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Astronomical observations indicate that the cosmological constant is many orders of magnitude smaller
than estimated in modern theories of elementary particles. After a brief review of the history of this prob-
lem, five different approaches to its solution are described.
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As I was going up the stair,
I neet a man who wasn't theve.
He wasn't there again today,
I wish, I wish he'd stay away.
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Hughes Mearns

R„——,'g R —A,g„=—8e GT„ (2.1)

Now, for A, &0, there was a static solution for a universe
filled with dust of zero pressure and mass density

8+6 (2.2)

Its geometry was that of a sphere S3, with proper cir-
cumference 2m.v, where

II. EARLY HISTORY

After completing his formulation of general relativity
in 1915—1916, Einstein (1917)attempted to apply his new
theory to the whole universe. His guiding principle was
that the universe is static: "The most important fact that
we draw from experience is that the relative velocities of
the stars are very small as compared with the velocity of
light. " No such static solution of his original equations
could be found (any more than for Newtonian gravita-
tion), so he modified them by adding a new term involv-
ing a free parameter A., the cosmological constant:

I. INTRODUCTION
r = 1/VSmpG

so the mass of the universe was

(2.3)

Physics thrives on crisis. We all recall the great pro-
gress made while finding a way out of various crises of
the past: the failure to detect a motion of the Earth
through the ether, the discovery of the continuous spec-
trum of beta decay, the ~-0 problem, the ultraviolet
divergences in electromagnetic and then weak interac-
tions, and so on. Unfortunately, we have run short of
crises lately. The "standard model" of electroweak and
strong interactions currently faces neither internal incon-
sistencies nor conflicts with experiment. It has plenty of
loose ends; we know no reason why the quarks and lep-
tons should have the masses they have, but then we know
no reason why they should not.

Perhaps it is for want of other crises to worry about
that interest is increasingly centered on one veritable
crisis: theoretical expectations for the cosmological con-
stant exceed observational limits bP some 120 orders of
magnitude. ' In these lectures I will first review the histo-
ry of this problem and then survey the various attempts
that have been made at a solution.

*Morris Loeb Lectures in Physics, Harvard University, May
2, 3, 5, and 10, 1988.

For a good nonmathematical description of the cosmological
constant problem, see Abbott (1988).

M=2mr p= —k ' 6 (2.4)
4

In some popular history accounts, it was Hubble' s
discovery of the expansion of the universe that led Ein-
stein to retract his proposal of a cosmological constant.
The real story is more complicated, and more interesting.

One disappointment came almost immediately. Ein-
stein had been pleased at the connection in his model be-
tween the mass density of the universe and its geometry,
because, following Mach's lead, he expected that the
mass distribution of the universe should set inertial
frames. It was therefore unpleasant when his friend de
Sitter, with whom Einstein remained in touch during the
war, in 1917 proposed another apparently static cosmo-
logical model with no matter at all. (See de Sitter, 1917.)
Its line element (using the same coordinate system as de
Sitter, but in a difterent notation) was

dv = [dt dr—1

cosh Hv

H tanh Hr(dO —+ sin Odg )],
(2.5)

2The notation used here for metrics, curvatures, etc., is the
same as in W'einberg (1972).
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with H related to the cosmological constant by

H =&A, /3 (2.6)

and p=p =0. Clearly matter was not needed to produce
inertia.

At about this time, the redshift of distant objects was
being, discovered by Slipher. Over the period from 1910
to the mid-1920s, Slipher (1924) observed that galaxies
(or, as then known, spiral nebulae) have redshifts
z = b, A, /A, ranging up to 6%, and only a few have blue-
shifts. Weyl pointed out in 1923 that de Sitter's model
would exhibit such a redshift, increasing with distance,
because although the metric in de Sitter's coordinate sys-
tem is time independent, test bodies are not at rest; there
is a nonvanishing component of the afBne connection

III. THE PROBLEM

Unfortunately, it was not so easy simply to drop the
cosmological constant, because anything that contributes
to the energy density of the vacuum acts just like a
cosmological constant. Lorentz invariance tells us that
in the vacuum the energy-mornenturn tensor must take
the form

& T„.&= —(p&g„. . (3.1)

X„=X+8~G(p) . (3.2)

(A minus sign appears here because we use a metric
which for flat space-time has goo= —1.) Inspection of
Eq. (2.1) shows that this has the same efFect as adding a
term 8m G (p ) to the effective cosmological constant

I «
= —H sinhHr tanhHr

giving a redshift proportional to distance

z=Hr for Hr (&1 .

(2.7)

(2 8)

Equivalently we can say that the Einstein cosmological
constant contributes a term A, /8mG to the total efFective
vacuum energy

In his influential textbook, Eddington (1924) interpreted
Slipher's redshifts in terms of de Sitter's "static"
universe.

But of course, although the cosmological constant was
needed for a static universe, it was not needed for an ex-
panding one. Already in 1922, Friedmann (1924) had de-
scribed a class of cosmological models, with line element
(in modern notation)

2 2 drdr =dt R(t) — +r (d6 + sin Hdy )
1 —kr

(2.9)

These are comoving coordinates; the universe expands or
contracts as R (t) increases or decreases, but the galaxies
keep fixed coordinates r, o, y. The motion of the cosmic
scale factor is governed by an energy-conservation equa-
tion

2

p =&p&+X/8 G=A, , /8 G . (3.3)

A crude experimental upper bound on A,,& or pz is pro-
vided by measurements of cosmological redshifts as a
function of distance, the program begun by Hubble in the
late 1920s. The present expansion rate is today estimated
as

1 dR =Ho =50—100 km/sec Mpc
R dt now

=(—,
' —1)X10 ' /yr .

Furthermore, we do not gross effects of the curvature of
the universe, so very roughly

ik i/R'„.„SH', .

Finally, the ordinary nonvacuum mass density of the
universe is not much greater than its critical value

Ip
—(p &

I
-3H,'/8~G .

dR = —k+ —'R (8m Gp+ A, ) .
dt

(2 10) Hence (2.10) shows that

The de Sitter model is just the special case with k =0 and
p=O; in order to put the line element (2.5) in the more
general form (2.9), it is necessary to introduce new coor-
dinates,

t'= t —H ' ln coshHr,

r'=H ' exp( Ht) sinhHr, — (2.11)

and then drop the primes. However, we can also easily
find expanding solutions with A, =O and p )0. Pais (1982)
quotes a 1923 letter of Einstein to Weyl, giving his reac-
tion to the discovery of the expansion of the universe:
"If there is no quasi-static world, then away with the
cosmological term&"

or, in physicists' units,

ipvi 510 g/cm =10 GeV (3.4)

( ) JA4vrk dk 1 ~k2+ 2 A

(2m)' 2 16~'
(3.5)

A more precise observational bound will be discussed in
Sec. V, but this one will be good enough for our present
purposes.

As everyone knows, the trouble with this is that the en-
ergy density (p) of empty space is likely to be enormous-
ly larger than 10 GeV . For one thing, summing the
zero-point energies of all normal modes of some field of
mass m up to a wave number cutoff A)) m yields a vacu-
um energy density (with fi =c = 1 )
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If we believe general relativity up to the Planck scale,
then we might take A=(SmG) ', which would give

&p) =2-"~-'G-'=2X 10" GeV'. (3.6)

Casimir (1948}showed that quantum fluctuations in the space
between two Aat conducting plates with separation d would pro-
duce a force per unit area equal to Ac+ /240d, or 1.30X 10
dyn cm /d . This was measured by Sparnaay (1957), who found
a force per area of (1—4)X10 ' dyncm /d, when d was
varied between 2 and 10pm.

But we saw that
~ & p) +1,/ SAG~ is less than about

10 GeV, so the two terms here must cancel to better
than 118 decimal places. Even if we only worry about
zero-point energies in quantum chromo dynamics, we
would expect &p) to be of order AocD/16m, or 10
GeV, requiring I, /SmG to cancel this term to about 41
decimal places.

Perhaps surprisingly, it was a long time before particle
physicists began seriously to worry about this problem,
despite the demonstration in the Casimir effect of the
reality of zero-point energies. Since the cosmological
upper bound on

~ & p ) +A, /Sm G
~

was vastly less than any
value expected from particle theory, most particle theor-
ists simply assumed that for some unknown reason this
quantity was zero. But cosmologists generally continued
to keep an open mind, analyzing cosmological data in
terms of models with a possibly nonvanishing cosmologi-
cal constant.

In fact, as far as I know, the first published discussion
of the contribution of quantum Auctuations to the
effective cosmological constant was triggered by astro-
nomical observations. In the late 1960s it seemed that an
excessively large number of quasars were being observed
with redshifts clustered about z =1.95. Since 1+z is the
ratio of the cosmic scale factor R(t) at.present to its
value at the time the light now observed was emitted, this
could be explained if the universe loitered for a while at a
value of R (t) equal to 1/2. 95 times the present value. A
number of authors [Petrosian, Salpeter, and Szekeres
(1967); Shklovsky (1967); Rowan-Robinson (1968)j pro-
posed that such a loitering could be accounted for in a
model proposed by Lemaitre (1927, 1931). In this model
there is a positive cosmological constant X,z and positive
curvature k =+1, just as in the static Einstein model,
while the mass of the universe is taken close to the Ein-
stein value (2.4). The scale factor R (t) starts at R =0
and then increases; however, when the mass density
drops to near the Einstein value (2.2), the universe
behaves for a while like a static Einstein universe, until
the instability of this model takes over and the universe
starts expanding again. In order for this idea to explain a
preponderance of redshifts at z =-1.95, the vacuum ener-

gy density pv would have to be (2.95) times the present
nonvacuum mass density po.

These considerations led Zeldovich (1967) to attempt
to account for a nonzero vacuum energy density in terms

of quantum Auctuations. As we have seen, the zero-point
energies themselves gave far too large a value for & p ), so
Zeldovich assumed that these were canceled by A, /Sn. G,
leaving only higher-order effects: in particular, the gravi-
tational force between the particles in the vacuum Quc-
tuations. (In Feynman diagram terms, this corresponds
to throwing away the one-loop vacuum graphs, but keep-
ing those with two loops. ) Taking A particles of energy
A per unit volume gives the gravitational self-energy den-
sity of order

&p)=(GA /A ')A =GA (3.7)

4Veltman (1975) attributes this view to Linde (1974), himself
(quoted as "to be published" ), and Dreitlein (1974). However,
Linde's paper does not seem to me to take this position.
Dreitlein's paper proposed that Eq. (3.9) could give an accept-
ably small value of &p), with p/i/g fixed by the Fermi cou-
pling constant of weak interactions, if p is very small, of order
10 MeV. Veltman's paper gives experimental arguments
against this possibility.

For no clear reason, Zeldovich took the cutoff A as 1

GeV, which yields a density & p ) = 10 GeV, much
smaller than from zero-point energies themselves, but
still larger than the observational bound (3.4) on
~&p)+A, /Sm. G~ by some 9 orders of magnitude. Neither
Zeldovich nor anyone else felt encouraged to pursue
these ideas.

The real beginning of serious worry about the vacuum
energy seems to date from the success of the idea of spon-
taneous symmetry breaking in the electroweak theory.
In this theory, the scalar field potential takes the form
(with p &0, g &0)

V= Vo pY0+g—(A)' . (3.8)

At its minimum this takes the value

4

&p) =V,„=V,—" (3.9)

Apparently some theorists felt that V should vanish at
$ =0, which would give Vo =0, so that & p ) would be
negative definite. In the electroweak theory this would
give & p) = —g(300 GeV), which even for g as small as
a would yield

~ & p ) ~
= 10 GeV, larger than the bound

on p~ by a factor 10 . Of course we know of no reason
why Vo or A, must vanish, and it is entirely possible that
Vo or A, cancels the term —p /4g (and higher-order
corrections), but this example shows vividly how un-

natural it is to get a reasonably small effective cosmologi-
cal constant. Moreover, at early times the effective
temperature-dependent potential has a positive coefficient
for P P, so the minimum then is at /=0, where
V(P)= Vo. Thus, in order to get a zero cosmological
constant today, we have to put up with an enormous
cosmological constant at times before the electroweak
phase transition. [This is not in conflict with experiment;
in fact, the phase transition occurs at a temperature T of
order p/&g, so the black-body radiation present at that
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8 =0, (3.10)

time has an energy density of order p /g, larger than
the vacuum energy by a factor 1/g (Bludman and Ruder-
man, 1977).] At even earlier times there were other tran-
sitions, implying an even larger early value for the
effective cosmological constant. This is currently regard-
ed as a good thing; the large early cosmological constant
would drive cosmic inAation, solving several of the long-
standing problems of cosmological theory (Guth, 1981;
Albrecht and Steinhardt, 1982; Linde, 1982). We want to
explain why the effective cosmological constant is small
now, not why it was always small.

Before closing this section, I want to take up a peculiar
aspect of the problem of the cosmological constant. The
appearance of an effective cosmological constant makes it
impossible to find any solutions of the Einstein field equa-
tions in which g„ is the constant Minkowski term g„.
That is, the original symmetry of general covariance,
which is always broken by the appearance of any given
metric g„, cannot, without fine-tuning, be broken in
such a way as to preserve the subgroup of space-time
translations.

This situation is unusual. Usually if a.theory is invari-
ant under some group G, we would not expect to have to
fine-tune the parameters of the theory in order to find
vacuum solutions that preserve any given subgroup
H C G. For instance, in the electroweak theory, there is a
finite range of parameters in which any number of dou-
blet scalars will get vacuum expectation values that
preserve a U(1) subgroup of SU(2)XU(1). So why will
this not work for the translational subgroup of the group
of general coordinate transformations? Suppose we look
for a solution of the field equations that preserves transla-
tional invariance. With all fields constant, the field equa-
tions for matter and gravity are

with c independent of g„. With this X, there are no
solutions of Eq. (3.11), unless for some reason the
coefficient c vanishes when (3.10) is satisfied.

Now that the problem has been posed, we turn to its
possible solution. The next five sections will describe five
directions that have been taken in trying to solve the
problem of the cosmological constant.

IV. SUPERSYMMETRY, SUPERGRAVITY,
SUPERSTR INGS

Shortly after the development of four-dimensional glo-
bally supersymmetric field theories, Zumino (1975) point-
ed out that supersymmetry in these theories would, if un-
broken, imply a vanishing vacuum energy. The argu-
ment is very simple: the supersymmetry generators Q
satisfy an anticommutation relation

(4.1)

where a and P are two-component spin indices; o „cr2,
and 0.

3 are the Pauli matrices; o0=1; and I'" is the
energy-momentum 4-vector operator. If supersymmetry
is unbroken, then the vacuum state l0& satisfies

(4.2)

and from (4.1) and (4.2) we infer that the vacuum has
vanishing energy and momentum

y(y yy ) y &8 (P) (4.3)

This result can also be obtained by considering the poten-
tial V(P, P' ) for the chiral scalar fields P' of a globally su-
persymmetric theory:

(3.1 1)

g„~A 1'„A

1t;~D;) ( A )f~;
the Lagrangian transforms as a density,

X~DetAX .

(3.12)

(3.13)

(3.14)

When Eq. (3.10) is satisfied, this implies that X trans-
forms as in (3.14) under (3.12) alone This has the. unique
solution

X=c(Detg )
'~ (3.15)

With N g's, these are N +6 equations for N +6 un-
knowns, so one might expect a solution without fine-
tuning. The problem is that when (3.10) is satisfied, the
dependence of X on gz is too simple to allow a solution
of (3.11). There is a GL(4) symmetry that survives as a
vestige of general covariance even when we constrain the
fields to be constants: under the GL(4) transformation

where W(P) is the so-called superpotential. (Gauge de-
grees of freedom are ignored here, but they would not
change the argument. ) The condition for unbroken su-
persymmetry is that 8'be stationary in P, which would
imply that Vtake its minimum value,

(4.4)

Quantum effects do not change this conclusion, because
with boson-fermion symmetry, the fermion loops cancel
the boson ones.

The trouble with this result is that supersymmetry is
broken in the real world, and in this case either (4.1) or
(4.3) shows that the vacuum energy is positive-definite.
If this vacuum energy were the sole contribution to the
effective cosmological constant, then the effect of super-
symmetry would be to convert the problem of the cosmo-
logical constant from a crisis into a disaster.

Fortunately this is not the whole story. It is not possi-
ble to decide the value of the effective cosmological con-
stant unless we explicitly introduce gravitation into the
theory. Any globally supersymmetric theory that in-
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volves gravity is inevitably a locally supersymmetric su-
pergravity theory. In such a theory the eff'ective cosmo-
logical constant is given by the expectation value of the
potential, but the potential is now given by (Cremmer
et al. , 1978, 1979; Barbieri et QI., 1982; %'itten and
Bagger, 1982)

V(P, P*)= exp(8m. GK)[D,. W(g ')'j(D W)'

—24~G
I
Wl'~, (4.5)

where K (P, P' ) is a real function of both P and P' known
as the Kahler potential, D,-S' is a sort of covariant
derivative

BS' 6 BK
aO' aa' '

and ( g ')'j is the inverse of a metric

() E
j ayieayj

(4.6)

(4.7)

The condition for unbroken supersymmetry is now

D, 8'=0. This again yields a stationary point of the po-
tential, but now it is one at which Vis generally negative.
In fact, even if we fine-tuned 8' so that there were a su-
persymmetric stationary point at which W =0 and hence
V =0, such a solution would not, in general, be the state
of lowest energy, though it would be stable [Coleman and
de Luccia (1980), Weinberg (1982)]. It should, however,
be mentioned that if there is a set of field values at which
8'=0 and D, W=O for all i in lowest order of perturba-
tion theory, then the theory has a supersymmetric equi-
librium configuration with V=0 to all orders of pertur-
bation theory, though not necessarily beyond perturba-
tion theory (Cxrisaru, Siegel, and Rocek, 1979). The same
is believed to be true in superstring perturbation theory
(Dine and Seiberg, 1986; Friedan, Martinec, and Shenker,
1986; Martinec, 1986; Attick, Moore, and Sen, 1987;
Morozov and Perelomov, 1987).

Without fine-tuning, we can generally find a nonsuper-
symmetric set of scalar field values at which V=O and
D; W&0, but this would not normally be a stationary

+g(Sn Snn')

while the superpotential is

W= W, (C')+ W2(S"),

(4.8)

(4.9)

and T, C', S" are all chiral scalar fields. No constraints
are placed on the functions h (C', C"), IC(S",S"*),
Wi(c'), or Wz(S"), except that h and E are real, and
functions all depend only on the fields indicated; in par-
ticular, the superpotential must be independent of the
single chiral scalar T.

With these conditions the potential (4.5) takes the form

V= exp(8m') 88' (~—1 )a
3(T+T*+h)

X
b +(D„W)(g ')" (D W)*

where (JV ')'b is the reciprocal of the matrix

ah
ac'*ac'

(4.10)

(4.11)

The matrices JPb and g" are necessarily positive-
definite, because of their role in the kinetic part of the
scalar Lagrangian

point of V. Thus in supergravity the problem of the
cosmological constant is no more a disaster, but just as
much a crisis, as in nonsupersymmetric theories.

On the other hand, supergravity theories o6'er oppor-
tunities for changing the context of the cosmological con-
stant problem, if not yet for solving it. Cremmer et aI.
(1983) have noted that there is a class of Kahler poten-
tials and superpotentials that, for a broad range of most
parameters, automatically yield an equilibrium scalar
field configuration in which V=O, even though super-
symmetry is broken. Here is a somewhat generalized
version: the Kahler potential is

sc = 3»l T—+T' h(c',—c'*)
I
j8~G

k1Il J g pX p

3 aT ah ac'
(T+T*+h) ax" aC' ax"

aT ah ac
ax& a( b ax&

3

IT+ T*—h
I

gCae gCb

Bx„
os"' asgn
ax~ ax„

(4.12)

aw =D„S"=0.
i3C'

But this is not necessarily a
configuration, because here

(4.13)

supersymmetric

Hence Eq. (4.10) is positive and therefore, without fur-
ther fine-tuning, may be expected to have a stationary
point with V =0, specified by the conditions

D. ~=-' +8-6' ~aC" aC'
3 Bh

IT+T +hl ac (4.14)

and this does not necessarily vanish. (However, to have
supersymmetry broken, it is essential that the superpo-
tential actually depend on all of the chiral scalars S",be-
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cause otherwise the conditions D„R'=0 would require
W =0 and hence D, 8'=0.)

The superpotential 8' depends on C' and S", but not
on T, so the conditions (4.13) will generally fix the values
of C' and S" at the minimum of V, while leaving T un-
determined. The field T enters the potential only in the
overall scale of the part that depends on the C', so such
theories are called "no-scale" models. An intensive phe-
nomenological study of these models was carried out at
CERN for several years following 1983 (Ellis, Lahanas,
et al. , 1984; Ellis, Kounnas, et al. , 1984; Barbieri et al. ,
1985).

Of course, these models do not solve the cosmological
constant problem, because neither Eq. (4.8) nor Eq. (4.9)
is dictated by any known physical principle. In particu-
lar, in order to cancel the second term in Eq. (4.5), it is
essential that the coefficient of the logarithm in the first
term in (4.8) be given the apparently arbitrary value
—3/8&G.

It was therefore exciting when, in some of the first
work on the physical implications of superstring theory,
it was found that compactification of six of the ten origi-
nal dimensions yielded a four-dimensional supergravity
theory with Kahler potential and superpotential of the
form (4.8) and (4.9). Specifically, Witten (1985) found a
Kahler potential of the form (4.8), with h quadratic in the
C's and K= —ln(S+S*)/8~6, but with a superpoten-
tial that depended solely on the C's. By including non-
perturbative gaugino condensation efFects, Dine et al.
(1985) were able to give the superpotential a dependence
on S (though they did not treat the dependence of the
Kahler potential or superpotential on the C' fields). In
this work, the S field is a complex function (now often
called Y) of four-dimensional dilaton and axion fields,
while the T field represents the scale of the compactified
six-dimensional manifold. The factor 3 in Eq. (4.8) arises
in these models because one compactifies on a complex
manifold with (10—4)/2=3 complex dimensions (Chang
et al. , 1988).

Intriguing as these results are, they have not been tak-
en seriously (even by the original authors) as a solution of
the cosmological constant problem. The trouble is that
no one expects the simple structures (4.8) and (4.9) to sur-
vive beyond the lowest order of perturbation theory, be-
cause they are not protected by any symmetry that sur-
vives down to accessible energies.

Recently Moore (1987a, 1987b) has attempted a more
specifically "stringy" attack on the problem. Early work
by Rohm (1984) and Polchinski (1986) had shown that in
the calculation of the vacuum energy density, the sum
over zero-point energies can be converted into an integral
over a complex "modular parameter" r. (In string
theories, two-dimensional conformal symmetry makes
the tree-level vacuum energy vanish. ) Last year Moore
pointed out that for some special compactifications there
is a discrete symmetry of modular space, known as
Atkin-Lehner symmetry, that makes the integral over ~
vanish despite the absence of space-time supersymmetry.

So far, the only examples where this occurs entail a
compactification to two rather than four space-time di-
mensions, but it does not seem unlikely that four-
dimensional examples could be found. A more serious
obstacle is that the Atkin-Lehner symmetry seems irre-
trievably tied to one-loop order.

Indeed, it is very hard to see how any property of su-

pergravity or superstring theory could make the efFective
cosmological constant sufFiciently small. It is not enough
that the vacuum energy density cancel in lowest order, or
to all finite orders of perturbative theory; even nonpertur-
bative effects like ordinary QCD instantons would give
far too large a contribution to the efFective cosmological
constant if not canceled by something else. According to
our modern theories, properties of elementary particles,
like approximate baryon and lepton conservation, are
dictated by gauge symmetries of the standard model,
which survive down to accessible energies. %e know of
no such symmetry (aside from the unrealistic example of
unbroken supersymmetry) that could keep the effective
cosmological constant sufficiently small. It is conceivable
that in supergravity the property of having zero efFective
cosmological constant does survive to low energies
without any symmetry to guard it, but this would run
counter to all our experience in physics.

V. ANTHROPIC CONSlDERATlONS

I now turn to a very difFerent approach to the cosmo-
logical constant, based on what Carter (1974) has called
the anthropic principle. Briefly stated, the anthropic
principle has it that the world is the way it is, at least in
part, because otherwise there would be no one to ask why
it is the way it is. There are a number of difFerent ver-
sions of this principle, ranging from those that are so
weak as to be trivial to those that are so strong as to.be
absurd. Three of these versions seem worth distinguish-
ing here.

(i) In one very weak version, the anthropic principle
amounts simply to the use of the fact that we are here as
one more experimental datum. For instance, recall M.
Goldhaber's joke that "we know in our bones" that the
lifetime of the proton must be greater than about 10' yr,
because otherwise we would not survive the ionizing par-
ticles produced by proton decay in our own'bodies. No
one can argue with this version, but it does not help us to
explain anything, such as why the proton lives so long.
Nor does it give very useful experimental information;
certainly experimental physicists (including Goldhaber)
have provided us with better limits on the proton life-
time.

5Recent discussions of the anthropic principle are given in the
books by Davies (1982) and Barrow and Tipler (1986);and in ar-
ticles by Carter (1983),Page (1987), and Rees (1987).
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A'/Gcm =4.5X 10' yr . (5.1)

[There are various other ways of writing this relation,
such as replacing m with various combinations of parti-
cle masses and introducing powers of e /A'c. Dirac's
original "large-number" coincidence is equivalent to us-
ing Eq. (5.1) as a formula for the age of the universe, with
m replaced by (137m~m, )'~ =183 MeV. In fact, there
are so many different possibilities that one may doubt
whether there is any coincidence that needs explaining. ]
Dirac reasoned that if this connection were a real one,
then, since the age of the universe increases (linearly)
with time, some of the constants on the left side of (5.1)
must change with t;ime. He guessed that it is 6 that
changes, like 1/t [Zee (198.5) has applied similar argu-
ments to the cosmological constant itself. ] In response to
Dirac, Dicke pointed out that the question of the age of
the universe could only arise when the conditions are
right for the existence of life. Specifically, the universe
must be old enough so that some stars will have complet-
ed their time on the main sequence to produce the heavy
elements necessary for life, and it must be young enough
so that some stars would still be providing energy
through nuclear reactions. Both the upper and lower
bounds on the ages of the universe at which life can exist
turn out to be roughly (very roughly) given by just the
quantity (5.1). Hence there is no need to suppose that
any of the fundamental constants vary with time to ac-
count for the rough agreement of the quantity (5.1) with
the present age of the universe.

It is this "weak anthropic principle" that will be ap-
plied here. Its relevance arises from the fact that, in
some modern cosmological models, the universe does
have parts or eras in which the effective cosmological
constant takes a wide variety of values. Here are some
examples.

(ii) In one rather strong version, the anthropic princi-
ple states that the laws of nature, which are otherwise in-
complete, are completed by the requirement that condi-
tions must allow intelligent life to arise, the reason being
that science (and quantum mechanics in particular) is
meaningless without observers. I do not know how to
reach a decision about such matters and will simply state
my own view, that although science is clearly impossible
without scientists, it is not clear that the universe is im-
possible without science.

(iii) A moderate version of the anthropic principle,
sometimes known as the "weak anthropic principle, "
amounts to an explanation of which of the various possi-
ble eras or parts of the universe we inhabit, by calculat-
ing which eras or parts of the universe we could inhabit.
An example is provided by what I think is the first use of
anthropic arguments in modern physics, by Dicke (1961),
in response to a problem posed by Dirac (1937). In effect,
Dirac had noted that a combination of fundamental con-
stants with the dimensions of a time turns out to be
roughly of the order of the present age of the universe:

(1) The vacuum energy may depend on a scalar field
vacuum expectation value that changes slowly as the
universe expands, as in a model of Banks (1985).

(2) In a model of Linde (1986, 1987, 1988b), fiuctua-
tions in scalar fields produce exponentially expanding re-
gions of the universe, within which further Auctuations
produce further subuniverses, and so on. Since these
subuniverses arise from Auctuations in the fields, they
have differing values of various "constants" of nature.

(3) The universe may go through a very large number
of first-order phase transitions in which bubbles of small-
er vacuum energy form; within these bubbles there form
further bubbles of even smaller vacuum energy, and so
on. This can happen if the potential for some scalar field
has a large number of small bumps, as in a model of Ab-
bott (1985). Alternatively, the bubble walls may be ele-
mentary membranes coupled to a 3-form gauge potential
A i, as in the work of Brown and Teitelboim (1987a,
1987b).

'(4) The universe may start in a quantum state in which
the cosmological constant does not have a precise value.
Any "measurement" of the properties of the universe
yields a variety of possible values for the cosmological
constant, with a priori probabilities determined by the in-
itial state (Hawking, 1987a). We will see examples of this
in Secs. VII and VIII.

In models of these types, it is perfectly sensible to apply
anthropic considerations to decide which era or part of
the universe we could inhabit, and hence which values of
the cosmological constant we could observe.

A large cosmological constant would interfere with the
appearance of life in different ways, depending on the
sign of A,,z. For a large positiUe A,,z, the universe very ear-
ly enters an exponentially expanding de Sitter phase,
which then lasts forever. The exponential expansion in-
terferes with the formation of gravitational condensa-
tions, but once a clump of matter becomes gravitationally
bound, its subsequent evolution is unaffected by the
cosmological constant. Now, we do not know what
weird forms life may take, but it is hard to imagine that it
could develop at all without gravitational condensations
out of an initially smooth universe. Therefore the an-
thropic principle makes a rather crisp prediction: A,,ff

must be small enough to allow the formation of
sufficiently large gravitational condensations (Weinberg,
1987).

This has been worked out quantitatively, but we can
easily understand the main result without detailed calcu-
lations. We know that in our universe gravitational con-
densation had already begun at a redshift z, ~ 4. At this
time, the energy density was greater than the present
mass density pM by a factor (1+z, ) ~ 125. A cosmolog-

ical constant has little effect as long as the nonvacuum
energy density is larger than pz, so one can conclude that
a vacuum energy density pz no larger than, say 100pM

would not be large enough to prevent gravitational con-
densations. [The quantitative analysis of Weinberg

Rev. Mod. Phys. , Vol. 61, No. 1, January 1989



Steven Weinberg: The cosmological constant problem

(1987) shows that for k =0, a vacuum energy density no
greater than vr (1+z, ) pl /3 would not prevent gravita-

tional condensation at a redshift z„' this is 410pM for
0

z, =4.]
This result suggests strongly that if it is the anthropic

principle that accounts for the smallness of the cosmolog-
ical constant, then we would expect a vacuum energy
density p~-(10—100)pM, because there is no anthropic

0

reason for it to be any smaller.
Is such a large vacuum energy density observationally

allowed? There are a number of different types of astro-
nomical data that indicate differing answers to this ques-
tion.

SmGpv
nv=

3H 30
SmGPM

+M
3H

(5.3)

The dynamics of clusters of galaxies seems to indicate
that Q~ is in the range 0. 1 —0.2 (Knapp and Kormendy,

0

1987), which with these assumptions would indicate a
value for pv/pM in the range 4—9. If we discount the

evidence from the dynamics of clusters of galaxies, then
QM could be as small as 0.02 (Knapp and Kormendy,

0

1987), corresponding to a value of pz/ps' -50. [See also

Bahcall et al. (1987).]

A. Mass density

Av+QM =1, (5.2)

where Qv and QM are the ratios of the vacuum energy
MQ

density and the present mass density to the critical densi-

ty

If, as often assumed, the universe now has negligible
spatial curvature, then

B. Ages

In a dust-dominated universe with k =0 and p z =0,
the age of the universe is I;p =2/3Hp ~ For
Hp = 100 km/sec Mpc, this is 7 X 10 yr, considerably
less than the ages usually estimated for globular clusters
(Renzini, 1986). On the other hand, for a dust-dominated
universe with k =0 and p~&0, the present age of an ob-

ject that formed at a redshift z, is

2 PMQ
to(z, ) =—1+

Pv

1/2 ' 1/2

H ', sinh
0

—sinh
1/2

(1+z )-'"
PM

(5.4)

For instance, for z, =4 and pz/pM =9 (i.e., QM =0.1), this gives an age 1.1HO ' in place of —', Ho '. This is not in
0 0

conflict with globular cluster ages even for Hubble constants near 100 km/sec Mpc.
These considerations of cosmic age and density have led a number of astronomers to suggest a fairly large positive

cosmological constant, with p~ )pM [de Vaucouleurs (1982, 1983); Peebles (1984, 1987a, 1987b); Turner, Steigman, and

Krauss (1984)]. However, there recently has appeared a strong argument against this view, which we shall now consid-
er.

C. Number counts

Loh and Spillar (1986) have carried out a survey of numbers of galaxies as a function of redshift, subsequently ana-
lyzed by Loh (1986). For a uniformly distributed class of objects that are all bright enough to be detectable at redshifts
~z,„,the number of objects observed at redshift less than z ~z,„ in a dust-dominated universe with k =0 is

1 4 3 — 2 —2 2 —1/2N((z)oc I „,dss (1+pvs /pM )
' ds's' (1+pvs' /pM )

(1+z] '" p
(5.5)

Of course, in the real world there are always some objects
too dim to be seen. Loh's analysis allowed for an un-
known luminosity distribution, assuming only that its
shape does not evolve with time. Under these assump-
tions, he found that the vacuum energy must be quite
small: specifically,

—p 4pv/p~ =0.1+0.2 .

This is more than 3 orders of magnitude below the an-
thropic upper bound discussed earlier. If the effective
cosmological constant is really this small, then we would
have to conclude that the anthropic principle does not
explain why it is so small. [However, there are reasons to
be cautious in reaching this c'onclusion. Bahcall and
Tremaine (1988) have recently reanalyzed the data of
Loh and Spillar, using a plausible model of galaxy evolu-
tion in which the shape of the luminosity distribution
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T =~(S~Glp, l)'",
H ' =(Sm Gp /3)'

(5.6)

does change with time. They considered only the case

pz =0, leaving QM undetermined, and found that evolu-

tion in this model could increase or decrease the inferred
value of QM by as much as unity. Presumably it would

0

also have a similarly large efFect on the inferred value of
pv/pM when QM +Av is constrained to be unity. In

0 0

addition, the redshifts of Loh and Spillar are photometric
and therefore less certain than those obtained from shifts
of individual spectral lines. ]

Now let us consider a cosmological constant of the
other sign, A,,~(0. Here the cosmological constant does
not interfere with the formation of gravitational conden-
sations. Instead (for k =0 or k = + 1), the whole
universe collapses to a singularity in a finite time T. The
anthropic constraint here is simply that the universe last
long enough for the appearance of life (Barrow and
Tipler, 1986), say, T ~0.5HO ', where Ho ' is the Hubble
time in our universe. For a dust-dominated universe with
k =0, we have

Ro
R

matter, or the vacuum and radiation, in such a way tha. t
either pv/pM or pv/pz remain constant, respectively
(see also Reuter and Wetterich, 1987). In order for the
vacuum to transfer energy to ordinary matter in such a
way that p v lpM remains fixed, and if baryon number is
conserved, then it would be necessary to create baryon-
antibaryon pairs at a su%cient rate to produce a trouble-
some y-ray background. Alternatively, if the vacuum
transfers energy to radiation in such a way that pv/pz
remains constant, and if p~ is comparable with the
present mass density pM, then pv/pz must be rather

0

large, completely changing the results of cosmological
nucleosynthesis.

One more possibility that was not considered by Freese
et al. is that the vacuum transfers energy to radiation,
avoiding the problems of baryon-antibaryon annihilation,
but in such a way as to keep a fixed ratio pv/pM rather
than pv/pz. However, this also does not work. With
pv=cpM and R pM constant, Eq. (5.8) yields

r 4 3 4
Ro Ro

PR PZ0 R
+ 3&PM0

so the anthropic constraint here is just
Ro~ (pR —3cpM )
R

(5.9)

lpvl-pM, . (5.7)

dt dtpv+R (R pM)+R (R p~)=0 . (5.8)
dt

Freese et al. (1987) have considered the possibility that
energy is exchanged only between the vacuum and

In this case the anthropic principle can explain why the
cosmological constant is as small as found by Loh (1986),
but not much smaller. On the other hand, a negative
cosmological constant would not help with the cos-
mic mass and age problems.

Before closing this section, let me take up one possibili-
ty that may confront us in a few years. Suppose it really
is confirmed that, as suggested by cosmic ages and densi-
ties, there is a cosmological constant with p~ of order

pM . Would we then have any alternative to an an-
0

thropic explanation for this value of p~? The mass densi-

ty pM changes with time, so without anthropic considera-
tions it is very hard to explain why a constant p~ should
equal the value that pM happens to have at present. But
perhaps pz really is not constant. For instance, Peebles
and Ratra (1988) and Ratra and Peebles (1988) have con-
sidered a model in which the vacuum energy depends on

-a scalar field that changes as the universe expands. In or-
der to qualify as a vacuum energy, it is only necessary for
p~ to be accompanied with a pressure pz= —p~,' the
value of pz can change if the vacuum exchanges energy
with matter and radiation. The conservation of energy
then relates the change of pz to the change in the densi-
ties of matter (with p~ =0) and radiation (with

and therefore

PZ0 «1.Ipvl/pM =—Ic I-
3PM0

(5.10)

Thus, even if we are willing to suppose that the vacuum
energy changes with time, a vacuum energy density com-
parable with the present mass density seems very dificult
to explain on other than anthropic grounds.

VI. ADJUSTMENT MECHANISMS

I now turn to an idea that has been tried by virtually
everyone who has worried about the cosmological con-
stant [see, e.g. , Dolgov (1982); Wilczek and Zee (1983);
Wilzcek (1984, 1985); Peccei, Sola, and Wetterich (1987);
Barr and Hochberg (1988)]. Suppose there is some scalar

whose source is proportional to the trace of the
energy-mornenturn tensor

H P a: Ti'„~ R . (6.1)

(Here T"' is the total energy-momentum tensor that in-
cludes a possible cosmological constant term

Ag"'/Sn. G. ) Suppose also that T"„depends on P and
vanishes at some field value Po. Then P will evolve until
it reaches an equilibrium value Po, where T"„=0,and the

So that there is no interference with calculations of
cosmological nucleosynthesis, we need

4
Ro

PR PR0

Rev. Mod. Phys. , Vol. 61, No. 1, January 1989
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Einstein field equations have a flat-space solution.
Of course, we do not observe such a scalar field, but for

these purposes it can couple as weakly as we like; a weak
coupling simply implies that the equilibrium value Po is
very large. In this respect the scalar P is analogous to the
axion, especially in its later "invisible" version [Kim
(1979);Dine, Fischler, and Srednicki (1981)].

Even very weakly coupled, it is possible that the P field
could have interesting effects, because it must have very
small mass. If it has any nonzero mass M&, then at ener-
gies below m& we can work with an effective Lagrangian
in which P has been "integrated out, " and so does not ap-
pear explicitly. But massless fields like the gravitational
and electromagnetic field will still appear in this effective
Lagrangian, and their vacuum fluctuations will contrib-
ute to the effective cosmological constant. In order to
keep pz&10 GeV, we need the scalar field adjust-
ment to cancel the effect of gravitational and electromag-
netic field fluctuations down to frequencies 10 ' GeV;
for this purpose we must have m& &10 ' GeV. A field
this light will have a macroscopic range: A'/m&c ~0.01
cm.

' Unfortunately it seems to be impossible to construct a
theory with one or more scalar fields having the assumed
properties. This can be seen in very general terms. What
we want is to find an equilibrium solution of the field
equations in which g„, and all matter fields P„(perhaps
tensors as well as scalars) are constant in space-time. For
such constant fields the Euler-Lagrange equations are
simply

=0,
Bgp~

(6.2)

(6.3)

As we saw in Sec. III, the problem is in satisfying the
trace of the gravitational field equation. To make a solu-
tion natural, we would like this trace to be a linear com-
bination of the P„ field equations; that is, we want

BX(g,g) ~ BX(g,g) (6.4)

for all constant g„, and g„. This can be restated as a
symmetry condition: for constant fields the Lagrangian
must be invariant under the transformation

az =0 at 1t n n (6.6)

then the trace of the field equation for g„ is automatica1-

ly satisfied.
The problem is that under these assumptions, it is im-

possible (without fine-tuning X) to find a solution to the
field equations (6.3) for the g„. To see this, we replace

(6.5)

With this condition, if we find a solution g' ' of the
Euler-Lagrange equations for g„,

the N fields f„with N —1 fields o, (not necessarily sca-
lars) and one scalar P, in such a way that the symmetry
transformation (6.5) takes the form

5gi, =2egi„, 5o, =0, 5$= —E . (6.7)

[To do this, we first define a "transverse" surface S in
field space by an equation T(g)=0, where T(P)is -any

function on which g„(BT/Bg„)f„(g) does not vani'sh.

We take o, as any set of coordinates on this (N —1)-
dimensional surface, and define P„(o;P) as the solution
of the ordinary diff'erential equation dg„/dP=f„(g)
subject to the condition that at /=0, 1(„ is at the point
on S with coordinates cr. The condition that Sbe a trans-
verse surface ensures that, at least within a finite region
of field 'space, any point itj„ is on just one of these trajec-
tories. ] This symmetry simply ensures that for constant
fields the Lagrangian can depend on gi, and P only in the
combination e ~g& . The general arguments of Sec. III
then show that when the field equations for 0. are
satisfied, the Lagrangian must take the form

X =e ~(Detg )'~ Xo(0 ) . (6.8)

We see that the source of (t is the trace of the energy-
momentum tensor

(6.10)

6This remark is due to Polchinski (1987).
An equation essentially equivalent to (6.11) appeared in the

preprint version of the paper by Peccei, Sola, and Wetterich
(1987). In the published version this equation was removed, and
it was acknowledged that fine-tuning is still needed to make the
cosmological constant vanish. However, this equation was

quoted in the meantime in a paper by Ellis, Tsamis, and
Voloshin {1987),which mostly deals with the observable conse-
quences of the light scalar particle in this model.

BX
P

= T" (Detg )
' (6.9)

T"'=g" e ~XO(o). .

It is true that if there were a value of P where X is sta-
tionary in P, then the trace of the Einstein field equations
would automatically be satisfied at this point, but clearly
there is no such stationary field value (unless, of course,
we fine-tune Xo so that it vanishes at its stationary point).
To put this another way, since X depends only on P and

g„, only in the combination g&, ——e g„, (and derivatives
of P and g„),we might as well redefine the metric as g„„
instead of g„. Then p is just a scalar with only deriva-
tive couplings and clearly cannot help with our problem.

As one example of many failed attempts along this
line, let us consider a proposal of Peccei, Soli, and Wet-
terich (1987). They observed that the symmetry (6.5) or
(6.7) may be broken by conformal anomalies, such as
those that produce the P function of quantum chromo-
dynamics, in such a way that the effective Lagrangian be-
comes

X, s=(Detg)' [e ~XO(o. )+pe"„], (6.11)

where e~„represents the effect of the conformal anoma-
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ly. The source of the P field is now

P
=(T& +6" )(Detg)' (6.12)

with T"" the previous energy-momentum tensor (6.10).
Now we can find an equilibrium solution for the P field,
at a value Po such that

4e ~XO+B"„=0.4ttt
(6.13)

The trouble is that this is not the condition for a Aat-

space solution; the Einstein equation for a constant
metric is

eff
e ~X +$6"„, (6.14)

r=&g —-'a ya~y—
2 P 8m.G

R —U(P)R
1

(6.15)

This has a fiat-space solution with g„,=rl„and P =go (a
constant), provided

U($0)= oo . (6.16)

However, as the above authors observed, the effective
gravitational coupling in this theory is given by

which is not the same as (6.13). The point is that just cal-
ling the anomalous term in (6.11) 0"„does not make it a
term in the trace of the energy-momentum tensor to
which g„ is coupled. This result is not surprising, since
(6.11) does not obey the symmetry (6.7). One cannot
have it both ways: either we preserve the symmetry, in
which case there is no equilibrium solution for P, or we
break the symmetry, in which case such an equilibrium
solution does not imply a solution of the field equations
for a constant metric. (Also see Coughlan et al. , 1988;
Wet terich, 1988.)

In a slightly different version of this general class of '

models, we can try coupling a scalar field so that it is the
curvature scalar R rather than the trace of the energy-
momentum tensor that directly serves as the source of
the scalar field. [See, e.g. , Dolgov (1982); Barr (1987);
Ford (1987).] For instance, we might take the Lagrangian
as

Vll. CHANGING GRAVITY

A number of authors have suggested changing the
rules of classical general relativity in such a way that the
cosmological constant appears as a constant of integra-
tion, unrelated to any parameters in the action [Van der
Bij et al. (1982); Weinberg (1983); Wilczek and Zee
(1983); Buchmiiller and Dragon (1988a, 1988b)]. This
does not solve the cosmological constant problem, but it
does change it in a suggestive way.

I will describe one version of this idea, in which one
maintains general covariance, but reinterprets the for-
malism so that the determinant of the metric is not a
dynamical field. Any theory can be written in a way that
is formally generally covariant, so' by the usual argu-
ments we can take the action for gravity and matter as

I[4 g]= Id'x g R+I~[4 g ], (7.1)

where g are a set of matter fields appearing in the matter
action IM. (IM includes a possible cosmological constant
term —A.J&gd x/8mG. ) The variational derivative of
Eq. (7.1) with respect to the metric is

5I 1 (R" —
—,'g" R )+T"'5g„8~G (7.2)

where, as usual, T is the variational derivative of I~
with respect to g„. In ordinary general relativity all
components of the metric are dynamical fields, so Eq.
(7.2) vanishes for all p, v, yielding the usual Einstein field
equations. However, just because we use a generally co-
variant formalism does not mean that we are committed
to treating all components of the metric as dynamical
fields. For instance, we all learn in childhood how to
write the equations of Newtonian mechanics in general
curvilinear spatial coordinate systems, without supposing
that the 3-metric has to obey any field equations at all.

In particular, if the determinant g is not dynamical,
then the action only has to be stationary with respect to
variations in the metric that keep the determinant fixed,

cal assumptions that later turn out to have exceptions of
great physical interest. (A famous example is the
Coleman-Mandula theorem. ) More discouraging than
any theorem is the fact that many theorists have tried to
invent adjustment mechanisms to cancel the cosmologi-
cal constant, but without any success so far.

6
1+ 16m.G U ( $0)

=0. (6.17)

This is not much progress; we always knew that a
nonzero vacuum energy does not prevent a Hat-space
solution if the gravitational constant is zero.

The "no-go" theorem proved in this section should not
be regarded as closing off all hope in this direction. No-
go theorems have a way of relying on apparently techni-

8For instance, -we assumed that in the solution for Hat space all
fields are constant, but it might be that this solution preserves
only some combination of translation and gauge invariance, in
which case some gauge-noninvariant fields might vary with
space-time position. (This is the case for the 3-form gauge field
model discussed at the end of Sec. VII and in Sec. VIII.) Fur-
thermore, it is possible that the foliation of field space, which al-
lows us to replace the g„with cr, and P, does not work
throughout the whole of field space.
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i.e., for which g" 5g„=0; hence only the traceless part
of (7.2) needs to vanish, yielding the field equation

R" ,'—g"—R= —8mG(T"' ,'g—"—Tk) . (7.3)

This is just the traceless part of the Einstein field equa-
tions; these equations evidently contain less information
than Einstein's, but as we shall see, not much less. Be-
cause the whole formalism is generally covariant, the
energy-momentum tensor satisfies the usual conservation
law

T". =0
;II

and of course the Bianchi identities still hold,

(7.4)

(R"'——'g"'R ). =0 .
2 ;p (7.5)

R —8mGT z= —.4A (constant) .

From (7.3) and (7.6), we obtain

(7.6)

R" ——'g" R —Ag" = —S~GT"
2 (7.7)

Thus we recover the Einstein field equations, but with a
cosmological constant that has nothing to do with any
terms in the action or vacuum fluctuations, arising, in-
stead, as a mere integration constant. To put this anoth-
er way, Eq. (7.3) does not involve a cosmological con-
stant; the contribution of vacuum fluctuations automati-
cally cancel on the right-hand side of Eq. (7.3), so this
equation does have Aat-space solutions in the absence of
matter and radiation. The remaining problem in this for-
mulation is: why should we choose the Oat-space solu-
tions'?

Before proce|;ding with this theory, I should pause to
mention that it is closely related to a proposal made long
ago by Einstein (1919). After his formulation of general
relativity and its application to cosmology, Einstein
turned to the old problem of a field theory of matter. In
a paper titled "Do Gravitational Fields Play an Essential
Part in the Structure of the Elementary Particles of
Matter' ?" he proposed to replace the original gravitation-
al field equation with the equation

R„——,'g R = —S~Gt„ (7.8)

The full Einstein field equations are automatically con-
sistent with (7.4) and (7.5), but for the traceless part we

get a nontrivial consistency condition. Taking the co-
variant derivative of Eq. (7.3) with respect to x" yields

—,'8 R =SAG —,'B„T q,

or, in other words, R —Sm.GT & is a constant, which we
will call —4A:

g(s)~g'(s') =g(s) dS

dS
(7.9)

The action may then be taken as

This is consistent only if t„ is traceless; however, Ein-
stein took for t„not the full energy-momentum tensor of
matter and radiation, but just the traceless tensor of radi-
ation alone. This is, of course, conserved only outside
matter. In such regions there is no difference between
Eqs. (7.8) and (7.3), so by the same calculation as shown
here, Einstein was able to recover Eq. (7.7), with A a con-
stant of integration. However, inside matter, Eq. (7.8) is
different from (7.3), the difference being that the right-
hand side of Eq. (7.3) includes the traceless part of the
energy-momentum tensor of matter. A consequence of
this difference is that in charged matter R is an undeter-
mined function, except that it is constant along world
lines.

I will also take the opportunity of this pause to com-
ment on the connection between the formulation de-
scribed here and that of Zee (1985) and Buchmiiller and
Dragon (1988a, 1988b). These authors take as their start-
ing point the assumption that the action is invariant not
under the group of all coordinate transformations, but
only under the subgroup of transformations x"~x'"
with Det(Bx'"/Bx')=1. This is not really in confiict
with the formulation presented here; the general covari-
ance of Eq. (7.1) is achieved at the cost of introducing a
metric that is partly nondynamical (just as we can make
Newtonian mechanics formally Lorentz invariant by in-

troducing a nondynamical quantity, the velocity of the
reference frame). However, in giving up general covari-
ance, one may be led to a theory with unnecessary ele-
ments. Under transformations with Det(Bx'/Bx ) = 1, the
determinant of the metric g behaves just like any scalar
field, so one can introduce arbitrary functions of g here
and there in the action. There is nothing wrong with
this, but it is not necessary, no different from inserting a
new scalar field into the theory.

Now let us return to the theory described by the field
equations (7.3). In my view, the key question in deciding
whether this is a plausible classical theory of gravitation
is whether it can be obtained as the classical limit of any
physically satisfactory quantum theory of gravitation.
To help in answering this, and also to illuminate the
points raised in the previous paragraph, let us look at a
simple model (Teitelboim, 1982) that shares several
features with the theory of gravitation studied here.

Consider a free relativistic particle, with space-time
trajectory x"(s) parametrized by a variable s. In order
for the action to be invariant under arbitrary reparame-
trizations s ~s'(s), we must introduce an "einbein" g (s),
with transformation rule

This was pointed out to me by someone in the audience of the
lectures at Harvard. I thank my informant for this interesting
historical reference.

dx"(s) dx
I[x,g]=—,

' Jdsg '(s)
dS d$

Pl f ds g(s) . (7.10)
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Steven Weinberg: The cosmological constant problem 13

The conditions that I be stationary with respect to varia-
tions in x "(s) and g(s) are, respectively,

Here h;, , N, and N' parametrize the 4-metric, with line
element given by

dp
ds

p~pp = m

where p„ is the canonical conjugate to x":
dx„(s)

p„(s ) =g '(s)

(7.11)

(7.12)

(7.13)

de�=�

(Q (N ~ —N'N&Q . . )dt ~
EJ

—2h;.N'dx~dt —h, dx'dx~,

h =Det(h;j ) .

(7.18)

(7.19)

Furthermore, m'j is the canonical conjugate to h;. , and &
and &; are functions of h;j and rr'j and their space
derivatives, given by

dx"II(s)=p L= —'g(p—"p +m ),
ds

so in quantum mechanics we calculate amplitudes by the
functional integral

(7.14)

A =f [dx][dp][dg]

dx "(s)
Xexp i fds, p„(s) H(s)—

ds
I L

The einbein g(s) has no canonical conjugate, and so ap-
pears here only as a Lagrange multiplier, whose integral
yields a factor

(7.15)

Q5(p "p„+m ) . (7.16)

Presumably the classical theory in which g is not dynami-
cal would be obtained as the classical limit of a quantum
theory in which we do not do a functional integral over
g(s), and hence do not get the factor (7.16). But then
there would be nothing to keep p" timelike. This is such
a trivial theory that it is hard to say that anything goes
wrong physically; but we may anticipate that in less trivi-
al theories, we need a field to serve as a Lagrange multi-
plier for every negative norm degree of freedom like p .
This is the case, for instance, in string theories, where the
integration over the world-sheet metric is needed to en-
force the Virasoro conditions on physical states.

The quantum theory of gravitation can be put in simi-
lar terms. Using the Arnowitt-Deser-Misner (1962) for-
malism, we calculate amplitudes as functional integrals,

Z= f [dh;j][dm"][dN][dN']

However, just because we choose to write the action in
a reparametrization-invariant way does not necessarily
mean that we must treat the einbein g (s) as a dynamical
quantity. If we treat x"(s), but not g(s), as dynamical
variables, then we obtain Eq. (7.11), but not (7.12). Of
course, Eq. (7.11) implies that p„p" is a constant [just as
Eq. (7.3) implies that R —8rrGT k is constant]. If we
like, we can call this constant —m, but this is now a
mere integration constant, unrelated to anything in the
original action.

Now to quantization. The Hamiltonian here is

( g ij kl (3)g
'j, kl~

2h; —Vk vrj.", (7.21)

where ' 'R is the scalar curvature and VI, is the covariant
derivative, both calculated using the 3-metric h;, and

~ij,kl =~ ik h jl +hil h jk hij ~kl (7.22)

We see that X and X' just act as Lagrange multipliers for
& and &;, respectively. Moreover, from (7.18), we see
that X is just the quantity whose status is under ques-
tion here, the determinant of the 4-metric'

N=(Detg„)' (7.23)

Thus, just as the integral over the einbein g(s) enforced
the constraint p"p„=—m, the integral over Detg en-
forces the constraint

(7.24)

The two conditions are quite similar. Just as g„has sig-
nature +++—,the quantity (7.22), viewed as a 6X6
matrix, has signature +, +,+, +, +, —.Hence the in-
tegration over Detg„has the effect of eliminating one
negative norm degree of freedom for each x, ~'J ~ (h ')'j,
just as the integral over the einbein g(s) allows one to
eliminate the variable p . However, for gravity there is a
"potential" term in &, proportional to the 3-curvature,
and it is not eritirely clear to me that it really is necessary
to constrain & to take a fixed value. For the present, the
question of whether it is necessary to integrate over
Detg„must be left open. [Recent work by Henneaux
and Teitelboim (1988) shows that there is a sensible gen-
erally covariant quantum version of the classical theory
described by Eq. (7.3).]

Before closing this section, I should note that several
authors have made a rather different suggestion, which
also has the efFect of converting the cosmological con-
stant from a function of parameters in the action into a
constant of the motion (Aurilia et a/. , 1980; Witten,
1983; Henneaux and Teitelboim, 1984). They proposed
adding to the action a term

Xexp i rr" —(&—2A, )N &;N' d"x-
Bt

(7.17)

' In order to obtain this result, I have defined & and %
diA'erently from the usual & and X,'

by moving a factor h'
from %to &.
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14 Steven Weinberg: The cosmological constant problem

I = ——' d x&gF F" ~F 4g PVPO' (7.25)

where F„, is the exterior derivative of a 3-form gauge
field A

the space-time coordinate system so that the spacelike
surface has constant t, and then decomposing the 4-
metric g„„as in Eq. (7.19).] This wave function satisfies
a sort of Schrodinger equation, known as the Wheeler-
DeWitt equation [DeWitt (1967); Wheeler (1968)]:

pvpcr l p vpa] (7.26)

and g—:—Detg„. Since F" P is totally antisymmetric,
it can be expressed as ij kl

'~2 5h" "' ' 5h

FPvP cF — PvP 0' / Q (7.27) +8m'GTOO 4=0, (8.1)

FPvPo —0;p 7

so, using (7.27)

(7.28)

where c." P is the Levi-Civita tensor density, with
c. ' —= 1, and c is a scalar field. The field equation for 3
is

with notation explained in Sec. VII (except that we now
include a matter energy density Too, in which the canoni-
cal conjugate of a matter field 4 is replaced with 5/54).
It will be very important in what follows that we express
the solution as a Euclidean path integral

But the action (7.25) then takes the form

(7.29)
~ f [dg][d4]exp( —S[g,@]), (8.2)

IF= + ,' c f—d"x&g (7.30)

AF 4m Gc (7.31)

In other words, whatever else contributes tq the cosmo-
logical constant, there is one term that depends on the in-
tegration constant c,

where we integrate over all Euclidean-signature 4-metrics
g„and matter fields 4 defined on a 4-manifold M4, that
have the 3-manifold M3[h, g] with 3-metric h; and
matter fields P as a. boundary. (The Wheeler-DeWitt
equation is the constraint obtained from integrating the
Lagrange multiplier X as discussed in Sec. VII.) Here S
is the Euclidean action"

Again, this does not solve the cosmological constant
problem, but it does change the way it arises.

If A, is a constant of integration, then in a quantum
theory we expect the state vector of the universe to be a
superposition of states with different values of A, , in
which case the anthropic considerations of Sec. V would
set a bound on th effective cosmological constant.

Vill. QUANTUM COSMOLOGY

The last approach to the cosmological constant prob-
lem that I shall describe here is based on the application
of quantum mechanics to the whole universe. In 1984
Hawking (1984b) described how in quantum cosmology
there could arise a distribution of values for the effective
cosmological constant, with an enormous peak at A,,ff 0.
Very recently, this approach has been revived in an excit-
ing paper by Coleman (1988b), using a new mechanism
for producing a distribution of values for the cosmologi-
cal constant (that rests in part on other work of Hawking
and Coleman) and finding an even sharper peak. Related
ideas have also been recently discussed by Banks (1988).
Before describing the work of Coleman and Hawking, I
will have to say something about quantum cosmology in
general.

Most treatments of quantum cosmology are based on
the "wave function of the universe, "a function %[h,P] of
the 3-metric and matter fields on a spacelike surface.
[The 3-metric h," can be conveniently defined by adapting

S= f Vg (R +2k)16~6

+matter terms+surface terms . (8.3)

' The Euclidean action S is opposite in sign to what we would
get if we replaced the metric g„ in the action I in Eq. (7.1) with
one of signature +,+, +,+. This sign of S is chosen so that
ordinary matter makes a positive contribution to S.

2The;nsert, on of factor~ h
— / and h /';n Eq (8 l

represents one choice of operator ordering, which is made in or-
der to allow the derivation of the conservation equation (8.8).

Since Eq. (8.1) is a diff'erential equation in an infinite-
dimensional space [the set of Ii; (x) and P(x) for all x], it
has an infinite variety of solutions, which can be specified
by giving the 4-manifold in Eq. (8.2) other boundaries,
besides the M3[h, g] on which the 3-metric and matter

. fields are specified. Hartle and Hawking (1983) proposed
as a cosmological initial condition that the manifold M4
should have no boundaries other than M3(h, P). We will
see that Coleman's (1988b) approach does not depend
critically on the choice of initial conditions.

There are technical problems associated with this for-
malism. One is an operator-ordering ambiguity: there
are various ways of ordering' the h;J fields and 5/5h;1
operators in (8.1), all of which have (8.2) as solution, but
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Steven Weinberg: The cosmological constant problem 15

with different ways of calculating the measure [dg][d4]
(Hawking and Page, 1986). Another problem, potentially
more worrisome, is that for gravity the Euclidean action
(8.3) is not bounded below. Gibbons, Hawking, and Per-
ry (1978) have proposed rotating the contour of integra-
tion for the overall scale of the 4-metric so that it runs
parallel to the imaginary axis. We will not need to go
into these technicalities here, because it will turn out that
we only need to deal with the effective action at its equi-
librium point.

A problem that is more relevant to us here has to do
with the probabilistic interpretation of the wave function
4 and of Euclidean path integrals like (8.2). Hawking
has proposed (1984a, 1984c) that'exp( —S[g,@])should
be regarded as proportional to the probability of a partic-
ular metric and matter field history. It is not immediate-
ly clear what is meant by this —even supposing that we
had the godlike ability to measure the gravitational and
rnatter fields throughout space-time, it would be in a
space-time of Lorentzian rather than Euclidean signa-
ture. However, since we can (sometimes) go from one
signature to another by a complex coordinate transfor-
rnation, it may be that a Euclidean history g„(x), C&(x)

can be interpreted in terms of correlations of scalar quan-
tities, just as if the space-time were I.orentzian. In much
of Hawking's work (e.g. , Hawking, 1979), these questions
are avoided by using the formalism only to calculate the
probability that, in the space-time history of the universe,
there is a spacelike 3-surface with a given 3-metric h;J(x)
and matter fields P(x). For instance, with Hartle-
Hawking (1983) initial conditions, we would integrate
over all closed 4-manifolds that contain such a 3-surface.
If this surface bisects the 4-manifold, then it can be re-
garded as the boundary of the two halves of the 4-
manifold, and so the integral is (with some qualifications)
just the square of the wave function (8.2). But questions
still arise concerning the probabilistic interpretation of

particularly with regard to normalization. If
~'P[h, P]~ is the probability density that there exists some
3-surface on which the 3-metric is h, .(x) and the matter
fields are P(x), then we would not simply want to set the
functional integral of ~%[h, P]~ over Ii;J(x) and P(x)
equal to unity, because in this functional integral we are
summing up possibilities that are not exclusive; if the
universe has some h; (x) and P(x) on one 3-surface, then
it may also have some other h'J. (x) and P'(x) on some
other 3-surface. After all, you would not expect that the
probabilities that you ever in your life have flipped a coin
and gotten heads, and that you ever in your life have
flipped a coin and gotten tails, should add up to unity.

I would like to offer an interpretation of what is meant
by treating ~%[h, @]~ as a probability density, which
seems to me implicit in Hawking s writings (and may al-
ready be stated explicitly somewhere in the literature).
As everyone has recognized, the problem has to do with
the role of time in quantum gravity. [See, e.g. , Hartle
(1987).] The problems raised here do not arise in asymp-
totically flat cosmologies, because in such theories there

is a natural definition of time, and we generally ask -for

the probabilities that the fields have certain values at a
definite time. However, here time is a coordinate with no
objective significance, and this coordinate time is even
imaginary. As Augustine (398) warned, "I must not al-
low my mind to insist that time is something objective. "
Heeding this warning, suppose we choose some "time-
keeping" field a(x, t), for instance, the trace of the
energy-momentum tensor, and use its value to define a lo-
cal time a. Each value of a defines a 3-surface, on which
the coordinate time t is a function t(x, a) defined impli-
citly by

a(x, t(x, a))=a . (8.4)

X jf 5(b„(x,t(x, a) )—p„(x)), (8.5)

with N a normalization factor, determined by the 'condi-

tion that the total probability of finding any value for the
b„(x) at local time a should be unity:

1=f p [p][dp]

=Xf [dg][d4]exp( —S[g,4]) . (8.6)

[This usually makes X a function of a, because in (8.5)
and (8.6) we integrate only over matter and metric his-
tories for which Eq. (8.4) is satisfied on some 3-surface.
With some boundary conditions, this condition is au-
tomatically satisfied, and then N is o. independent. For
instance, if M4 has two boundaries, on which a (x) is re-

quired to take values o., and u2, then there are 3-surfaces
on which (8.4) is satisfied for all u in the range
a, &n(a2.] Where the surface of constant a bisects the
4-space, P [p] can be written as proportional to the
square of the wave function %[a,p], but with a constant
in 3-space.

This quote is not merely a display of useless erudition. Book
XI of Augustine's Confessions contains a famous discussion of
the nature of time, and it seems to have become a tradition to
quote from this chapter in writing about quantum cosmology.
Thus Hawking (1979) quotes "What did God do before He
made Heaven and Earth? I do not answer as one did merrily:
He was yreparing a Hell for those that ask such questions. For
at no time had God not made anything, for time itself was made

by God." Coleman (1988a) quotes "The past is present
memory. " To this, I can add one more very relevant quote: "I
confess to you, Lord, that I still do not know what time is. Yet
I confess too that I do know that I am saying this in time, that I
have been talking about time for a long time, . . . ."

We are then interested in the probability that the tangen-
tial components of the metric and all matter fields other
than a (x, t ) have specified values on this surface. Calling
these quantities b„( xt), we see that the probability den-

sity for the b„(x,t ) to have the values p„(x) at local time
CX is

P [P]=Nf [dg][d4]exp( —S[g,@])
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16 Steven Weinberg: The cosmological constant problem

Coleman (1988b) short-circuits many of the problems
that arise in giving a probabilistic interpretation to Eu-
clidean path integrals by using such integrals only to cal-
culate expectation values: the expectation value of an ar-
bitrary scalar field Ag +(x), which may depend on the
metric and matter fields and their derivatives, is taken as

f [dg][d@]A ~(x)exp( —S[g,4])
(8.7)f [dg][de]exp( —S[g,e])

The general covariance of the theory makes ( A ) in-
dependent of x. In fact, it should be emphasized that this
sort of expectation values includes an average over the
time in the history of the universe that A is measured.
On the other hand, the probability P [/3] discussed above
is the expectation value of a nonlocal operator, the delta
function in (8.5), and refers to a specific local time a.

(I should mention here that there is a very difFerent
and apparently unrelated approach to the problem of giv-
ing a probabilistic interpretation to the wave function %.
The Wheeler-DeWitt equation (8.1) is somewhat like the
Klein-Gordon equation for a particle in a scalar potential
and leads immediately to a somewhat similar conserva-
tion law (now given for pure gravity):

0= fJ[dg]lm (8.12)

The trouble here is, of course, the same as that encoun-
tered in giving a probabilistic interpretation, to the
Klein-Gordon equation: the integrand in (8.12) is not, in
general, positive. Banks, Fischler, and Susskind (1985)
and Vilenkin (1986, 1988a), have considered minisuper-
space models in which %' is complex, with increasing
phase, for which the integrand of Eq. (8.12) is positive-
definite; however, this is not the case in general, and, in
particular, not for Hartle-Hawking boundary conditions.
For a recent more general discussion, see Vilenkin
(1988b).)

I now want to give a simplified description of
Hawking's (1984b) proposed solution of the cosmological
constant problem, using for this purpose parts of
Coleman's (1988b) analysis. In order to make the cosmo-
logical constant into a dynamical variable, Hawking in-
troduces a 3-form gauge field A„& of the sort described
at the end of Sec. VII. According to the general ideas of
Euclidean quantum cosmology, the probability distribu-
tion for the scalar c(x) defined by Eq. (7.27) at any one
pointx =x, is

0= h'i (x)Q;, k, (x)
Ei

X Im %*[h] %[h]
5

kl
(8.8)

P(c)= (5(c(x, ) —c ) )

~ f [dA][dg][d@]5(c(x, ) —c)

Xexp( —S[A, g, C&]) . (8.13)

5$„[It]0=f d x h ' (x)hki(x)
kl

(8.10)

We also introduce a Jacobian J(g, T) and write the func-
tional measure as

[dh]=J[dg]dT . (8.11)

Multiplying Eq. (8.8) with 5(T [h]—T) and doing an in-
tegral over x and a functional integral over h;i(x), we
easily find a constancy condition

Since the beginning, it was hoped that such a conserva-
tion law could be used to construct a suitable probability
density (DeWitt, 1967). Usually (8.8) is stated in a
minisuperspace context, where h,. (x) is constrained to
depend on only a finite number of parameters. Since
9;.k&h"'= —h;, it is natural to treat the overall scale of
h;. as a sort of global time coordinate, and take as a prob-
ability density the corresponding component of the con-
served "current" in (8.8). I wish to point out here that
such a construction is not limited to any particular
minisuperspgce formulation, but can be carried out in the
general case. Take %' to depend on a "global time"

1/2
T[h]= f d3x h'i (x) (8.9)

L

and an arbitrary (in fact, infinite) number of other param-
eters g„[h], all g„ independent of the overall scale of
It; (x):

It is well known that such functional integrals can be ex-
pressed as exponentials of the effective action at its sta-
tionary point. ' In the present case, we have

P(c) exp( —I [A„g„@,]), (8.14)

where I [A,g, @] is the total action (the sum of one-
particle irreducible graphs with external lines replaced
with fields A, g, @) and the subscript c indicates that this
quantity is to be evaluated at a point where I is station-
ary with respect to any variations in 3 k(x), g„(x), or
C&(x) that leave c(x, ) =c fixed. Now, among all the pos-
sible stationary points of I, there is one that can be
found knowing only the effective action relevant to large

]4The usual proof, for the case without a delta function in the
integrand, proceeds by adding a term fJQ to the action, where

0 denotes the various fields, and J is a set of corresponding
currents. The path integral is then exp[ —8'( J)]
=—f dQ exp( —S —fJQ) The effec. tive action is defined by the

Legendre transformation 1 (0)= W( Jo ) —f J&Q, where J„ is

the current that produces a given expectation value 0=68 /6J.
The condition for zero current is that I (0) be stationary with
respect to 0, and at this point I (0)= W(0). The delta function
in (8.13) can be dealt with by writing it as an integral

f dco exp[ic0[c(x, ) —c]]. One can then use the above theorem

to evaluate the functional integral before integrating over cg,

now with no restriction on c(x), and then doing the co integral.
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4-manifolds. In this case, it is convenient to set all fields
except A„,i and g„equal to their ( A- and g-dependent)
stationary values, in which case the effective action can
be expanded in inverse powers of the size of the mani-
fold'

I,QA, g]= f v'gd~x+ f v'gR d~x

+—' d xt/gF F" I'+
48 pvA, p 7 (8.15)

I,tr= f i gd x+ f t gR d x+
8mG 16m.G

(8.16)

where

C
2

A, (c)= +A. .
2

(8.17)

The condition that this be stationary in g„ is, of course,
that g„satisfy the Einstein field equations with cosmo-
logical constant A.( c ). For any such solution,
R = —4A, (c), so at the stationary point

I = — fi/gd x.A(c) —
4

8~G
(8.18)

With Hartle-Hawking boundary conditions, the solution
of the Einstein equations for A.(c) &0 is a 4-sphere of
proper circumference 2mr, where

the omitted terms involving more than two derivatives of
g and/or A. As we saw in Sec. VII, the condition that
this be stationary in A„ i [for variations that keep c(x, )

fixed] is that F„ i have vanishing covariant divergence,
from which it follows that c in Eq. (7.27) is constant;
hence

ds =(1+b /x "x") dx "dx" . (8.22)

This appears to have a singularity at x)"=0, but the line
element is invariant under the transformation

where co is the value of c (assuming there is one), for
which A.(c)=0.

It is important that the quantity A,(c) is the true
effective cosmological constant, previously called
that would be measured in gravitational phenomena at
long ranges. ' The constant A, in Eq. (8.15) includes all
e6'ects of fields other than g„and A„&, including all
quantum fluctuations. Hence the result (8.21), if valid,
really does solve the cosmological constant problem.

We can check that this result is not invalidated by the
terms neglected in Eq. (8.16). For a large radius r, the ex-
hibited terms in (8.16) are of order A,r /G and r /G, re-
spectively, while a term with D 4 derivatives would
yield a contribution to I,tr of order (mr), where m is
some combination of the Planck mass and elementary-
particle masses. For A,(c) & m, this shifts the size of the
manifold by

5r/r=GA(c)[A(c)/m ]' '~ &&1.

The change in the stationary value of the action is then

51,a=[A,(c)/m ]' ' & 1

so these higher-derivative terms have no eftect on the
singularity (8.20).

Coleman (1988b) does not need to introduce a 3-form
gauge field A„&,' rather, in order to make the cosmologi-
cal constant into a dynamical variable, he considers the
e6'ect of topological fixtures known as wormholes. ' An
explicit example of a wormhole is provided by the metric
(Hawking, 1987b, 1988)

r =t 3/A(c), (8.19)
x "~x'"=x"b /x'x (8.23)

yielding a probability density proportional to

exp( —I,tr) =exp[3m /GA, (c)] . (8.20)

On the other hand, for A, (c) &0 the solutions can be made
compact by imposing periodicity conditions, but they all
have l,z 0. Hawking s conclusion is that the probabili-

ty density has an infinite peak for A, (c)~0+; hence, after
normalizing P,

so the region x"x"& 6 actually has the same geometry
as that with xl'x" & b . The space described by Eq. (8.22)
therefore consists of two asymptotically Aat 4-spaces,
joined together at the 3-surface with x"x"=b, a 3-
sphere known as a "baby universe. " This 4-metric is not
a solution of the classical. Einstein equations (though it
does have R =0), but this is not very relevant; the action
is

P(c)=5(c —co), (8.21) S=3mb /G, (8.24)

so the factor exp( —S) suppresses the efFects of all

5Such an effective action may be used as the input for calcula-
tions in which we include quantum effects only from virtual
massless particles with ~q ~

less than some cutoff A . Such
effects are, of course, finite, and their A dependence is to be can-
celed by giving the coe%cients in F',& a suitable A dependence.
(This point of view is described by Weinberg, 1979b.) In order
to prevent these quantum effects from generating an unaccept-
able cosmological constant, the cutoff A must be taken very
small.

This property is shared by an imaginative solution to the
cosmological constant problem proposed by Linde (1988a}.

7The importance of quantum Auctuations in space-time topol-
ogy at small scales has been emphasized for many years by
Wheeler (e.g., 1964), and more recently by Hawking (1978) and
Strominger (1984). Such "space-time foam" was considered as a
mechanism for canceling a cosmological constant by Hawking
(1983}.
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18 Steven Weinberg: The cosmological constant problem

wormholes except those of Planck dimensions or less, for
which quantum effects are surely important. [A model
with classical wormhole solutions, based on a 2-form ax-
ion, has been presented by Giddings and Strominger
(1988a).]

If Planck-sized wormholes can connect asymptotically
Aat 4-spaces, then they can connect any 4-spaces that are
large compared to the Planck scale. We are therefore led
to consider contributions to the Euclidean path integral
from large 4-spaces [like the 4-sphere in Hawking's
(1984b) theory] connected to themselves and each other
with Planck-sized wormholes. Each wormhole can be re-
garded as the creation and subsequent destruction of a
baby universe [like the 3-sphere of proper circumference
4mb in Hawking's (1987b, 1988) wormhole model], and
such baby universes may also appear as part of the
boundary of the 4-manifold.

What are the effects of these wormholes and baby
universes? At scales large compared with the scale of the
baby universe, the creation -or destruction of a baby
universe can only show up through the insertion of a lo-
cal operator in the path integral. The various types of
baby universes can be classified according to the form of
these local operators. The effect of creating and destroy-
ing arbitrary numbers of baby universes of all types can
thus be expressed by adding a suitable term in the action

S=S+g (a;+a; )f d x 0;(x), (8.25)

where a; and a; are the annihilation and creation opera-
tors for a baby universe of type i, and O, (x) is the corre-
sponding local operator. [This was first stated by Hawk-
ing (1987b). Creation and annihilation operators for
baby universes were earlier used by Strominger (1984).
For a proof of Eq. (8.25), see Coleman (1988a) and Gid-
dings and Strominger (1988b).] The path integral over all
4-manifolds with given boundary conditions is to be cal-
culated as

f[dg][d+]e '= f [dg][d~](Ble 'IB&, (8.26)

These baby universes have an important effect even if
none of them appear as part of the boundary of the 4-
manifold, as would be the case for Hartle-Hawking
boundary conditions. Hawking (1987b, 1988) has sug-
gested that since the baby universes are unobservable,
their effect is an effective loss of quantum coherence.
[See also Hawking (1982); Teitelboim (1982); Strominger
(1984); Lavrelashvili, Rubakov, and Tinyakov (1987,
1988); Giddings and Strominger (1988b). A contrary
view was taken by Gross (1984).] Recently Coleman
(1988a) has argued (convincingly, in my view) for a

where No means that wormholes and baby universes are
excluded, and

l
B ) is a normalized baby-universe state

depending on the boundary conditions. For instance,
with Hartle-Hawking boundary conditions, lB ) is the
empty state

(8.27)

different interpretation [see also Giddings and Strom-
inger (1988b)]. The state lB ) in Eq. (8.26) may always be
expanded in eigenstates of the operators a;+a,~:

(8.28)

(a, +at)la) =a, la&,

&a'la &
= g 5(a,' —a;),

(8.29)

(8.30)

the function fii (a ) depending on the boundary condi-
tions. For instance, for Hartle-Hawking conditiens, lB )
satisfies Eq. (8.27), and so

fbi(a)= + m
'~ exp( —a, /2) . (8.31)

(With n baby universes on the boundary of the 4-space,
this would be multiplied with a Hermite polynomial of
order n. ) In the state la), the effect of the creation and
annihilation of baby universes is to change the action S to

S =5+ g a; f 0;(x)d x . (8.32)

That is, the coupling constant multiplying each possible
local term f 0;d x is changed by an amount a;. As soon

as we start to make any sort of measurements, the state
of the universe breaks up into an incoherent superposi-
tion of these la) s, each appearing with a priori probabil-
ity lf~(a)l; but for each term we have an ordinary
wormhole-free quantum theory, with a-dependent action
(8.32).

If all we want is to explain why the cosmological con-
stant is not enormous, then our work is essentially done.
The effective cosmological constant is a function of the
a;, because among the 0; there is a simple operator
0, =&g, whose coeflicient contributes a term 8mGai to
A., and also because the vacuum energy (p) depends on
the couplings of all interactions, each of which has a
term proportional to one of the a;. Now, generic baby-
universe states lB) will have components la) for which
A,,ga) is very small, as well as others for which it is enor-
mous. The anthropic considerations of Sec. VI tell us
that any scientist who asks about the value of the cosmo-
logical constants can only be living in components la)
for which A,,z is quite small, for otherwise galaxies and
stars could never have formed (for A,,a) 0), or else there
would not be time for life to evolve (for A,,ir(0).

However, it is of great interest to ask whether the
effective cosmological constant is really zero, or just
small enough to satisfy anthropic bounds, in which case
it should show up observationally. The probability of
getting any particular value of the a;, and hence of
finding a value A,,it(a), is not just given by the function

l f~(a)l arising from the boundary conditions, but is also
affected by the functional integral itself.

In calculating this effect, Coleman (1988b) observed
that although we are to integrate only over connected 4-
manifolds, on a scale much large than the wormhole
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scale those manifolds that appear disconnected will really
be connected by wormholes. Hence any sort of probabili-
ty density or expectation value will contain as a factor a
sum over disconnected manifolds consisting of arbitrary
numbers of closed connected wormhole-free com-
ponents. ' Just as for Feynman diagrams, this sum is the
exponential of the path integral for a single closed con-
nected wormhole-free manifold

E(a)=exp I [dg]exp( —S [g])
CC

(8.33)

where CC indicates that we include only closed connect-
ed wormhole-free manifolds, and S~[g] is the action
(8.32) with all fields other than g„,(x) integrated out.

The path integral in (8.33) can be evaluated by precise-
ly the same methods as described above in connection
with Hawking's (1984b) model [and used for this purpose
by Coleman (1988b)]. The result is that the probability
density for A,,tr contains a factor (for A,,z) 0)

F=exp exp +O(1)3m

eff
(8.34)

The fact that this is now an exponential of an exponen-
tial, instead of a mere exponential, is not essential in solv-
ing the cosmological constant problem (though it is im-
portant in fixing other constants, as described at the end
of this section). Either way, the probability distribution
has an infinite peak at A,,~~0+, which, after normaliz-
ing so that the total probability is unity, means that P(a)
has a factor

P(a) ~5(A,,ga)) . (8.35)

'8This sum actually includes manifolds that are truly not con-
nected by wormholes or anything else, but their contribution is
a harmless multiplicative factor, which will cancel out anyway
in normalizing P (a).

In addition, as in Hawking's case, from the way that F
has bee.n calculated it is clear that this A,,~ is the constant
that appears in the effective action for pure gravity with
all high-energy fluctuations integrated out; hence it is the
cosmological constant relevant to astronomical observa-
tion.

Has the cosmological constant problem been solved?
Perhaps so, but there are still some things to worry about
in Coleman's approach, as also in the earlier work of
Hawking. Here is a short list of qualms.

(1) Does Euclidean quantum cosmology have anything
to do with the real world? It is essential to both Coleman
and Hawking that the path integral be given by a station-
ary point of the Euclideanized action —the conclusion
would be completely wiped out if in place of
exp(3~/GA, ,&) we had found exp( n3.i G/A, , )a. Some of
the technical and conceptual difficulties of Euclidean
quantum cosmology were discussed at the beginning of
this section.

(2) What are the boundary conditions'? It is always

A(a) R
8m G(a) 16m G(a)

+g(a)G(a)R„ I'R& 'R (8.36)

with g(a) a dimensionless coefficient that, like A, and G,
depends on the baby-universe parameters a;. Hawking
and Coleman found a stationary point of this action for
which I,~—& —~ when A(a)G(a)~0, but for this pur-
pose it is essential that g(a) remain bounded in this limit.
(We recall that in our previous discussion of the higher-
derivative terms in I,z, we assumed that the coefficient
m of terms with D ~4 derivatives remains less than

as A, ~O.) But if we can let 1/A, G go to infinity,
then why not let g go to infinity also? In particular, why
not use a dimensional factor 1/A, (a) in place of G(a) in

Terms involving the Ricci tensor R„or its trace R are not
included here, because they represent merely a redefinition of
the metric; see, e.g. , %'einberg (1979a). The 4-derivative term
R„q~R""~ is not included, because it can be combined with
terms involving R~„or R to make a topological invariant and is
therefore physically unmeasureable for fixed large-scale topolo-
gy.

possible that the essential singularity in
exp{exp[3m/GA(a)]I is canceled by an essential zero in
the a priori probability ~f~(a)~ . However, this is not the
case for Hartle-Hawking boundary conditions, where
~f~(a)~ is a simple Gaussian. Moreover, Coleman
(1988b) has shown that in his theory such an essential
zero would be destroyed by almost any perturbation of
the boundary conditions; instead of its being unnatural to
have zero cosmological constant, it would be highly un-
natural not to. Still, the problem of boundary conditions
is disturbing, because it reminds us that quantum cosmol-
ogy is an incomplete theory.

(3) Are wormholes real'? Coleman's calculation de-
pends on there being a clear separation between the very
large 4-manifolds, for which the long-range effective ac-
tion is stationary (and large and negative), and very small
wormholes, whose contribution to the action is of order
unity (and generally positive). Furthermore, the
wormholes have been assumed to be so well separated
that we can ignore their interactions (the "dilute gas" ap-
proximation). It may be possible to construct a theory in
which the wormhole scale [like b in Eq. (8.22)] is some-
what larger than the Planck scale, large enough to allow
the wormhole metric to be calculated classically, but we
would still have to ask whether this is actually the case.
Hawking (1984b) does not need to worry about
wormholes, but how do we know that the 3-form gauge
field is real? A related question for both authors: even
granting the existence of the stationary point of the ac-
tion at which I,~= —3m. /A, G, how do we know that this
is the dominant stationary point?

(4) What about the other terms in the effective action?
For instance, suppose we include the 6-derivative term'
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the last term of Eq. (8.36)'? This would completely invali-
date the analysis of the singularity in the probability den-
sity P(a), and could well wipe it out.

The last of these four qualms suggests some interesting
possibilities. Suppose we do assume that for some reason
constants like g(a) in Eq. (8.36) are bounded. Then the
effect of wormholes is not only to fix A,(a) at zero, but
also to fix these other constants at their lower or upper
bounds. [I think this is the correct interpretation of what
Coleman (1988b) calls "the big fix."] For instance, for
g(a) bounded and ~A(a)G(a)~ ((1, the action (8.36) is
stationary for a sphere of proper circumference 2~r,
where

3 64gmG A,

3
(8.37}

for which the effective action takes the value

3'
eff Gg

128(GA,~
3

(8.38)

Thus the probability distribution exp[exp( —I,s)] not
only has an infinite peak at A(a) =0, but also contains a
factor

128/6 X~
exp

3'
exp (8.39)

To the extent that it will become possible to calculate func-
tions like A, (a), G(a), g(a) etc. , in terms of the parameters in an
underlying fundamental theory, such as a string theory, the lo-
cation of -the delta functions in I" may allow us to infer some-
thing about the values of the e; and of the parameters in the un-
derlying theory. However, without such an underlying theory,
it is impossible to use calculations of A, G, g, etc. , to infer any-
thing about the observed parameters of some intermediate
theory like the standard model. This is because, in addition to
charges, masses, etc., the standard model implicitly also in-
volves parameters AO, Go, go, . . . appearing in the effective ac-
tion for gravitation. When we integrate out the quarks, leptons,
and gauge and Higgs bosons, we obtain new values for A, , G, g,
etc.; but these new values depend on an equal number of un-
knowns Ao Gp $0 etc. , as well as on charges and masses.

For GA, ~O, the quantity GA, exp(3rr/GA, ) becomes
infinite, so the normalized probability will have a delta
function at the upper bound of g(a). All constants in the
effective action for gravitation, including terms with any
numbers of derivatives, can be calculated in this way,
but they all have to be bounded as A,(a)G(a)~0 for any
of this to make sense.

It may be that the bounds (if any) on parameters like
g(a) arise from the details of wormhole physics, in which
case these remarks are not.going to be useful numerically
for some time. However, there is another more exciting
possibility, that there are just unitarity bounds, which
could be calculated working only with low-energy
effective theory itself. Of course, we are not likely to be
able to measure parameters like g(a), but it would still be

nice to be able to calculate them, because up to now the
only really unsatisfactory feature of the quantum theory
of gravitation has been the apparent arbitrariness of this
infinite set of parameters.

IX. OUTLOOK

All of the five approaches to the cosmological constant
problem described in Secs. EV —VIII remain interesting.
At present, the fifth, based on quantum cosmology, ap-
pears the most promising. However, if wormholes (or 3-
form gauge fields) do produce a distribution of values for
the cosmological constant, but without an infinite peak at
A,,z-=O, then we will have to fall back on the anthropic
principle to explain why A,,z is not enormously larger
than allowed by observation. Alternatively, it may be
some change in the theory of gravity, like that described
here in Sec. VII, that produces the distribution in values
for A,,&. The approaches based on supersymmetry and
adjustment mechanisms described in Secs. IV and VI
seem least promising at present, but this may change.

All five approaches have one other thing in common:
They show that any solution of the cosmological constant
problem is likely to have a much wider impact on other
areas of physics or astronomy. One does not need to ex-
plain the potential importance of supergravity and super-
strings. A light scalar like that needed for adjustment
mechanisms could show up macroscopically, as a "fifth
force." Changing gravity by making Detg„not dynami-
cal would make us rethink our quantum theories of grav-
itation, and wormholes might force all the constants in
these theories to their outer bounds. Finally, and of
greatest interest to astronomy, if it is only anthropic con-
straints that keep the effective cosmological constant
within empirical limits, then this constant should be rath-
er large, large enough to show up before long in astro-
nomical observations.

Note added in proof As might h.ave been expected, in
the time since this report was submitted for publication
there have appeared a large number of preprints that fol-
low up on various aspects of the work of Coleman
(1988b) and Banks (1988). Here is a partial list: Accetta
et al. (1988); Adler (1988); Fischler and Susskind (1988);
Giddings and Strominger (1988c); Gilbert (1988};Grin-
stein and Wise (1988); Gupta and Wise (1988); Hosoya
(1988); Klebanov, Susskind, and Banks (1988); Myers and
Periwal (1988); Polchinski (1988); Rubakov (1988). I am
not able to review all of these papers here. However, I do
want to mention two further qualms, regarding
Coleman's proposed solution of the cosmological con-
stant problem, that are raised by some of these papers.
First, Fischler and Susskind (1988), partly on the basis of
conversations with V. Kaplunovsky, have pointed out
that the exponential damping of large wormholes may be
overcome by Coleman's double exponential. If this were
the case, we would be confronted with closely packed
worrnholes of macroscopic as well as Planck scales. This
would be a disaster for Coleman's proposed solution of
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the cosmological constant problem, and would also indi-
cate that we do not fully understand how to use Euclide-
an path integrals in quantum cosmology. Next, Polchin-
ski (1988) has found that the Euclidean path integral over
closed, connected, wormhole-free manifolds inside the
exponential in (8.33) has a phase that might eliminate the
peak in the probability distribution at zero cosmological
constant. As pointed out here in footnote 15, when we
use an effective action I,~ to evaluate such path integrals,
the effective action must be taken as an input to calcula-
tions in which we include quantum fluctuations in mass-
less particle fields with momenta up to some ultraviolet
cutoff A. This cutoff must be taken as the same as the in-
frared cutoF that was used in calculating I',s; so that all
Auctuations are taken into account. It was remarked in
footnote 15 that A must be taken very small, to avoid
reintroducing a cosmological constant, but as Polchinski
now remarks, no matter how small we take A, the in-

tegral over Auctuations in the gravitational field with mo-
menta less than A produces a phase in the integral. Since
this phase appears inside the exponential in Eq. (8.33), if
its real part is not positive definite there would be no ex-
ponential peak at zero cosmological constant. On the
other hand, in the absence of wormholes this phase
would appear as an overall factor in front of a single ex-
ponential, so it would not affect the peaking at zero
cosmological constant found by Hawking (1984b).
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