
Is Levenberg-Marquardt the Most Efficient Optimization Algorithm for
Implementing Bundle Adjustment?

�
Manolis I.A. Lourakis and Antonis A. Argyros

Institute of Computer Science, Foundation for Research and Technology - Hellas
Vassilika Vouton, P.O. Box 1385, GR 711 10, Heraklion, Crete, GREECE�

lourakis, argyros � @ics.forth.gr
Abstract

In order to obtain optimal 3D structure and viewing pa-
rameter estimates, bundle adjustment is often used as the
last step of feature-based structure and motion estimation
algorithms. Bundle adjustment involves the formulation of
a large scale, yet sparse minimization problem, which is tra-
ditionally solved using a sparse variant of the Levenberg-
Marquardt optimization algorithm that avoids storing and
operating on zero entries. This paper argues that consid-
erable computational benefits can be gained by substitut-
ing the sparse Levenberg-Marquardt algorithm in the im-
plementation of bundle adjustment with a sparse variant of
Powell’s dog leg non-linear least squares technique. De-
tailed comparative experimental results provide strong evi-
dence supporting this claim.

1 Introduction

Bundle Adjustment (BA) is often used as the last step
of many feature-based 3D reconstruction algorithms; see,
for example, [6, 1, 5, 19, 12] for a few representative ap-
proaches. Excluding feature tracking, BA is typically the
most time consuming computation arising in such algo-
rithms. BA amounts to a large scale optimization problem
that is solved by simultaneously refining the 3D structure
and viewing parameters (i.e. camera pose and possibly in-
trinsic calibration), to obtain a reconstruction which is opti-
mal under certain assumptions regarding the noise pertain-
ing to the observed image features. If the image error is
zero-mean Gaussian, then BA is the ML estimator. An ex-
cellent survey of BA methods is given in [21].

BA boils down to minimizing the reprojection error be-
tween the observed and predicted image points, which is
expressed as the sum of squares of a large number of
non-linear, real-valued functions. Thus, the minimization
is achieved using non-linear least squares algorithms, of
which the Levenberg-Marquardt (LM) [10, 14] has become
very popular due to its relative ease of implementation and�

This paper is dedicated to the memory of our late advisor Prof. Stelios C.
Orphanoudakis. Work partially supported by the EU FP6-507752 NoE MUSCLE.

its use of an effective damping strategy that lends it the
ability to converge promptly from a wide range of initial
guesses. By iteratively linearizing the function to be mini-
mized in the neighborhood of the current estimate, the LM
algorithm involves the solution of linear systems known as
the normal equations. When solving minimization prob-
lems arising in BA, the normal equations matrix has a sparse
block structure owing to the lack of interaction among pa-
rameters for different 3D points and cameras. Therefore,
a straightforward means of realizing considerable computa-
tional gains is to implement BA by developing a tailored,
sparse variant of the LM algorithm which explicitly takes
advantage of the zeroes pattern in the normal equations [8].

Apart from exploiting sparseness, however, very few re-
search studies for accelerating BA have been published. In
particular, the LM algorithm is the de facto standard for
most BA implementations [7]. This paper suggests that
Powell’s dog leg (DL) algorithm [20] is preferable to LM,
since it can also benefit from a sparse implementation while
having considerably lower computational requirements on
large scale problems. The rest of the paper is organized
as follows. For the sake of completeness, sections 2 and 3
provide short tutorial introductions to the LM and DL algo-
rithms for solving non-linear least squares problems. Sec-
tion 4 discusses the performance advantages of DL over
LM. Section 5 provides an experimental comparison be-
tween LM- and DL-based BA, which clearly demonstrates
the superiority of the latter in terms of execution time. The
paper is concluded with a brief discussion in section 6.

2 Levenberg-Marquardt’s Algorithm

The LM algorithm is an iterative technique that locates a
local minimum of a multivariate function that is expressed
as the sum of squares of several non-linear, real-valued
functions. It has become a standard technique for non-
linear least-squares problems, widely adopted in various
disciplines for dealing with data-fitting applications. LM
can be thought of as a combination of steepest descent and

the Gauss-Newton method. When the current solution is far
from a local minimum, the algorithm behaves like a steepest
descent method: slow, but guaranteed to converge. When
the current solution is close to a local minimum, it becomes
a Gauss-Newton method and exhibits fast convergence. To
help the reader follow the comparison between LM and DL
that is made in section 4, a short description of the LM algo-
rithm based on the material in [13] is provided next. Note,
however, that a detailed analysis of the LM algorithm is be-
yond the scope of this paper and the interested reader is
referred to [18, 13, 9] for more extensive treatments.

Input: A vector function � : ���	�
��� with ���� ,
a measurement vector ������� and an initial parameters
estimate ��������� .
Output: A vector ������� � minimizing ��� � �!��"#�%$&��� ' .
Algorithm:(*),+.-

; /),+10 ; �)2+ ��� ;34)2+658795
; :<;),+ �=�!��"#�%$; >),+�587 :?; ;

stop:=(�@� >%�@� A�BDCFE); G),+6H �JILKNMPO�Q ESR2T2T2T R � "VU O@O $;
while (not stop) and (

(*W6(�YXSZ)(�),+[(�\.]
;

repeat

Solve " 3^\ G8_&$a`b; + > ;

if "?�@� ` ; ���cBdCfeF��� �Y�@� $
stop:=true;

else� �hgji),+ � \ `b; ;k)2+ "<��� :<;��@� e �l��� �J�m��"#� �hgni $o�@� e $?pq"r` 7; "VG8`b; \ >9$a$;
if k*s -� + � �hgni ;34),+t58785

; :?;)2+ �=�u��"V��$; >),+t587 :?; ;
stop:=(��� >���� AvBdCFE);G)2+ G �JIwKfM " Exzy] �t" 0 k �] $ x $; /),+10 ;

elseG)2+ G � / ; /),+10 � / ;
endif

endif
until (k*s -) or (stop)

endwhile� �)2+ � ;

Figure 1. Levenberg-Marquardt non-linear
least squares algorithm. k is the gain ratio,
defined by the ratio of the actual reduction in
the error ��� :?;{��� e that corresponds to a step `&;
and the reduction predicted for `&; by the lin-
ear model of Eq. (1). See text and [13, 17] for
details. When LM is applied to the problem of
BA, the operation enclosed in the rectangular
box is carried out by taking into account the
sparse structure of the corresponding Hes-
sian matrix

3
.

In the following, vectors and arrays appear in bold-
face and

7
is used to denote transposition. Also, ���,|}�@� and�@�~|}�@� A respectively denote the 2 and infinity norms. Let �

be an assumed functional relation which maps a parame-
ter vector ���v� � to an estimated measurement vector�� + ��"#�%$ y ��u����� . An initial parameter estimate � � and a
measured vector � are provided and it is desired to find the
vector � � that best satisfies the functional relation � locally,
i.e. minimizes the squared distance : 7 : with : + �=� �� for
all � within a sphere having a certain, small radius. The
basis of the LM algorithm is a linear approximation to � in
the neighborhood of � . Denoting by

5
the Jacobian matrix���f� ;F�� ; , a Taylor series expansion for a small ��� `o;���� leads to

the following approximation:��"#� \ ` ; $��.��"V��$ \u5 ` ; | (1)

Like all non-linear optimization methods, LM is iterative.
Initiated at the starting point ��� , it produces a series of vec-
tors ��E y � e y |o|&| y that converge towards a local minimizer� � for � . Hence, at each iteration, it is required to find
the step `&; that minimizes the quantity��� �m�w��"V� \ ` ; $o�@�F����� �m�L��"#�%$�� 5 ` ; ��� + ��� :P� 5 ` ; ���,| (2)

The sought `&; is thus the solution to a linear least-squares
problem: the minimum is attained when

5 `o;��*: is orthogo-
nal to the column space of

5
. This leads to

5�7 " 5 `b;{��:�$ +1� ,
which yields the Gauss-Newton step `o; as the solution of
the so-called normal equations:5 7 5 ` ; +�5 7 :o| (3)

Ignoring the second derivative terms, matrix
5�7{5

in (3) ap-
proximates the Hessian of Ee : 7 : [18]. Note also that

5{7 :
is along the steepest descent direction, since the gradient
of Ee : 7 : is � 587 : . The LM method actually solves a slight
variation of Eq. (3), known as the augmented normal equa-
tions: � ` ; +65 7 : y%�Y�~�?� � � 5 7 5L\ G8_ Kf�z� G s - y (4)

where _ is the identity matrix. The strategy of altering the
diagonal elements of

5{795
is called damping and G is re-

ferred to as the damping term. If the updated parameter
vector � \ `&; with `&; computed from Eq. (4) leads to a
reduction in the error : 7 : , the update is accepted and the
process repeats with a decreased damping term. Otherwise,
the damping term is increased, the augmented normal equa-
tions are solved again and the process iterates until a value
of ` ; that decreases the error is found. The process of re-
peatedly solving Eq. (4) for different values of the damping
term until an acceptable update to the parameter vector is
found corresponds to one iteration of the LM algorithm.

In LM, the damping term is adjusted at each iteration
to assure a reduction in the error. If the damping is set to

a large value, matrix

�
in Eq. (4) is nearly diagonal and

the LM update step `&; is near the steepest descent direc-
tion

587 : . Moreover, the magnitude of ` ; is reduced in this
case, ensuring that excessively large Gauss-Newton steps
are not taken. Damping also handles situations where the
Jacobian is rank deficient and

5{7{5
is therefore singular [4].

The damping term can be chosen so that matrix

�
in Eq. (4)

is nonsingular and, therefore, positive definite, thus ensur-
ing that the `&; computed from it is in a descent direction.
In this way, LM can defensively navigate a region of the
parameter space in which the model is highly nonlinear. If
the damping is small, the LM step approximates the exact
Gauss-Newton step. LM is adaptive because it controls its
own damping: it raises the damping if a step fails to reduce: 7 : ; otherwise it reduces the damping. By doing so, LM
is capable of alternating between a slow descent approach
when being far from the minimum and a fast, quadratic con-
vergence when being at the minimum’s neighborhood [4].
An efficient updating strategy for the damping term that is
also used in this work is described in [17]. The LM algo-
rithm terminates when at least one of the following condi-
tions is met:� The gradient’s magnitude drops below a threshold CcE .� The relative change in the magnitude of ` ; drops be-

low a threshold Che .� A maximum number of iterations
(�YXSZ is reached.

The complete LM algorithm is shown in pseudocode in
Fig. 1; more details regarding it can be found in [13]. The
initial damping factor is chosen equal to the product of a
parameter

H
with the maximum element of

5�7{5
in the main

diagonal. Indicative values for the user-defined parameters
are
HL+�]o-P� x

, C E + Cfe +�]o-q� E e , (��XbZ +�]o-F- .
3 The Dog Leg Algorithm

Similarly to the LM algorithm, the DL algorithm for un-
constrained minimization tries combinations of the Gauss-
Newton and steepest descent directions. In the case of
DL, however, this is explicitly controlled via the use of a
trust region. Trust region methods have been studied dur-
ing the last few decades and have given rise to numerical
algorithms that are reliable and robust, possessing strong
convergence properties and being applicable even to ill-
conditioned problems [2]. In a trust region framework, in-
formation regarding the objective function � is gathered and
used to construct a quadratic model function � whose be-
havior in the neighborhood of the current point is similar
to that of � . The model function is trusted to accurately
represent � only for points within a hypersphere of radius�

centered on the current point, hence the name trust re-
gion. A new candidate step minimizing � is then found by

Gauss−Newton step

Dog leg step

Trust region

Cauchy point

Steepest descent direction

Figure 2. Dog leg approximation of the curved
optimal trajectory (shown dashed). The case
with the Cauchy point and the Gauss-Newton
step being respectively inside and outside the
trust region is illustrated.

(approximately) minimizing � over the trust region. The
model function is chosen as the quadratic corresponding to
the squared right hand part of Eq. (2), namely

��"V`f$ +10 "]0 : 7 :��t" 5 7 :S$ 7 ` \]0 ` 7 5 7 5 `f$S| (5)

With the above definition, the candidate step is the solution
of the following constrained subproblem:I � �� ��"V`f$ y� a¡£¢q¤j¥o¦b�8�<§ ��� `P���qB � | (6)

Clearly, the radius of the trust region is crucial to the suc-
cess of a step. If the region is too large, the model might
not be a good approximation of the objective function and,
therefore, its minimizer might be far from the minimizer of
the objective function in the region. On the other hand, if
the region is too small, the computed candidate step might
not suffice to bring the current point closer to the minimizer
of the objective function. In practice, the trust region radius
is chosen based on the success of the model in approximat-
ing the objective function during the previous iterations. If
the model is reliable, that is accurately predicting the be-
havior of the objective function, the radius is increased to
allow longer steps to be tested. If the model fails to predict
the objective function over the current trust region, the ra-
dius of the latter is reduced and (6) is solved again, this time
over the smaller trust region.

The solution to the trust region subproblem (6) as a func-
tion of the trust region radius is a curve as the one shown in
Fig. 2. In a seminal paper, Powell [20] proposed to approxi-
mate this curve with a piecewise linear trajectory consisting
of two line segments. The first runs from the current point to
the Cauchy point, defined by the unconstrained minimizer
of the objective function along the steepest descent direc-
tion > +6587 : and given by

`&¨n© + > 7 >> 7 5 7 5 > >�| (7)

The second line segment runs from `o¨n© to the Gauss-
Newton step `&ª�« , defined by the solution of Eq. (3) which
is repeated here for convenience:5 7 5 ` ª¬« + >�| (8)

Since matrix
5 7 5

may occasionally become positive
semidefinite, Eq. (8) is solved with the aid of a per-
turbed Cholesky decomposition that ensures positive defi-
niteness [4]. Formally, for =�¯® - y 0�° , the dog leg1 trajectory
is defined as

`q"r±$ +^² z`b¨n© y - B6=B]`b¨n© \ "³L�] $&"V`bª�«l�¯`&¨n©£$ y] B6=B 0 (9)

It can be shown [4] that the length of `q"r±$ is a monoton-
ically increasing function of and that the value of the
model function for `q"r±$ is a monotonically decreasing func-
tion of . Also, the Cauchy step is always shorter than the
Gauss-Newton step. With the above facts in mind, the dog
leg step is defined as follows: If the Cauchy point lies out-
side the trust region, the DL step is chosen as the truncated
Cauchy step, i.e. the intersection of the Cauchy step with
the trust region boundary that is given by ´µ2µ �n¶}· µ2µ `b¨n© . Oth-
erwise, and if the Gauss-Newton step is within the trust re-
gion, the DL step is taken to be equal to it. Finally, when the
Cauchy point is in the trust region and the Gauss-Newton
step is outside, the next trial point is computed as the in-
tersection of the trust region boundary and the straight line
joining the Cauchy point and the Gauss-Newton step (see
Fig. 2). In all cases, the dog leg path intersects the trust
region boundary at most once and the point of intersection
can be determined analytically, without a search. The DL
algorithm is described using pseudocode in Fig. 3 and more
details can be found in [4, 13]. The strategy just described
is also known as the single dog leg, to differentiate it from
the double dog leg generalization proposed by Dennis and
Mei [3]. The double dog leg is a slight modification of Pow-
ell’s original algorithm which introduces a bias towards the
Gauss-Newton direction that has been observed to result in
better performance. Indicative values for the user-defined
parameters are

� � +¸] | - , C E + Cfe +�]o-q� E e , (�YXSZ +�]o-F- .
At this point, it should be mentioned that there exists a

close relation between the augmented normal equations (4)
and the solution of (6): A vector `º¹ minimizes (6) if and
only if there is a scalar G such that " 5{7{5»\ G8_&$j` ¹ +¼587 :
and G�" � ���@� ` ¹ �@� $ +4- [4]. Based on this result, modern
implementations of the LM algorithm such as [15], seek
a nearly exact solution for G using Newton’s root finding
algorithm in a trust-region framework rather than directly
controlling the damping parameter G in Eq. (4) [16]. Note,
however, that since no closed form formula providing G for

1The term dog leg comes from golf, indicating a hole with a sharp angle
in the fairway.

Input: A vector function � : ���	�
��� with ½��� ,
a measurement vector �¾����� and an initial parameters
estimate � � ����� .
Output: A vector ���d��� � minimizing �@� �=�u��"V��$o�@� ' .
Algorithm:(�)2+.-

;
�),+ � � ; �)2+ � � ;34)2+658795

; :?;),+ � �!��"#�%$; >)2+6587 :?; ;
stop:=(��� >%��� A½B¿CFE);
while (not stop) and (

(�W�(��XbZ)(�),+.(À\.]
;` ¨n©)2+ µ2µ ª µ2µ Áµ2µ Â ª µ2µ Á > ;

GNcomputed:=false;
repeat

if �@� `b¨n©{���q� �`&©FÃ)2+ ´µ2µ � ¶}· µ2µ `&¨n© ;
else

if (not GNcomputed)
Solve

3 `bª�« + > ;

GNcomputed:=true;
endif
if �@� `bª�«{���cB �`&©FÃ)2+ `bª�« ;
else`b©ºÃ),+ `&¨n© \ Ä "V`bª�«Y��`&¨n©z$; //

Ä
s.t. ��� `&©FÃj��� + �

endif
endif
if "<��� ` ©FÃ ���cBdCNeº�@� �Y�@� $

stop:=true;
else� �hgni)2+ � \ ` ©ºÃ ;k)2+ "<��� : ; ��� e �w�@� ���Å��"#� �hgni $&��� e $<pP"V��" - $o�m��"V` ©FÃ a ;

if k*s -� + � �hgni ;34),+t587{5
; :?;),+ �=�u��"V��$; >),+t587 :<; ;

stop:=(��� >���� A�BDCFE);
endif�

:=updateRadius(k , � ,
- | 0FÆ , - |,Ç Æ); // update

�
stop:=

� BdC e ��� �Y��� ;
endif

until (kLs -) or (stop)
endwhile���),+ � ;

Figure 3. Powell’s dog leg algorithm for non-
linear least squares.

� � is the initial trust
region radius. Routine updateRadius() controls
the trust region radius based on the value of
the gain ratio k of actual over predicted reduc-
tion:

�
is increased if k*s - |,Ç Æ , kept constant

if
- | 0FÆ B k B - |,Ç Æ and decreased if k Wv- | 0FÆ .

A detailed description of updateRadius() can be
found in section 6.4.3 of [4]. Again, when
dealing with BA, the operation enclosed in the
rectangular box is carried out by taking into
account the sparse structure of matrix

3
.

a given
�

exists, this approach requires expensive repeti-
tive Cholesky factorizations of the augmented approximate
Hessian and, therefore, is not well-suited to solving large
scale problems such as those arising in the context of BA.

4 DL vs. LM: Performance Issues

We are now in the position to proceed to a qualitative
comparison of the computational requirements of the LM
and DL algorithms. When a LM step fails, the LM algo-
rithm requires that the augmented equations resulting from
an increased damping term are solved again. In other words,
every update to the damping term calls for a new solution
of the augmented equations, thus failed steps entail unpro-
ductive effort. On the contrary, once the Gauss-Newton
step has been determined, the DL algorithm can solve the
constrained quadratic subproblem for various values of

�
,

without resorting to solving again Eq. (8). Note also that
when the truncated Cauchy step is taken, the DL algorithm
can avoid solving Eq. (8), while the LM algorithm always
needs to solve (4), even if it chooses a step smaller than the
Cauchy step. Reducing the number of times that Eq. (8)
needs to be solved is crucial for the overall performance of
the minimization process, since the BA problem involves
many parameters and, therefore, linear algebra costs domi-
nate the computational overhead associated with every inner
iteration of both algorithms in Figs. 1 and 3. For the above
reasons, the DL algorithm is a more promising implemen-
tation of the non-linear minimization arising in BA in terms
of the required computational effort.

5 Experimental Results

This section provides an experimental comparison re-
garding the use of the LM and DL algorithms for solv-
ing the sparse BA problem. Both algorithms were imple-
mented in C, using LAPACK for linear algebra numerical
operations. The LM BA implementation tested is that in-
cluded in the sba package (http://www.ics.forth.
gr/˜lourakis/sba) [11] that we have recently made
publicly available. Representative results from the appli-
cation of the two algorithms for carrying out Euclidean
BA on eight different real image sequences are given next.
It is stressed that both implementations share the same
data structures as well as a large percentage of the same
core code and have been extensively optimized and tested.
Therefore, the reported dissimilarities in execution perfor-
mance are exclusively due to the algorithmic differences be-
tween the two techniques rather than due to the details of the
particular implementations.

In all experiments, it is assumed that a set of 3D points
are seen in a number of images acquired by an intrinsi-

cally calibrated moving camera and that the image projec-
tions of each 3D point have been identified. Estimates of
the Euclidean 3D structure and camera motions are then
computed using the sequential structure and motion estima-
tion technique of [12]. Those estimates serve as starting
points for bootstrapping refinements that are based on Eu-
clidean BA using the DL and LM algorithms. Equations
(4) and (8) are solved by exploiting the sparse structure of
the Hessian matrix

587{5
, as described in Appendix 4 of [8].

Camera motions corresponding to all but the first frame are
defined relative to the initial camera location. The former
is taken to coincide with the employed world coordinate
frame. Camera rotations are parameterized by quaternions
while translations and 3D points by 3D vectors. The set of
employed sequences includes the “movi” toy house circu-
lar sequence from INRIA’s MOVI group, “sagalassos” and
“arenberg” from Leuven’s VISICS group, “basement” and
“house” from Oxford’s VGG group and three sequences ac-
quired by ourselves, namely “maquette”, “desk” and “cal-
grid”.

Table 1 illustrates several statistics gathered from the ap-
plication of DL and LM-based Euclidean BA to the eight
test sequences. Each row corresponds to a single sequence
and columns are as follows: The first column corresponds to
the total number of images that were employed in BA. The
second column is the total number of motion and structure
variables pertaining to the minimization. The third column
corresponds to the average squared reprojection error of the
initial reconstruction. The fourth column (labeled “final er-
ror”) shows the average squared reprojection error after BA
for both algorithms. The fifth column shows the total num-
ber of objective function/jacobian evaluations during BA.
The number of iterations needed for convergence and the to-
tal number of linear systems (i.e. Eq. (4) for LM and Eq. (8)
for DL) that were solved are shown in the sixth column. The
last column shows the time (in seconds) elapsed during ex-
ecution of BA. All experiments were conducted on an Intel
P4@1.8 GHz running Linux and unoptimized BLAS. As it
is evident from the final squared reprojection error, both ap-
proaches converge to almost identical solutions. However,
DL-based BA is between 2.0 to 7.5 times faster, depending
on the sequence used as benchmark.

These speedups can be explained by comparing the to-
tal number of iterations as well as that of evaluations of
the objective function and corresponding jacobian. The DL
algorithm converges in considerably less iterations, requir-
ing fewer linear systems to be solved and fewer objective
function/jacobian evaluations. Note that the difference in
performance between the two methods is more pronounced
for long sequences, since, in such cases, the costs of solv-
ing linear systems are increased. These experimental find-
ings agree with the remarks made in section 4 regarding the
qualitative comparison of the DL and LM algorithms. Apart

final error func/jac evals iter./sys. solved exec. time
Sequence # imgs # vars initial error DL LM DL LM DL LM DL LM

“movi” 59 5747 5.03 0.3159 0.3159 11/3 18/18 3/3 18/18 1.06 5.03
“sagalassos” 26 5309 11.04 1.2704 1.2703 16/6 44/33 6/6 33/44 1.29 6.98
“arenberg” 22 4159 1.35 0.5400 0.5399 11/3 25/20 3/3 20/25 0.75 4.95
“basement” 11 992 0.37 0.2448 0.2447 15/9 29/21 9/9 21/29 0.18 0.37
“house” 10 1615 1.43 0.2142 0.2142 10/3 25/19 3/3 19/25 0.11 0.51
“maquette” 54 15999 2.15 0.1765 0.1765 12/3 31/23 3/3 23/31 1.77 12.16
“desk” 46 10588 4.16 1.5761 1.5760 11/3 32/23 3/3 23/32 1.27 9.58
“calgrid” 27 2355 3.21 0.2297 0.2297 10/3 20/20 3/3 20/20 2.61 16.96

Table 1. Statistics for Euclidean BA using the DL and LM algorithms: Total number of images,
total number of variables, average initial squared reprojection error in pixels, average final squared
reprojection error in pixels, total number of objective function/jacobian evaluations, total number of
iterations and linear systems solved, elapsed execution time in seconds. Identical values for the
user-defined minimization parameters have been used throughout all experiments.

from the above experiments, we have compared the perfor-
mance of the LM and DL BA implementations on several
more image sequences. In all cases, the DL variant was
found to consistently outperform the LM one.

6 Conclusions

A computationally efficient implementation of BA is
beneficial to a wide range of vision tasks that are related
to 3D reconstruction. This paper has questioned the cur-
rent state of practice by suggesting that Powell’s dog leg
minimization algorithm is a more attractive alternative to
Levenberg-Marquardt. As it has been demonstrated exper-
imentally, the DL algorithm computes solutions that are of
the same quality compared to those of LM, albeit at a frac-
tion of time. Given the popularity of BA, speeding it up
using the DL algorithm constitutes an important contribu-
tion towards the development of practical vision systems.

The introduction of trust region optimization methods to
the solution of the BA problem has an additional important
consequence. Specifically, trust region methods are easier
to extend for dealing with constrained optimization prob-
lems (e.g. refer to parts III - IV of [2]). Therefore, they
can support the development of constrained versions of BA,
a task that is difficult to deal with using the standard LM-
based approach.

References

[1] P. Beardsley, P. Torr, and A. Zisserman. 3D Model Acquisition From Ex-
tended Image Sequences. In Proc. of ECCV’96, pages 683–695, 1996.

[2] A. Conn, N. Gould, and P. Toint. Trust Region Methods. MPS-SIAM Series
On Optimization. SIAM, Philadelphia, PA, 2000.

[3] J. Dennis and H. Mei. Two New Unconstrained Optimization Algorithms
Which Use Function and Gradient Values. Journal of Optimization Theory
and Applications, 28:453–462, 1979.

[4] J. Dennis and R. Schnabel. Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations. Classics in Applied Mathematics. SIAM Pub-
lications, Philadelphia, 1996.

[5] A. Fitzgibbon and A. Zisserman. Automatic Camera Recovery for Closed or
Open Image Sequences. In Proceedings of ECCV’98, pages 311–326, 1998.

[6] R. Hartley. Euclidean Reconstruction from Uncalibrated Views. In J. Mundy
and A. Zisserman, editors, Applications of Invariance in Computer Vision,
volume 825 of Lecture Notes in Computer Science, pages 237–256. Springer-
Verlag, 1993.

[7] R. Hartley. An Object-Oriented Approach to Scene Reconstruction. In Proc.
of IEEE Conf. SM&C’96, volume 4, pages 2475–2480, Oct. 1996.

[8] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 1st edition, 2000.

[9] C. Kelley. Iterative Methods for Optimization. SIAM Publications, Philadel-
phia, 1999.

[10] K. Levenberg. A Method for the Solution of Certain Non-linear Problems in
Least Squares. Quarterly of Applied Mathematics, 2(2):164–168, Jul. 1944.

[11] M. Lourakis and A. Argyros. The Design and Implementation of
a Generic Sparse Bundle Adjustment Software Package Based on the
Levenberg-Marquardt Algorithm. Technical Report 340, Institute of Com-
puter Science - FORTH, Heraklion, Greece, Aug. 2004. Available at
ftp://ftp.ics.forth.gr/tech-reports/2004.

[12] M. Lourakis and A. Argyros. Efficient, Causal Camera Tracking in Unpre-
pared Environments. Computer Vision and Image Understanding Journal,
99(2):259–290, Aug. 2005.

[13] K. Madsen, H. Nielsen, and O. Tingleff. Methods for
Non-Linear Least Squares Problems. Technical Uni-
versity of Denmark, 2004. Lecture notes, available at
http://www.imm.dtu.dk/courses/02611/nllsq.pdf.

[14] D. Marquardt. An Algorithm for the Least-Squares Estimation of Nonlin-
ear Parameters. SIAM Journal of Applied Mathematics, 11(2):431–441, Jun.
1963.

[15] J. Moré, B. Garbow, and K. Hillstrom. User guide for MINPACK-1. Technical
Report ANL-80-74, Argonne National Laboratory, Aug. 1980.

[16] J. Moré and D. Sorensen. Computing a Trust Region Step. SIAM J. Sci.
Statist. Comput., 4:553–572, 1983.

[17] H. Nielsen. Damping Parameter in Marquardt’s Method. Technical Report
IMM-REP-1999-05, Technical University of Denmark, 1999. Available at
http://www.imm.dtu.dk/˜hbn.

[18] J. Nocedal and S. Wright. Numerical Optimization. Springer, New York,
1999.

[19] M. Pollefeys, L. V. Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and
R. Koch. Visual Modeling With a Hand-Held Camera. IJCV, 59(3):207–232,
Sep./Oct. 2004.

[20] M. Powell. A Hybrid Method for Nonlinear Equations. In P. Rabinowitz,
editor, Numerical Methods for Nonlinear Algebraic Equations, pages 87–144.
Gordon and Breach Science, London, 1970.

[21] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle Adjustment
– A Modern Synthesis. In Proceedings of the International Workshop on
Vision Algorithms: Theory and Practice, pages 298–372, 1999.

