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Abstract—In scientific computing, unstructured meshes are
a crucial foundation for the simulation of real-world physical
phenomena. Compared to regular grids, they allow resembling
the computational domain with a much higher accuracy, which
in turn leads to more efficient computations.

There exists a wealth of supporting libraries and frameworks
that aid programmers with the implementation of applications
working on such grids, each built on top of existing paral-
lelization technologies. However, many approaches require the
programmer to introduce a different programming paradigm
into their application or provide different variants of the code.
SYCL is a new programming standard providing a remedy to
this dilemma by building on standard C++17 with its so-called
single-source approach: Programmers write standard C++ code
and expose parallelism using C++17 keywords. The application is
then transformed into a concrete implementation by the SYCL
implementation. By encapsulating the OpenCL ecosystem, dif-
ferent SYCL implementations enable not only the programming
of CPUs but also of heterogeneous platforms such as GPUs or
other devices. For the first time, this paper showcases a SYCL-
based solver for the nodal Discontinuous Galerkin method for
Maxwell’s equations on unstructured meshes. We compare our
solution to a previous C-based implementation with respect to
programmability and performance on heterogeneous platforms.

I. INTRODUCTION

The efficient implementation of unstructured mesh algorithms
is challenging, and the nodal discontinuous Galerkin time domain
(NDGTD) [13] is a fundamental and ubiquitous method devised
to obtain a numerical solution of partial differential equations
for unstructured grids in the field of science and engineering.
The NDGTD method has gained increasing popularity due to
high order accuracy, dealing with complicated geometries using
unstructured meshes, and the ability to easily handle boundary
conditions. Furthermore, it provides remarkable compactness
and flexibility both regarding geometry and range of problems.
Unstructured meshes have become common due to several
advantages in faster grid generation without requiring much
experience, more efficient computation due to the geometry-
adapted discretization, and high potential for the parallelization
due to efficient synchronization between nodes. The involved
irregular data structures result in the efficiency of local memory
access. Moreover, this scheme is local to the elements, which
makes it highly suitable to be parallelized for solving large and
complex problems. However, implementing such algorithms in
a performance-portable fashion, i.e., being efficient on many
different hardware architectures, is cumbersome.

Today’s modern HPC architectures are increasingly heteroge-
neous, and thus require highly optimized and efficient application

implementations. This fosters the algorithm developers to
ponder on different parallel language implementations and
possible optimizations for excellent performance portability.
One plausible solution to deal with these challenges is to
take advantage of a modern programming language such as
C++17 in combination with appropriate abstractions to target
heterogeneous and parallel hardware platforms at a much higher
level of abstraction. In 2015, the Khronos Group introduced
the programming paradigm SYCL to ease writing portable and
efficient code. By abstracting from OpenCL [18], it promises to
target a range of different devices, e.g. CPUs, GPUs, and other
accelerators such as field-programmable gate arrays (FPGAs).
One highlight of SYCL is its single-source approach, allowing
the programmer merely to use one programming language and
to not bother with boilerplate code as is the case of calling
OpenCL kernels. For SYCL, the designated host language is
modern C++, or to be more precise, C++17 and its corresponding
Standard Template Library (STL).

The major contribution of this paper is the introduction
of our approach to solving Maxwell’s Equation by using a
Discontinuous Galerkin time-domain solver implemented using
C++17 and SYCL.

The remainder of this paper is structured as follows. We
commence the discussion by introducing essential features,
characteristics, and the description of how to apply the building
blocks of the NDGTD algorithm, followed by an overview of
our implementation for the solution of Maxwell’s equations in
Section IV. Section II-B briefly introduces the SYCL technology
and its features that are of interest to HPC developers. After
that, Section III is devoted to an overview of available relevant
work in this domain. Section V contains comparisons of the
programmability and performance metrics between different
variants of the two implementations on heterogeneous multi-core
CPU and general-purpose GPU platforms. Finally, we conclude
in Section VI.

II. THEORETICAL BACKGROUND

A. Maxwell’s equations and nodal discontinuous Galerkin time
domain (NDGTD)

The three-dimensional Maxwell’s equations can be written
as a form of the conservation law:

Q(r)
∂

∂t
q(r, t) +∇ · F(q) = 0 (1)
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The material constants are contained in the matrix Q(r). The
electric and magnetic fields E and H are combined into a
single six-dimensional vector q(r, t). The flux vector F(q) is a
function of q(r, t).

In order to solve Maxwell’s equations numerically, they
have to be discretized in space and time. We divide the
entire simulation domain Ω into K non-overlapped tetrahedrons
and approximate a local polynomial solution qk

h(r, t) of order
p in each tetrahedron or element separately (h denotes the
approximation). For getting high convergence, we can increase
the number of elements in the entire simulation domain by
making their dimensions smaller (h-refinement). Another way
for increasing the resolution is choosing a higher order p of
the polynomial representation (p-refinement), and this gives a
more significant number of nodes for each element, where the
solution is presented.

The polynomial expression of the numerical solution in each
element is given as a sum over all its nodes ri:

qk
h(r, t) =

N∑

n=1

q̂k
n(t)ψn(r) =

N∑

i=1

qk
h(ri, t)Li(r) (2)

Here, N = (p + 1)(p + 2)(p + 3)/6 is the number of nodes
distributed on the element. ψn(r) is a local polynomial basis,
Li is the Lagrange interpolating polynomial, and q̂k

n are the
expansion coefficients. After multiplying the conservation law
Equation (1) with Li(r), integrating over the local element and
inserting the numerical flux through integration by parts F∗(q),
we obtain:∫

Ωk

(
Q(r)

∂

∂t
q(r, t) +∇ · F(q)

)
Li(r)d3r

=

∮

∂Ωk
n̂ ·
(

F(q)− F∗(q)
)

Li(r)d2r. (3)

After mathematical derivation [13, 9], we obtain the semi-
discrete Maxwell’s equations:

εk ∂Ek

∂t = Dk ×Hk + (M k)−1F k
(

∆E−n̂·(n̂·∆E)+Z+n̂×∆H
Z

)
(4)

µk ∂Hk

∂t = −Dk × Ek + (M k)−1F k
(

∆H−n̂·(n̂·∆H)−Y+n̂×∆E
Y

)
(5)

Here, we define the spatial differentiation matrix Dk, the mass
matrix M k, the face matrix F k, and the outwardly pointing
normal vector to the tetrahedron surface n̂. The impedance
Z± and the conductance Y± define the material parameters of
the mesh element and the neighbor one. The sums of them
are Z = Z+ + Z− and Y = Y+ + Y−. We use a time-explicit
method to integrate over the time. The explicit low storage
Runge-Kutta method (LSRK) [6, 13] turns out to be a good
choice for our system in Equations (4) and (5). The LSRK is
memory efficient compared to implicit methods, but we need
to choose a relatively small time due to the Courant condition
in order to get accuracy and numerical stability. The shortest
distance between two DG-nodes determines our time-step ∆t.
With each iteration, the fields are calculated by Maxwell’s
equations. The ordinary differential equations we have in our

problem take the form:

∂

∂t
y(t) = g(t,y).

The scheme of the LSRK is:
K1 = yn,

K2 = AiK2 + ∆tg(tn + ci∆t,K1)

K1 = K1 + BiK2,

yn+1 = K1. (6)

}
∀i = 1...s

where s is the number of stages.

B. SYCL

Based on OpenCL, SYCL1 is a programming interface
designed by the Khronos Group to simplify the implementation
of parallel codes for heterogeneous platforms in C++. It bridges
the programmability gap between C++ and OpenCL, by providing
a single-source approach, i.e., both host and device code use
the same programming language and are contained in the same
source file. However, due to OpenCL limitations, only a subset
of C++ functionality may be used. Problematic language aspects
include virtual functions, function pointers, exception handling,
and run-time type information. The SYCL execution model
lets the runtime system automatically manage the underlying
resources and data movement between the host and the device
through accessors.

Kernels are the computationally intensive code parts, and
depending on their size and characteristics, application devel-
opers offload them in SYCL by using advanced C++ features
such as lambda functions, OpenCL C strings, program objects,
and functors. It provides a type-safe and portable programming
environment to allow programs to construct a cross-platform
asynchronous task graph. These capabilities make SYCL easy to
integrate into other C++ libraries and middleware development.
As SYCL is embedded into modern C++17, it makes use of
Parallel STL algorithms by passing execution policies to them.

To implement custom parallel operations, programmers
need to expose parallelism by using the C++ construct
parallel_for. For invoking a kernel, in addition to single task
and standard parallel_for loop, SYCL supports hierarchical
parallelism by allowing work to split into work groups
and work items. However, it is not necessary to re-write
existing OpenCL application to make use of SYCL. Rather,
the OpenCL interoperability layer may be used, meaning
existing OpenCL kernel implementations may be called inside
SYCL parallel_for statements and may automatically
take advantage of the new task scheduling capabilities. To
implement SYCL support for computing devices that require
special code structures, SPIR-V [17]—short for Standard
Portable Intermediate Representation—may be used. It is a
standardized, cross-API intermediate language to represent
parallel computations designed to allow the compilation chain
to be split across multiple products and vendors.

As SYCL is merely a language specification, different imple-
mentations are available. Notably, there are ComputeCPP [7] by

1http://www.khronos.org/sycl/



Codeplay, a commercial implementation of SYCL 1.2 that offers
support for AMD and Intel CPUs and GPUs. An open-source
implementation also targeting CPUs is triSYCL [16]. Support
for non-single-source OpenCL interoperability is partly done,
and support for SPIR and SPIR-V is in development. For the
CPU parallelization back end, OpenMP is used. triSYCL’s
development is mainly funded by FPGA vendor Xilinx, hinting
at the future support of such devices via SPIR. Another open-
source SYCL implementation is sycl-gtx [29], originating from
the University of Ljubljana. It targets OpenCL 1.2 compatible
devices, e.g., CPUs and GPUs.

III. RELATED WORK

The solution of Maxwell’s equations for unstructured meshes
using the NDGTD is applied in various scientific fields for
large-scale simulations. The review [5] describes how to exploit
the NDGTD in nanophotonics with modeling sources, total-
field/scattered-field technique, anisotropic material, absorbing
boundary conditions (PML), dispersive media and how to deal
with curvilinear elements. An example of the light scattering
properties, by randomly irregular particles with wavelength-
scale surface roughness, is given in [10]. It shows results
consistent with the laboratory measurements of real samples.
Furthermore, the results demonstrated by the NDGTD are
very close to experiments regarding reproducing the second
harmonic generation [9, 19] from Split-Ring resonator arrays
based on their nonlinear optical response and from plasmonic
gap antennas, which have strong resonant properties. Examples
from the area of the electromagnetics where the NDGTD is
used to know how a sent plane wave is scattered by an aircraft,
and to understand the exposure of the head tissues radiated by
a local source are given in [8]. In [15], the authors describe
their work on porting and optimizing the very same application
as presented in this manuscript to FPGAs.

a) Frameworks: In the past, a large variety of libraries for
high-performance computing are developed such as hypre [1],
DUNE [3], FEniCS [20], and PETSc [2]. The hypre software
package is a collection of pre-conditioners and solvers. One part
of the highly scalable hypre for unstructured grids and general
matrices is the BoomerAMG [12]. DUNE is a general software
framework for the solution of PDEs. However, both hypre
and DUNE do not provide support for GPU accelerators. The
finite element method library FEniCS uses a Python-embedded
DSL, called Unified Form Language (UFL), and its FEniCS
Form Compiler (FFC) develops a lot of routines and data
structures while focusing on the finite element method for the
solution of differential equations. PETSc is a suite of data
structures and routines for C, C++, Fortran, and Python, which
provides shared-memory and distributed-memory parallelization
via pthreads and MPI, as well as supports GPU accelerators.

In addition to that, there is a finite element DUNE lattice
interface based Kaskade [28] toolbox. It has been developed
for solving of practical PDE problems of up to three-dimensional
space in an object-oriented C++ programming language for a
verity of fields. However, for the sake of simplicity, its usability
is deliberately limited to very large problems with avoiding the
parallelization for the distributed memory.

b) DSLs: Formerly, several high-level languages, tools,
and frameworks have been developed that use domain-specific
abstractions to shield the programmer from low-level details in
diverse application domains. The noteworthy examples for DSLs
include ExaSlang [23, 24] and Julia [4] with corresponding
compilers customized towards the description of mesh-based
PDEs solvers. ExaStencils uses Geometric Multigrid on
Scala-based compiler with the language called ExaSlang and
Julia builds on a just-in-time (JIT) compiler. It provides an
interface to calling Python and C functions, and deals with the
multiple dispatch features for the distributed parallel execution.
Further, Firedrake [22] is an automated tool-chain in a
domain-specific Python embedded language that uses PETSc.

IV. MAXWELL’S EQUATIONS SOLVERS

In this section, we introduce the algorithmic structure, and
C and SYCL programming languages based implementations
applied to unstructured meshes to highlight foremost aspects
of Maxwell’s equations solvers for scientific simulations.
For this particular case study, the time domain solution of
Maxwell’s equations for three-dimensional systems with nodal
discontinuous Galerkin (NDG) method is abbreviated as C-based
Maxwell’s (CBM) solver2 by Warburton [13] and SYCL-based
Maxwell’s (SBM) solver.

A. Structure

This section of simulation structure is added to get an idea
of the entire flow of Maxwell’s solvers. Our case study of
Maxwell’s equations solvers incorporate a lot of initialization
steps, which include a contribution from the mesh set-up
steps, the polynomial-specific start-up processes for reference
tetrahedron, the initial conditions applied to the electromagnetic
fields, and the application constants.

The start-up steps load the polynomial order based data for the
reference tetrahedron, which is straight-sided. This polynomial-
specific data includes the local reference coordinates r with their
respective derivatives, the LIFT matrix (M k)−1F k, and the
local index mapping data structure for indirect nodal accesses
through indices. This local index mapping is required in NDG,
as nodal points lying on an edge belong to adjacent faces. All
coordinates of the mesh elements must be transformed into
this reference element in order to apply all operations. After
that, the tetrahedrons are back-transformed into their origin and
global mapping vmapM, vmapP is incorporated. Moreover, the
initialization of problem-specific constants leads to the loading
of Runge-Kutta coefficients A,B, polynomial order p, final time
t, time-step size ∆t, and nodal tolerance, etc. for the NDG
algorithm.

The basic structure of Maxwell’s equations solvers is outlined
in Figure 1. The time-step processes include the explicit
time discretization of the system of computationally intensive
Maxwell’s surface and volume equations using Runge-Kutta
integration.

2https://github.com/tcew/MIDG2



initialize mesh set-up

initialize polynomial-specific start-up steps for
reference tetrahedron
initialize application-specific constants

initialize 3D fields E,H and nodal coordinates
x, y, z tie to volume nodes of the mesh
build and store 3D spatial differentiation matrix
Dk tie to mesh volume elements
build and store 3D surface information Sk for
faces and global maps vmapM, vmapP tie to
surface nodes of the mesh
while time < maximum time

for each RK stage

Maxwell’s volume kernel,
the first half of Equations (4), (5)
Maxwell’s surface kernel (flux),
the second half of Equations (4), (5)

RK integration kernel, Equation (6)

Fig. 1. Basic program structure of Maxwell’s equations solvers

B. Implementation of C-based Maxwell’s (CBM) solver

The provided application uses the open source Tetgen [25]
tool as unstructured mesh generator and the external
ParMETIS [14] library for the partitioning of the grid. For all
development processes, the CBM implementation initializes
data using double C arrays in the source code.

The implementation creates the mesh data structure and
utilizes separate storage of data for the volume elements, the
volume nodes and the surface nodal points of the mesh. In order
to introduce this split data storage in the preprocessing, the
surfaces or faces of tetrahedrons are defined inside the structure.
Therefore, we can make extra calculations for the nodes laying on
each surface of the tetrahedron and make operations on the subset
of the available number of faces. After initialization processes,
the construction of three-dimensional spatial differentiation
matrix Dk (i.e., the geometrical coefficients) and the surface
information Sk (i.e., the normal coordinates with their direction
n̂ and the edge length) has been performed.

For every two neighboring nodes lying on adjacent faces
of vicinal elements, there exist same coordinates r in space
which can take different field values. Therefore, the three-
dimensional electromagnetic fields differences ∆E and ∆H
between every two neighboring surface nodes have to be
computed, by exploiting those above two global index maps
vmapM, vmapP. In order to address lack of local solution
uniqueness, the numerical flux F∗ is calculated through the
combination of the electromagnetic field differences ∆E, ∆H
and the surface information Sk. This numerical flux F∗ together
with LIFT matrix (M k)−1F k computes the second half of the
time discrete right-hand side of Maxwell’s Equations (4) and
(5) on each surface node, called Maxwell’s surface kernel.

However, the time-step process for Maxwell’s volume kernel
computes first half of time discrete right-hand side of Maxwell’s

Equations (4) and (5) inside each volume tetrahedron element.
This is performed by utilizing the spatial differentiation matrix
Dk and the initial values defined for electromagnetic fields E
and H. Thus, their sum forms the arithmetic-intensive system of
ordinary differential Equations (4) and (5). After that, for each
time-step size ∆t, the computed right-hand side of Maxwell’s
equations, initial fields values E,H, and Runge-Kutta coefficients
A,B lead to the updated local numerical solution for fields. This
is done via explicit time integration using a fourth order, five
stages Runge-Kutta scheme as described in Equation (6).

C. Implementation of SYCL-based Maxwell’s (SBM) solver

The C-based Maxwell’s (CBM) solver has been ported to
C++17 and SYCL and uses high-level abstractions in terms
of specialized data structures, operators and other features
exploiting modern C++ features.

1) Modern C++ features: This section presents a case
study of the time domain solution for three-dimensional
Maxwell’s equations, while establishing high-level abstractions
and introducing modern C++ programming language features,
transformations, and optimizations. Therefore, as a consequence,
we hind away the computations in function calls and macros,
which makes it more semantic, structured and easy to understand
with the cleaner division between application initialization steps
and the infrastructure.

In the following, we introduce the high-level C++ program-
ming features and the semantic data structures of appropriate
operators to get convenient access to the computations in the
SBM solver. This abstracted implementation is later used as a
good test bed for applying new and state-of-the-art approaches
such as the SYCL programming paradigm.

a) Custom data types: The tetrahedron volume element
accesses the three-dimensional coordinates of the vertices
on a local tetrahedron element. To do that, we use custom
data types that represent with vectors and matrices without
the need for index accesses. Consequently, we can access
individual components of vectors, and on the other hand, we
can also perform computations on all three components at
a time, which provides a new possibility for vectorization.
Furthermore, the utilization of three-dimensional functions, for
example, flux, curl, Euclidean norm, dot and cross products, and
determinant, etc., in larger expressions of Maxwell’s equations
makes the implementation intuitive for the programmer, and
enables compiler-applied optimizations such as vectorization.

To represent faces of a tetrahedron, we introduced another
custom data type, which greatly simplifies the initial mesh
set-up by providing appropriate comparison operators. Further,
some memory is saved by storing of normal vectors n once for
each face instead of storing it for all the surface nodal points.

b) Kernel fusion: In our SYCL-based Maxwell’s (SBM)
solver, kernel fusion is applied. The fusion of Maxwell’s kernels
can be easily performed since the computations on volume
nodes are independent of the surface nodes. As a consequence,
it reduces extra buffer creation to store intermediate results
of surface and volume kernels, and also reduces extra global
memory accesses of type read or write. However, there is
a dependency between Maxwell’s kernels and Runge-Kutta



integration kernel as described previously in Section IV-B.
Maxwell’s kernel takes initial values of electromagnetic fields,
whereas the RK kernel updates the field values. Thus, in order to
fuse both Maxwell’s and RK kernels, we use a double buffering
technique to swap between initial and updated values of fields
for each RK stage.

2) SYCL features: SYCL introduces the concept of queues,
buffers, accessors and the command groups, which follows
significant code restructuring without requiring any significant
code additions.

For data storage, we set up a number of buffer objects
with corresponding sizes and types. Inside the queue scope,
we declare some accessors to make this data available to the
kernels. In case memory transfers are necessary, they will be
handled automatically by SYCL. However, the storage of data
is separated from the data accesses in SYCL.

Listing 1. Command group handler with the definition of accessors and parallel
for construct
buffer<real3_t, 2> b_E(range<2>{elems, 3});
[...]

queue.submit([&] (handler &cgh) {
auto a_E = b_E.get_access<access::mode::read>(

cgh);
[...]

cgh.parallel_for_work_group<class
fused_kernels>(nd_range<>(range<>(elems),
range<>(grpsize)), [=](group<> grp){
grp.parallel_for_work_item([=](nd_item<1> k

){
[...]

});});});

An abstraction in SYCL is the introduction of the command
group cgh concept via the handler object (see Listing 1)
compare to the respective OpenCL platform paradigm. The
command group includes all the necessary OpenCL commands
required to execute host data correctly, and this group of
commands is then submitted to the queue. The handler
object provides a link between the queue and a whole group of
commands. SYCL-specific accessors are always declared inside
the command group construct and are templated by the mode
of access as read, write or both to provide a fine control on
complex memory hierarchy. Before the execution of kernels, the
accessors implicitly build up a high-level task graph with all the
data dependencies captured by the SYCL run-time to determine
a correct and efficient schedule. It can be fully asynchronous
scheduled to execute kernels independently of the host code
until a programmer particularly requests access to the host
data. On the other hand, SYCL also allows the user to create
customized execution environments to handle all the resources
manually. However, we are keeping our SBM solver simpler
when implementing it in an implicitly parallel way and letting
the SYCL implementation do it automatically.

In this SBM solver, plain “for loops” of kernels are invoked
inside command groups using a parallel_for construct to
enqueue a kernel. This parallel_for construct makes the
language implicitly parallel and takes two arguments. The first
argument is the kernel execution range of parallel_for loop
that implicitly goes over all mesh elements. The second is the

execution of kernel defined in a C++-friendly lambda expression.
Kernels are also given a name defined as a class. We do not need
to provide any concrete memory layout or indexing anymore and
it is managed by SYCL that how to parallelize or schedule more
efficiently. We pass an index object in the kernel parameters,
which provides all the indices information around the current
work-item organized in a one-dimensional iteration space to
access the mesh elements. These extracted index coordinates
provide the flexibility to the user with adding an easy write
to the accessors and on the other hand, also allow to get data
access to other fields.

Besides this standard level of parallelism, SYCL en-
ables a new addition to the OpenCL model via “hierar-
chical parallel for” construct. We also applied the hier-
archical parallelism for invoking all three Maxwell’s and
Runge-Kutta kernels using parallel_for_work_group and
parallel_for_work_item constructs. It introduces the con-
cepts of work group and work item as in OpenCL, however,
frees the programmer from painful work-group synchronization
and provides the coarse grain work group level of parallelism
for better mapping to CPU-like architectures.

SYCL also provides a specific OpenCL interoperability
mode for the heterogeneous computing backend. For this, we
built higher-level SYCL kernels from plain OpenCL kernels
with help of Boost.Compute interoperability mode of triSYCL
implementation. The equivalent OpenCL objects can be retrieved
from the SYCL objects at any point in a SYCL application.
Inside the queue, cgh.set_args() allows a direct synergy of
higher level C++ single-source SYCL realm with the OpenCL
world to use existing libraries with no overhead. The SYCL
kernel arguments are set with a single variadic function call and
relieve the programmer from managing the explicit memory
transfers between host and devices.

V. EVALUATION

In the following, we evaluate those above mentioned SYCL-
based solvers and compare them to the original implementa-
tion [13] for a variant of three-dimensional unstructured grids
on CPU and GPU architectures.

First of all, we provide some details on the experimental set-
up and methodology, which are necessary to cover both relevant
cases. After that, besides an in-depth analysis of the programmer
efficiency, we also discuss the convergence, software complexity
and run-time performance for each of the presented solvers.

A. Experimental set-up and methodology

We compare the existing C-based Maxwell’s (CBM) solver
with our new SYCL-based implementations. As SYCL im-
plementation, we selected triSYCL [16]. Both variants of the
solver’s implementation are evaluated to automate the process
for a flexible number of cores and applied to a variety of
unstructured grids with different mesh sizes, such as 72, 1052,
1978, 5235 and 10 420 mesh elements. They are also analyzed
for various polynomial order p, e.g., linear, quadratic, cubic,
quartic, quintic, sextic, septic, and so on.

For evaluation and comparison, run-time measurements are
taken using a high-resolution timer. Further, we use open source



C and C++ Code Counter CCCC [26] tool for the programming
complexity analysis of original CBM and abstracted SBM
solvers. It allows the measurement of software product metrics,
such as, number of modules (NOM), lines of code (LoC) and
McCabe’s cyclomatic complexity, etc., and generates a report
organized as HTML document. In addition to that, Halstead’s
complexity metric is also computed statically from both variants
of code.

To test both implemented solvers, we use two Intel CPUs, i.e.,
Intel Xeon E5-2630 v2 at 2.60 GHz frequency and Intel Skylake
i7-6700 at a clock speed of 3.4 GHz and an NVIDIA GeForce
GTX 745 GPU. Intel Xeon E5-2630 v2 has a microarchitecture
of Ivy Bridge-EP (12 logical cores per socket), which exhibits
a theoretical maximum achievable single core double precision
(DP) performance of 20.8 giga floating point operations per
second (GFLOPS). However, Intel Skylake i7-6700 (8 logical
cores per socket) can perform 16 double precision (DP) floating
point operations (FLOPs) per cycle, and thus theoretically has a
54.4 GFLOPS performance per core. As the platform compiler,
we select CLANG 5.0.1.

B. Convergence

We verified the correctness of SBM implementations by
comparing resulted convergence rates. To this end, a local
updated field value of Maxwell’s solvers (i.e., y component of
electric field Ey) is tested against the given exact analytical
Ey value (Figure 2). Depending on a chosen polynomial order
p, additional unstructured nodal grid points N, suitable for
interpolation, can be carefully created to ensure a high-order
accuracy of Maxwell’s solvers. To ensure that interpolations on
nodal tetrahedra well behave for Maxwell’s solvers, we imply
minimizing an approximation to the Lebesgue constant, while
using non-equidistant construction for optimal Legendre-Gauss-
Lobatto (LGL) points on the reference tetrahedron with a Wrap
and Blend method [27].
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Fig. 2. Consequences of different polynomial order p (p refinement) and grid
elements K (h refinement) in terms of convergence for Maxwell’s equations
solvers at the final time t of 0.75 seconds

C. Software complexity metrics

In the following, we investigate the development efforts
for both code variants, i.e., CBM and abstracted SBM solver,
using quantitative software metrics. These metrics, in particular,

measure the program complexity, and at the same time,
development efforts and cost for parallelizing, tuning and porting
in software engineering.

a) Lines of code (LoC): LoC is one of the most widely used
and easily quantifiable metrics. To get suitable and comparable
results, we consider only LoC excluding empty lines, comments,
and certain statements like header inclusions. The original CBM
solver presented in Section IV-B has 1443 LoC both for host C
code and for all three kernels, whereas the SBM solver takes
only 323 LoC. This reduction in application complexity is
due to a series of simplifications provided by SYCL, such as
the reduced need for boilerplate code, custom data types and
consequent STL implementation, and in-line kernels.

However, the LoC metric does not take into account different
complexity of code lines. Thus, it is only a rough indicator of
real effort.

b) Halstead complexity metric: The Halstead complexity
metric [11] focuses on data streams by using fine-grained
operands and operators and model a quantitative measure of the
program module’s length and the programming effort directly
from source code to compare high-level parallel programming. It
is based on interpreting the source code as a sequence of unique
and total number of operators and operands (n1, n2,N1,N2),
respectively. The identifier, type name, type specifier and
constant are all counted as operands, whereas, storage class
specifiers, type qualifiers and reserved words are all treated
as operators. It is useful during development to assess code
quality of Maxwell’s equations solvers in both C and SYCL
languages. For this purpose, we investigate following four
Halstead’s measures to compare both CBM and SBM solvers.

• The Halstead’s length (N = N1 + N2) is the sum of the
total number of operators and operands in the program.

• The Halstead’s volume (V = N∗log2(n1+n2)) describes the
size of the implementation of an algorithm, and therefore,
is less sensitive to code layout than the LoC measures.

• The Halstead’s level (L = (2/n1) ∗ (n2/N2)) defined as
the inverse of the error-proneness or difficulty level D to
write or understand a program.

• The Halstead’s effort to implement (E = V/L) or
understand a program is proportional the volume V and to
the difficulty level D of the program.

TABLE I
PROGRAMMING COMPLEXITY METRICS FOR CBM AND SBM SOLVERS

Complexity CBM SBM CBM SBM
metrics solver solver kernels kernels

LoC 1 443 323 191 95
M 210 40 19 11
N 26 807 4 840 1 918 1 437
V 80 094 40 148 13 455 10 107
L 0.008938 0.009654 0.011182 0.012582
E 8 960 266 4 158 392 1 203 245 803 318

Table I compares both approaches in terms of data streams
of operands and operators for all four Halstead’s measures.



A low Halstead’s length and volume quantitatively indicate a
smaller size of implementation for the SBM solver. Further, the
high Halstead’s level of the SBM solver showcases that it tends
to contain fewer errors compared to the C-based Maxwell’s
(CBM) solver, which uses the same operands many times in the
program, and is more prone to errors. The smaller Halstead’s
effort quantitatively indicates that this abstracted SYCL case
study is easier to implement and understand.

c) McCabe’s cyclomatic complexity metric: The cyclo-
matic complexity metric [21] provides a quantitative measure-
ment based on the control flow graph of the program as:

M = edges count− nodes count + 2 ∗ connected parts count

This applies that the McCabe’s cyclomatic complexity number
M would be one if the source code has only a single path and
does not contain any control flow statements.

The higher M number for C-based Maxwell’s (CBM) solver
(Table I) quantitatively showcases the complexity of this original
code compared to our new SBM solver. It measures the higher
number of test cases that would have to be written to execute
all paths in a CBM solver. Evidently, the implementation of
our SBM solver has a comparatively very low number of basic
paths, which makes it easy to understand, and therefore, has a
lower probability of containing errors.

D. Run-time performance

The abstracted SYCL-based implementation is tested using
triSYCL [16], which under the hood does parallelization via
OpenMP. Results are compared for both the original C-based
Maxwell’s solver and the SYCL implementations. The run-time
comparison for both solvers on an NVIDIA GPU and two
different Intel x86 execution platforms is shown in Figures 3
and 4. The handling of data and memory in the SYCL port is
greatly simplified by using the SYCL-provided data structures.
However, in case of using triSYCL as the SYCL implementation,
these abstractions also come with a price, as memory accesses
need to go through a hierarchy of function calls and to wrap
data structures until the real memory location is revealed and
used.
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Fig. 3. Run-time comparison of both Maxwell’s solvers for cubic and sextic
polynomial orders with 1978 mesh elements on both Intel Syklake i7-6700
CPU and Intel Xeon E5-2630 v2 CPU platforms

The original CBM solver uses external ParMETIS library
for mesh partitioning which results in better performance.
Additionally, the CBM solver has been implemented using MPI,
i.e., a very explicit communication scheme where programmers
need to handle data transfers between the different processes
themselves. Current SYCL implementations do not provide
distributed-memory parallelism, so no explicit communication
statements and no data transfers can be specified, greatly
reducing the source of potential errors, but, of course, also
restricting the application to single nodes. While theoretically
it would be possible to implement a hybrid parallism concept
such as MPI+SYCL, this would violate the ideas and concepts
behind SYCL. Rather, a better route is to employ a SYCL
implementation that internally handles data transfers and exposes
a partitional global address space (PGAS) to the user. Basically,
SYCL already provides a task graph model from which data
dependencies could be derived and resolved accordingly.

As a consequence of the removal of MPI, all references
to ParMETIS and mesh partitioning have also been removed
from the SYCL port, meaning that adjacent mesh elements
are no longer stored at nearby memory locations. Since the
memory layout of all important data structures, e.g., of the
electromagnetic fields, follow the memory layout of the mesh,
this results in memory accesses with potentially larger distances
between each other, effectively reducing the number of cache hits
and thus performance. The reason for removal of all references
to MPI and mesh partitioning ParMETIS library is that we
are planning to introduce SYCL-matching programming model,
i.e., task-based like GPI for distributed-memory parallelization.
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Fig. 4. Run-time comparison of different implementations of SBM solvers
with CBM solver for cubic polynomial and K grid elements on heterogeneous
Intel Syklake i7-6700 CPU and NVIDIA GeForce GTX 745 GPU platforms

Our finding for these Maxwell’s solvers is that the interoper-
ability mode of the open-source triSYCL performs better in
comparison with other mentioned solvers for both heterogeneous
CPU and GPU platforms (Figure 4). Compared to pure SYCL
version, SYCL kernels are built from OpenCL kernels for this
interoperability mode. However, data storage and accesses still
done via SYCL buffers and accessors and OpenCL kernels are
still scheduled asynchronously by the SYCL run-time according
to the data parallel task graph model. The SBM interoperability
version outperforms the CBM with 49 % decrease in run-time
for order 3 and 1978 mesh elements. The reason for better



performance of the interoperability mode is that it encounters
less overhead for the memory accesses compare to pure triSYCL
implemenation which is quite immature at this stage. Further,
the multi-core CPU version can handle the unoptimized random
data accesses a way better than general-purpose GPU version.
Moreover, with switching on the hierarchical level of parallelism
for different work group sizes, we observe some level of
performance portability for our triSYCL implementation. The
results show that our new SYCL-based case study incorporates
a compact algorithmic description and, thus, is less error-prone.
Furthermore, it has a certain potential for performance portability
with satisfactory execution speed for the unstructured meshes.

VI. CONCLUSION

In this paper, we have presented a stable, accurate and
efficient implementation to solve Maxwell’s equations on an
unstructured mesh by using modern C++ features and SYCL,
an abstraction layer for single-source parallel programming of
heterogeneous devices built on top of the concepts and cross-
platform portability of OpenCL. Although SYCL status is still
in the phase of gathering feedback from C++ community, this
case study showcases that how the SYCL-based modern C++

implementation frees the developer from writing complicated
parallel codes, achieves user-friendly behavior, high productivity,
and throughput of algorithmic development for the domain of
unstructured grids on latest heterogeneous platforms.
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