were there a gravitational stress-

energy tensor, it should not be zero in any spacetime with non-trivial curvature, for one can always

envision the construction of a device to extract energy in the presence of curvature by the use of

tidal forces and geodesic deviation. (See, e.g., Bondi and McCrea 1960 and Bondi 1962.)

To sum up:

Condition 6.3 The only viable candidates for a gravitational stress-energy tensor are two covariant-

index, symmetric, second-order, zero-weight homogeneous concomitants of the metric that are not

zero when the Riemann tensor is not zero and that have vanishing covariant divergence when the

stress-energy tensor of ponderable matter vanishes.

This discussion, by the way, obviates the criticism of the claim that gravitational stress-energy

ought to depend on the curvature, viz., that this would make gravitational stress-energy depend on

33I thank David Malament for helping me get straight on this point. The following argument is in part paraphras-

tically based on a question he posed to me.
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second-order partial derivatives of the field potential whereas all other known forms of stress-energy

depend only on terms quadratic in the first partial derivatives of the field potential. It is exactly

second-order, homogeneous concomitants of the metric that possess terms quadratic in the first

partials. The rule is that the order of a homogeneous concomitant is the sum of the exponents of

the derivative operators when the concomitant is represented in the form of equation (6.1).

7 Gravitational Energy, Again, and the Einstein Field Equa-

tion

If we are to surround ourselves with a perceptual world at all, we must recognize as

substance that which has some element of permanence. We may not be able to explain

how the mind recognizes as substantial the world-tensor [i.e., the Einstein tensor], but we

can see that it could not well recognize anything simpler. There are no doubt minds which

have not this predisposition to regard as substantial the things which are permanent; but

we shut them up in lunatic asylums.

Arthur Eddington

The Mathematical Theory of Relativity, pp. 120–121

It follows from lemma 6.2, in conjunction with condition 6.3, that any candidate gravitational

stress-energy tensor must be a zeroth-order concomitant of BRiem, the geometric bundle of Riemann

tensors over spacetime. (One can take this as a precise statement of the fact that any gravitational

stress-energy tensor ought to “depend on the curvature”, as I argued in §2.) It follows from propo-

sition 5.3 that the only possibilities then are linear combinations of the Ricci tensor and the scalar

curvature multiplied by the metric. The only covariantly divergence-free, linear combinations of

those two quantities, however, are constant multiples of the Einstein tensor Gab. (To see this, note

that if there were another, say k1Rab+k2Rgab for constants k1 and k2, then k1Rab+k2Rgab−2k2Gab

would also be divergence free, but that expression is just a constant multiple of the Ricci tensor,

which is not in general divergence free.) The Einstein tensor, however, can still be zero even when

the Riemann tensor is not (when, e.g., there is only Weyl curvature). This proves the main result.

Theorem 7.1 The only two covariant-index, divergence-free concomitants of the metric that are

homogeneous of zero weight are constant multiples of the Einstein tensor.

(Note the strength of the result: not only need one not assume that the concomitant be second-

order, but one need not even assume the tensor to be symmetric; it all automatically follows from

the proof that all such concomitants of the metric are symmetric.) Because the Einstein tensor will

be zero in a spacetime having a vanishing Ricci tensor but a non-trivial Weyl tensor, there follows

immediately
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Corollary 7.2 There are no two covariant-index, divergence-free concomitants of the metric that

are homogeneous of weight zero that do not identically vanish when the Riemann tensor is not zero.

The corollary does bear the required natural interpretation, for the Einstein tensor is not an appro-

priate candidate for the representation of gravitational stress-energy: it can be zero in spacetimes

with non-zero curvature; such spacetimes, however, can manifest phenomena, e.g., pure gravitational

radiation in the absence of ponderable matter, that one naturally wants to say possess gravitational

energy in some (necessarily non-localized) form or other.34 Non-localizability does mean that gravi-

tational energy in general relativity, such as it is, is “nowhere in particular”, but that is no problem.

The same holds for gravitational energy (such as it is) in Newtonian theory, and it also holds for

heat in thermodynamics, which is not a localizable quantity, and more generally for work in classical

mechanics. That does not mean it is “not in space-time at all”, no more than any other globally

characterized quantity or entity (e.g., the Euler characteristic of the spacetime manifold, or the

incompleteness of an incomplete, inextendible curve, i.e., a singularity, or even the ADM mass) is

not. The way such quantities and entities are “in space-time” is a delicate and subtle matter that

does call out for investigation and discussion, but this paper is not the place for that. (See Curiel

2018 for discussion of the question.)

Theorem 7.1 is similar to the classic result of Lovelock (1972), but it is significantly stronger

in two important ways.35 It does not assume that the desired concomitant be second-order; and it

holds in all dimensions, not just four. Both of those properties are grounded on the derivation of the

differential order of the desired concomitant of the metric based on analysis of its required physical

dimension, encoded in the requirement that the concomitant of the metric be homogeneous of weight

zero. The physical interpretation of this is that the desired tensor have the physical dimensions of

stress-energy, as is the case for the Einstein tensor, and as must be the case for any tensor that

one would equate to a material stress-energy tensor to formulate a field equation (so long as the

coupling constant is dimensionless, as is the case for Newton’s constant). This provides a physical

interpretation to the conditions of the theorem that Lovelock’s theorem lacks.

The fact, moreover, that the proof relies essentially only on the structure of the first and second

34As an historical aside, it is interesting to note that early in the debate on gravitational energy in general relativity

Lorentz (1916) and Levi-Civita (1917) proposed that the Einstein tensor be thought of as the gravitational stress-

energy tensor. Einstein criticized the proposal on the grounds that this would result in attributing zero total energy

to any closed system.
35Lovelock proved the following, using the definition of concomitant due to Schouten, and based on earlier work by

Rund (1966) and du Plessis (1969).

Theorem 7.3 Let (M, gab) be a spacetime. In a coordinate neighborhood of a point p ∈ M, let Θαβ be the

components of a tensor concomitant of {gλµ; gλµ,ν ; gλµ,νρ} such that

∇nΘnb = 0.

Then

Θab = rGab + qgab,

where Gab is the Einstein tensor and q and r are constants.
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jet bundles of the bundle of metrics over a manifold, i.e., on the bundle of Riemann tensors over a

manifold, and how that structure places severe restrictions on its possible concomitants, illuminates

the physical and geometrical content of the theorem. Because Lovelock bases his theorem and its

proof on Schouten’s definition of a concomitant, with the attendant complexity and opacity of the

conditions one then has to work with (as I discussed on p. 6, and in particular in footnote 11),

his proof consists of several pages of Baroque and unilluminating coordinate-based, brute-force

calculation, which gives no physical or geometrical insight into why the theorem holds. The third

difference is that the addition of constant multiples of the metric is not allowed. I discuss the

consequences of that below.

Before concluding the paper with a discussion of the bearing of the theorem on the Einstein

field equation, it behooves us to examine a prima facie puzzle my arguments have left us with. I

argued in §6 that the form of the desired object, that it ought to be a two-index tensor, followed

from the idea that all forms of stress-energy ought to be fungible, and so a fortiori one must be

able to add in a physically significant way entities representing the stress-energy of different kinds

of systems. Now that I have shown that there is no gravitational stress-energy tensor, one may

be tempted to conclude that gravitational energy, such as it is, is not fungible with other forms

of energy. That would be disastrous, because, as I argued in footnote 27, there are circumstances

whose only reasonable interpretation is that gravitational energy, such as it is, is in some way or

other being transformed into other, less recherché forms of energy. (For more rigorous arguments

to this effect, again see Bondi and McCrea 1960 and Bondi 1962.) I think the resolution is that, in

general relativity, there is no single framework for analyzing and interpreting all the phenomena one

may want to characterize as involving the coupling of physical systems based on energy transfer.

Energetic concepts that hang together in a unified framework in classical physics come apart in

general relativity. When one is dealing with processes mediated by localizable energetic quantities,

the stress-energy tensor should do the job; otherwise, there are a multitude of different kinds of

quantities any one of which may be physically relevant to the phenomena at issue. This should

not be surprising. We already know of cases in which concepts that formed a unified framework in

classical physics come apart in radical ways in general relativity, such as the different ways one may

characterize a physical system as being in rotation or not (Malament 2002, 2003). In any event, even

in classical physics there are non-localized energetic quantities, such as heat in thermodynamics and

gravitational potential energy in Newtonian gravitational theory, that one cannot always treat in a

unified framework with all localized forms of energy, and this fact never gave rise to any ambiguities

in calculations or other problems.

I conclude the paper by noting that theorem 7.1 has another reasonable interpretation, that,

in a natural sense the Einstein field equation is the unique field equation for a theory such as

general relativity that unifies spatiotemporal structure with gravitational phenomena by way of an

appropriate relation between spacetime curvature and the energetic content of ponderable matter.

(In particular, it follows from the result that a cosmological-constant term in the field equation

must be construed as forming part of the total stress-energy tensor of spacetime.) Malament (1986)

makes precise the sense in which geometrized Newtonian gravity is the limiting theory of general
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relativity, as “the speed of light goes to infinity”. In geometrized Newtonian gravity, moreover, the

Poisson equation is formally almost equivalent to the Einstein field equation, and indeed is identical

with it in the vacuum case. Malament (2012, ch. 2, §7) argues persuasively that, on this basis, it is

natural to adopt the Einstein field equation as the appropriate one when moving from the context

of a Newtonian to a relativistic, curved spacetime, in so far as any theory better in some sense than

Newtonian theory must, at an absolute minimum, have Newtonian theory as its limit in certain

weak-field regimes.

One can read theorem 7.1 as a way to generalize this argument. We know from Newtonian

gravitational theory that the intensity of the gravitational field in a spatial region, in so far as

one can make sense of this idea, is directly proportional to the density of mass in that region. In

geometrized Newtonian gravity, this idea is made precise in the geometrized form of the Poisson

equation, which equates a generalized mass-like quantity, which has the form of a stress-energy

tensor, to the Ricci curvature of the ambient spacetime. In relativity, one knows that mass just is

a form of energy. In order for a relativistic theory of gravitation to have Newtonian gravitational

theory as its limiting form, therefore, one is driven to look for the appropriately analogous equation,

equating a term representing the curvature of a Lorentz metric with a stress-energy tensor. Once

one imposes natural ancillary conditions on the desired curvature term, such as that it must be

a second-order, homogeneous concomitant of the metric, then, by theorem 7.1, the Einstein field

equation falls out as the only possibility.36

Theorem 7.1 implies that the addition of constant multiples of the metric to the geometri-

cal lefthand side of the Einstein field equation is not allowed. I interpret that to mean that any

cosmological-constant term must be construed as part of the total stress-energy tensor of spacetime,

and so, in particular, the cosmological constant itself must have the physical dimensions of mass2,

so that its product with the metric will not change under constant rescaling of the metric.

In higher dimensions, there are other tensors satisfying Lovelock’s original theorem, the so-

called Lovelock tensors. (Those tensors are not linear in the second-order partial-derivatives of the

metric as the Einstein tensor is.) Those tensors form the basis of so-called Lanczos-Lovelock gravity

theories in dimensions higher than four (Lovelock 1971; Padmanabhan and Kothawala 2013), being

used to formulate field equations including Lovelock tensors besides the Einstein tensor. Because

theorem 7.1 holds in all dimensions, not just in four, it follows that, in dimensions other than four,

the Lovelock tensors are not homogeneous of weight zero, and so do not have the physical dimension

of stress-energy. Thus, if one wants to construct a field equation that equates a linear combination of

such tensors to the stress-energy tensor of ordinary matter, as Lanczos-Lovelock theories of gravity

do, then the coupling constants cannot be dimensionless like Newton’s gravitational constant; the

physical dimension of each coupling constant will be determined by the physical dimension of the

Lovelock tensor it multiplies. These Lovelock tensors are usually interpreted as generalizing the

Einstein field equation so as to include curvature terms other than the Einstein tensor that couple

with the stress-energy of ponderable matter. As in the case of the cosmological constant, however,

36One may take this as a more precise and rigorous form of the argument Einstein (1916, p. 149) proposed for his

introduction of the stress-energy tensor in the first place, as I discussed in footnote 25.
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the fact that these Lovelock tensors require dimensionful coupling constants to get the physical

dimensions of the terms right strongly suggests that one ought not interpret them as geometrical

terms coupling to ordinary stress-energy, but rather as exotic forms of stress-energy themselves. If

this is correct, then Lanczos-Lovelock theories are not in fact generalizations of general relativity,

but rather simply the Einstein field equation with exotic stress-energy added to the righthand side.

This is an issue that deserves further investigation.

The fact that the same theorem has as its natural interpretation the uniqueness of the Einstein

field equation and the non-existence of a gravitational stress-energy tensor suggests that there may

be a tight relation between the non-localizability of gravitational stress-energy and the form of the

Einstein field equation. I have a strong suspicion this is correct, but I have not been able to put my

finger on exactly what that relation may come to. A hint, perhaps, comes from the pregnant remark

of Choquet-Bruhat (1983) to the effect that the principle of equivalence (on her interpretation of

it) demands that the gravitational field act as its own source, represented mathematically by the

non-linearity of the Einstein field equation. Choquet-Bruhat’s claim, if true, implies that there can

be no linear field equation for gravity satisfying the equivalence principle, which would to my mind

be a startlingly strong implication for the equivalence principle to have. And yet my arguments here

suggest that she may, in some sense, be correct. That is a question, however, for future work.

I conclude with an intriguing observation. The derivation of the Einstein field equation in Pad-

manabhan (2010), based on thermodynamical arguments, is really just a special case of theorem 7.1

in disguise, as the Einstein tensor is the only appropriate covariantly divergence-free tensor having

the units of stress-energy, as his proof requires. (The same holds true for the generalization of Pad-

manabhan’s arguments to Lanczos-Lovelock gravity in Padmanabhan and Kothawala 2013.) Note,

moreover, that Lovelock’s original theorem does not suffice for Padmanabhan’s needs, since it is

crucial that the desired tensor have the right physical dimension.
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varianten Ableitungen und Algebren von äquivalenten geometrischen Objekten. Acta Classica

Universitatis Scientiarum Debreceniensis 6 (2), 5–13.

Aldersley, S. (1977, January). Dimensional analysis in relativistic gravitational theories. Physical

Review D 15 (2), 370–376. doi:10.1103/PhysRevD.15.370.

Anderson, J. (1962). Absolute change in general relativity. In Recent Developments in General

Relativity, pp. 121–126. Oxford: Pergamon Press. Volume commemorating the 60th birthday

of Leopold Infeld, with no editors mentioned by name.

Anderson, J. (1967). Principles of Relativity Physics. New York: Academic Press.

Ashtekar, A. and R. Penrose (1990, October). Mass positivity from focussing and the structure of

io. Twistor Newsletter 31, 1–5. Freely available at http://people.maths.ox.ac.uk/lmason/

Tn/31/TN31-02.pdf.

Erik Curiel 25 November 26, 2019

http://dx.doi.org/10.1103/PhysRevD.15.370
http://people.maths.ox.ac.uk/lmason/Tn/31/TN31-02.pdf
http://people.maths.ox.ac.uk/lmason/Tn/31/TN31-02.pdf


Geometric Objects, Gravitational Energy, and the EFE

Belot, G. (2011, October). Background-independence. General Relativity and Gravitation 43 (10),

2865–2884. doi:10.1007/s10714-011-1210-x. Preprint: arXiv:1106.0920 [gr-qc].

Bondi, H. (1962). On the physical characteristics of gravitational waves. See Lichnerowicz and

Tonnelat (1962), pp. 129–135. Proceedings of a conference held at Royaumont in June, 1959.

Bondi, H. and W. McCrea (1960, October). Energy tranfer by gravitation in Newtonian

theory. Mathematical Proceedings of the Cambridge Philosophical Society 56 (4), 410–413.

doi:10.1017/S0305004100034721.

Brading, K. (2005). A note on general relativity, energy conservation, and Noether’s theorems. In

A. Kox and J. Eisenstaedt (Eds.), The Universe of General Relativity, Number 11 in Einstein

Studies, pp. 125–135. Boston: Birkhäuser.
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