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Abstract
In this thesis, we perform ab initio molecular dynamics (MD) simulations at the
Hartree-Fock level, where the forces are computed on-the-fly using the Born-Oppenheimer
approximation. The theory behind the Hartree-Fock method is discussed in detail and
an implementation of this method based on Gaussian basis functions is explained. We
also demonstrate how to calculate the analytic energy derivatives needed for obtaining
the forces acting on the nuclei. Hartree-Fock calculations on the ground state energy,
dipole moment, ionization potential, and population analysis are done for H2, N2, FH,
CO, NH3, H2O, and CH4. These results are in perfect agreement with the literature.
Ab initio MD calculations with different Gaussian basis sets, are performed on the
diatomic systems H2, N2, F2, FH, and CO, for equilibrium bond length and vibration
frequency analysis. Finally, a study on the reaction dynamics of the nucleophilic sub-
stitution reaction H– +CH4 −−→ CH4 +H– is done, illustrating the importance of the
initial vibrational energy of the methane molecule for the reaction to occur.
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Chapter 1

Introduction

Classical molecular dynamics (MD) is a well-established tool that highlights the dy-
namical nature of molecular interactions. Its applications range from biological folding
processes [3] to material formation mechanisms [4]. At this level of theory, the evolu-
tion of the system is followed by solving the classical equations of motion for all the
particles in the system. The interatomic interactions are described by a predefined
potential based on empirical data and/or independent electronic structure calcula-
tions. The potential is represented by a specific functional form and is typically broken
up into two-body and many-body contributions, long-range and short-range terms,
electrostatic and non-electrostatic interactions, etc. [5]. Predefined potentials lead to
tremendous computational simplifications, but finding them is a nontrivial task. This
is due to the large variety of interatomic interactions that exist between different atoms
and molecules. These interactions are determined by the electronic structure of the
system.

An alternative to traditional MD is to perform quantum mechanical calculations to
determine the interatomic interactions. In this approach the forces acting on the nuclei
are computed on-the-fly using electronic structure calculations, as the atomic trajecto-
ries are generated. Thus, the electronic degrees of freedom are no longer represented by
fixed interaction potentials, but are active during the dynamical simulations. The fam-
ily of methods based on this approach are referred to as ab initio MD1. This extension
of classical MD makes it possible to handle complex systems in which the electronic
structure changes drastically during the simulation. These systems are generally very
difficult to model by predefined potentials.

By basing computations on first principles quantum mechanics, it is possible to
overcome the lack of experimental data to carry out accurate predictions with atom-
istic resolution. This would otherwise be impossible. Furthermore, quantum mechanics
provides the fundamental information required to describe quantum effects, electroni-
cally excited states, as well as reaction paths and barrier heights involved in chemical
reactions processes.

Putting MD onto an ab initio grounds implies that the approximation is shifted
from the level of predefining an interaction potential, to the level of selecting a method

1Other common names are for instance first principles, on-the-fly, direct, extended Lagrangian, or
just quantum molecular dynamics amongst others [5].
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4 Introduction Chapter 1

for solving the Schrödinger equation. It is a matter of course that a price has to be paid
for performing calculations at a more fundamental level. The drawback in ab initio
simulations is the limitations in length and time scale compared to what is doable
with traditional methods. It is therefore necessary to have efficient theoretical and
computational methods for being able to bridge the gap between quantum mechanical
calculations and MD simulations.

An obvious candidate for electronic structure calculations in ab initio MD, is the
Hartree-Fock method. Although this method is inadequate for accurate quantum me-
chanical studies, it is one of the few methods that can be applied to large molecular
systems. Furthermore, the Hartree-Fock theory is a central starting point for more
sophisticated and accurate many-body methods, such as Møller-Plesset perturbation
theory and coupled-cluster methods [2, 6, 7].

The aim of this thesis is to implement an efficient and modular many-body quan-
tum mechanics code. Our intention is to use this code in ab initio MD calculations
and/or parameterization of predefined potentials. In particular, the focus is on the
Hartree-Fock method. The implementation of this method is based on Gaussian basis
functions for efficient computation of many-center molecular integrals [7]. Although
this thesis focuses on the transition from quantum mechanics to MD, the code is writ-
ten in a general way such that it can easily be used for pre-calculations in pure quantum
mechanical studies. A possible application is to perform Hartree-Fock calculations to
find optimal single-particle wave functions for quantum Monte-Carlo studies [8].

Thesis Structure
The thesis is structured in the following way:

• The first part, Chapters 2 to 5, presents the underlying theoretical models. In
particular, Chapter 2 introduces the basic concepts of quantum mechanics and
many-body theory with focus on the Hartree-Fock method. The reader is assumed
to have a basic understanding of the most fundamental features of quantum
mechanics and the Dirac notation [9]. Chapter 3 gives an introduction on the
most used basis sets in many-body calculations, with focus on Gaussian basis
sets. In Chapter 4, we present the techniques, provided by the McMurchie-
Davidson scheme [7], for efficient evaluation of one- and two-electron molecular
integrals. Finally in Chapter 5, the transition from quantum mechanics to MD is
discussed. This chapter includes a derivation of classical MD, starting from the
time-dependent Schrödinger equation.

• In the second part, Chapters 6 to 8, the implementation of the codes is presented,
in addition to tools and software used during the development. The reader is
assumed to have some background in programming and to be familiar with the
programming languages C++ and Python.

• In the final part, the results from our calculations are presented. In Chap-
ter 9, we present the Hartree-Fock results from calculations on various molecules,
used to benchmark the code. These results include the ground state energy,
dipole moments, ionization potentials, and population analysis. In this chapter,
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some graphical models, obtained from Hartree-Fock calculations, are also dis-
cussed. In Chapter 10, the results from MD simulations are presented. These
include equilibrium bond length calculations and vibrational frequency analy-
sis, in addition to studies on dynamics of the nucleophilic substitution reaction
H– + CH4 −−→ CH4 + H–.

• Chapter 11 concludes this thesis and provides suggestions for possible extensions.





Part I

Theory
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Chapter 2

Hartree-Fock Molecular Orbital
Theory

In molecules, electrons are shared among the atoms to form chemical bonds. This
determines the molecular structures. But electrons are quantum mechanical particles
and must be treated by the laws of quantum mechanics. Therefore, in order to de-
scribe molecular structures, a theory where the quantum mechanical properties of the
electrons are incorporated, is needed. Molecular orbital theory is one such theory. The
fundamental idea is that the electrons are no longer deterministically given defined
coordinates. Their position is described according to a probability distribution func-
tion, defining all the possible positions. Moreover, the electrons are not assigned to
individual bonds between atoms. They are ”smeared out” across the molecule.

The basis of molecular orbital theory is the Hartree-Fock method, which is the
cornerstone of electronic structure theory [7]. The importance of this method cannot
be overemphasized in quantum chemistry, and investigating it in detail will provide
a good understanding of the many-electron problem. Hartree-Fock is also a central
starting point for more sophisticated and accurate methods, such as the non-variational
Møller-Plesset and coupled-cluster methods [2]. Although the Hartree-Fock method by
itself is inadequate for accurate studies, it is still one of the few methods that can be
applied to large molecular systems. Therefore, it is a natural method to use in ab initio
molecular dynamics (MD) schemes.

In this chapter we will first give a brief overview of the fundamental features of
quantum mechanics. We present how to handle the many-electron problem, using the
Hartree method and later the Hartree-Fock method. The fundamental equations in
Hartree-Fock theory, will be derived and discussed. In the final part of this chapter,
the application on closed and open shell systems is discussed, using the restricted and
unrestricted Hartree-Fock method.

The first part of this chapter is heavily influenced by Chapter 4 of Ref. [10]. The
derivation of the Hartree-Fock equation is done in line with the derivation given in
Chapter 4 of Ref. [11], while the discussion of restricted Hartree-Fock (RHF) and
unrestricted Hartree-Fock (UHF) is inspired by Chapter 3 of Ref. [6]. For a more
detailed description of quantum theory, the reader is referred to standard texts such
as Refs. [9, 12].

9



10 Hartree-Fock Molecular Orbital Theory Chapter 2

2.1 Key Features of Quantum Mechanics
The foundations of quantum mechanics are the postulates. These are theoretical princi-
ples based on experimental observations which the applications of quantum mechanics
are built on [10]. The fundamental idea in quantum theory is that any (physical) system
can be described by a wave function, Ψ. Any measurable property of the system can be
obtained by letting an appropriate operator act on the wave function. Mathematically
this can be written as

OΨ = oΨ, (2.1)

where O is an operator and o is a scalar value for some property of the system. This
equation is nothing but an eigenvalue problem, if we think of Ψ as anN -element column
vector and O as an N×N square matrix. This analogy hints that linear algebra plays a
central role in quantum mechanics. In fact, linear algebra is the mathematical language
of quantum mechanics.

The physical interpretation of the wave function is as follows. The product with its
complex conjugate (i.e. |Ψ∗Ψ|) represents the probability density for a system to be
found within some region of a multi-dimensional space. The probability interpretation
leads to the requirement that the wave function has to be normalizable, i.e. the integral
of |Ψ∗Ψ| over all space must be 1. Without this, the probability interpretation would
not be possible. Additionally, Ψ has to be single valued and continuous [9].

As discussed in Ref. [10], the best description of Ψ at this point is that it is an oracle;
when queried with questions by an operator, it returns answers. The exact form of the
wave function is often not known, but there are, fortunately, several theories on how
to approximate it for a many-body system. One such theory is Hartree-Fock.

2.1.1 Hamiltonian Operator

Associated with each measurable parameter in a system, is a quantum mechanical
operator. The Hamiltonian operator, H, is the most central one and returns the energy,
E, of the system as an eigenvalue, when Eq. (2.1) holds;

HΨ = EΨ. (2.2)

This equation is the time-independent or stationary Schrödinger equation [12].
Hamiltonian for a system consisting of Ne electrons and Nn nuclei with charges Zn

reads

H = −
Ne∑
i=1

h̄2

2me
∇2
i −

Nn∑
n=1

h̄2

2Mn
∇2
n +

1

4πϵ0

1

2

Ne∑
i,j=1
i ̸=j

e2

|ri − rj |
(2.3)

− 1

4πϵ0

Nn∑
n=1

Ne∑
i=1

Zne
2

|ri − Rn|
− 1

4πϵ0

1

2

Nn∑
n,m=1
n̸=m

ZnZme
2

|Rn − Rm|
.
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The indices i and j refer to the electrons, while n and m refer to the nuclei, me is
the electron mass, and Mn is the mass of nucleus n. The first two terms represent
the kinetic energy of the electrons and the nuclei, while the third and fourth terms
represent the Coulomb repulsion between the electrons, and the Coulomb attraction
between the electrons and nuclei, respectively. Finally, the last term contains the
Coulomb repulsion between the nuclei. Note that this Hamiltonian depends on the set
of positions {ri} and {Rn} of the electrons and nuclei, respectively. Thus, we expect
the wave function of the system to also depend on the positions of electrons and nuclei.

For a molecular system, the eigenvalue problem in Eq. (2.2) can in general have
many solutions Ψi, each with an associated eigenvalue Ei. These solutions will form
a complete basis, which we can, without loss of generality, assume to be orthonormal.
Mathematically this means that

∫
Ψ∗
iΨj dr = δi,j , (2.4)

where the integral is taken over a generalized 3(Ne + Nn)−dimensional volume ele-
ment dr. Note that r = r({ri}, {Rn}), and must not be confused with the electronic
coordinates ri.

The energy Ej associated with Ψj is found by considering Eq. (2.2) for a specific
Ψj . By multiplying a general Ψ∗

i from left and integrate over the generalized space, we
get

∫
Ψ∗
iHΨj dr = Ejδi,j . (2.5)

When the wave function Ψj is known, we can find the associated eigenvalue Ej just by
solving the integral on the left hand side with i = j. This recipe is quite straightforward,
but solving the integral in Eq. (2.5) can be quite demanding.

2.1.2 The Variational Principle

An important element in several many-body theories is the variational principle [12],
which will be used frequently in the rest of this thesis. A detailed description of this
concept will therefore be given in the following.

We consider Ψ to be some appropriate wave function for a system, and define an
arbitrary but complete set of orthonormal wave functions Ψi, which satisfy Eq. (2.2).
Using this complete set, Ψ can be expressed as a linear combination, given by

Ψ =
∑
i

ciΨi, (2.6)

where ci are unknown coefficients, which define how the basis functions combine to
form Ψ. The normality of Ψ imposes a constraint on the coefficients, which is easily
derived from
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1 =

∫
|Ψ∗Ψ|dr

=

∫ ∑
i

c∗iΨ
∗
i

∑
j

cjΨj dr

=
∑
i,j

c∗i cj

∫
Ψ∗
i Ψj dr

=
∑
i,j

c∗i cjδi,j

=
∑
i

|c∗i ci|. (2.7)

The element |c∗i ci| is the probability that a measurement of the energy would yield the
value Ei. It is therefore clear that the sum of these probabilities should be 1 as shown
in Eq. (2.7). The interpretation of the coefficients becomes more clear by inserting
Eq. (2.6) into Eq. (2.5), leading to

∫
Ψ∗HΨ dr =

∫ ∑
i

c∗iΨ
∗
i

H

∑
j

cjΨj

dr

=
∑
i,j

c∗i cj

∫
Ψ∗
i HΨj dr

=
∑
i,j

c∗i cjEjδi,j

=
∑
i

|c∗i ci|Ei. (2.8)

Thus, the energy associated with the wave function Ψ can be determined from all the
coefficients ci and the eigenvalues Ei.

Now, we assume E0 to be the lowest value in the set of energies. By combining the
results from Eqs. (2.7) and (2.8), we can write

∫
Ψ∗HΨdr − E0

∫
|Ψ∗Ψ|dr =

∑
i

|c∗i ci|(Ei − E0). (2.9)

Since |c∗i ci| is always real and positive and (Ei −E0) ≥ 0 by definition, the right hand
side will always be greater or equal to zero. This means that we have

∫
Ψ∗HΨdr∫
|Ψ∗Ψ|dr ≥ E0. (2.10)

The last equation is the variational principle in mathematical notation. This principle
gives us a way to judge the quality of an approximated wave function, which not
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necessarily needs to be represented by a linear combination. Any variation in the
trial wave function that lowers the approximated energy, is necessarily making the
approximated energy closer to the exact answer, and the trial wave function closer to
the true ground state wave function.

2.1.3 The Born-Oppenheimer Approximation

The molecular Hamiltonian, given in Eq. (2.3), contains of pairwise attraction and re-
pulsion terms. This implies that no particle is moving independently of all the others.
Because of this interdependency, the stationary Schrödinger equation may be quite de-
manding to solve. This problem can, however, be alleviated by the Born-Oppenheimer
approximation [10].

The Born-Oppenheimer approximation consists of separating the degrees of freedom
of the nuclei, from those of the electrons. This approximation is justified in most cases
because of the high nuclear to electron mass ratio. It is therefore intuitively clear
that the nuclei move much more slowly than the electrons and can be considered as
fixed. This leads to a Hamiltonian for the electrons in the field generated by a static
configuration of nuclei, and a separate equation for the nuclei in which the electronic
energy enters as a potential.

We are mainly interested in the Hamiltonian for the electrons, which reads

Hel = −
Ne∑
i=1

h̄2

2me
∇2
i +

1

4πϵ0

1

2

Ne∑
i,j=1
i̸=j

e2

|ri − rj |
− 1

4πϵ0

Nn∑
n=1

Ne∑
i=1

Zne
2

|ri − Rn|
. (2.11)

Thus, the (stationary) electronic Schrödinger equation can be expressed as

(Hel + VN )Ψel

(
{ri}; {Rn}

)
= EelΨel

(
{ri}; {Rn}

)
, (2.12)

where VN is the nuclear-nuclear potential energy term in Eq. (2.3). The subscript ”el”
emphasizes the use of the Born-Oppenheimer approximation. Note that the electronic
wave function is a function of electronic degrees of freedom, but depends parametrically
on the nuclear coordinates. This is the reason for using a semicolon instead of a comma
in the variable list of Ψel. Moreover, VN is constant for a given set of fixed nuclear
coordinates. This means that we can solve Eq. (2.12) without including VN , since the
wave function is invariant with respect to the appearance of constant terms in the
Hamiltonian [9].

The Born-Oppenheimer approximation is the foundation of the important concepts
of potential energy surface (PES). The concept reflects the relationship between the
energy of a molecule (or a collection of molecules) and its geometry, which is of great
interest in many cases. However, without the Born-Oppenheimer approximation, this
concept wouldn’t be meaningful at all.
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2.2 Construction of Trial Wave Functions
By applying the Born-Oppenheimer approximation, we can concentrate on solving the
(stationary) electronic Schrödinger equation, given in Eq. (2.12). Solving this equa-
tion, however, is still a very demanding task and often not doable at all without further
approximations. The difficulty lies in the pairwise repulsion term in the Hamiltonian,
which implies that no electron moves independently of all other electrons. That is, the
motion of the electrons is correlated1. Moreover, we also have a serious dimensionality
problem. Solving Schrödinger’s equation for a system consisting of Ne electrons, in-
volves solving a partial differential equation in 3Ne dimensions. This quickly becomes
unfeasible, as the number of particles increases, using any of the standard methods for
solving partial differential equations.

From the discussion above, it seems quite hopeless to try to solve the electronic
Schrödinger equation exactly. Instead of trying to solve this equation directly, one
usually makes a guess on the wave function and uses the variational method to judge
the quality of the guess. The wave function with the lowest energy eigenvalue, is
believed to be closest to the ground state.

In the following, we will cover how one goes about constructing the trail wave
function. We start by discussing a molecular system consisting of just one electron,
and move thereafter to many-electron systems.

We will hereafter use lowercase Greek letters for one-electron wave functions and
uppercase Greek letters for many-electron wave functions. We also drop the subscript
”el” in Eq. (2.12), and unless otherwise specified, all wave functions are electronic wave
functions, with a parametrical dependency on nuclear coordinates.

2.2.1 The Concept of an Orbital
Before we proceed, we need to define what we mean by an orbital. In essence an orbital
is the (spatial) wave function of a single electron in an atomic or molecular system2. A
simple picture used to describe molecular systems, is that the electrons occupy orbitals.
That is, each electron takes an orbital as its wave function. As we will see shortly, these
orbitals are combined either as a simple product or antisymmetrized products to form
the total wave function. This picture is in reality an approximation. The true wave
function will depend on the simultaneous coordinates of all the electrons. However,
despite the huge simplification of the many-electron problem, the concept of an orbital
turns out to be very useful, because it reduces the many-electron problem to the same
number of one-electron problems.

To distinguish between orbitals in an atomic system and a molecular system, we
will hereafter use the terms atomic orbitals (AOs) and molecular orbitals (MOs). The
major difference between AOs and MOs, is that the latter will depend implicitly on
the coordinates of more than one nucleus, while AOs only depend on the coordinates
of one nucleus.

1The term correlation is central in quantum chemistry, and is used to describe the interdependency
between the electrons, usually beyond what is described in the Hartree-Fock method.

2If we take electron spin into account, the term orbital can also be used for the spatial wave function
of pair of electrons, with opposite spin function.



Section 2.2 Construction of Trial Wave Functions 15

2.2.2 The LCAO Basis Set Approach

We consider a molecular system consisting of just one electron. The electronic wave
function for this system depends on the fixed nuclear coordinates and the three Carte-
sian coordinates of the single electron. If our system had only one nucleus as well, we
have the hydrogen atom, where Eq. (2.2) can be solved in closed form. The resulting
eigenfunctions are the well-known hydrogenic AOs; 1s, 2s, 2p, 3s, 3p, 3d, etc. [12]. Our
suggestion is that these orbitals may be useful, as functions, for constructing MOs in
more complex systems. We may represent an MO ϕ, as a linear combination of AOs;

ϕ =

M∑
i=1

ciφi, (2.13)

where each AO φi is multiplied by a corresponding coefficient ci, reflecting the contri-
bution to the MO. This representation is known as the linear combination of atomic
orbitals (LCAO), which is a fundamental idea in molecular orbital theory. The AOs
don’t necessarily need to be the hydrogenic orbitals. We could use orbitals of multi-
electron atoms, which are qualitatively similar to those of hydrogen. However, Eq. (2.2)
cannot be solved in closed form for these systems, and numerical methods must be ap-
plied. Once we have found the AOs for the multi-electron system, we can use them to
express MOs, according to Eq. (2.13).

An example on how AOs can be used to represent MOs is shown in Figure 2.13.
This figure shows the shape of the lowest MOs of H2O. These are constructed from the
available AOs of oxygen and hydrogen atoms. To be more specific, the figure shows
an isosurface4 of |φi|2 for each AO, and the resulting MOs (more correctly |ϕj |2),
constructed from the available AOs. Note that the number of MOs, is equal to the
number of AOs used to represent them.

It is very important to consider the basis set with AOs just as functions used
to construct MOs. We anticipate that AOs are efficient functions for representing
MOs, but this should not restrict our mathematical flexibility. For example, imagine a
molecular system consisting of several hydrogen atoms. From our knowledge about the
ground state of a single Hydrogen atom, we could naively limit ourselves to just use
the hydrogenic 1s function to represent MOs. But, from a mathematical standpoint,
this idea definitely restricts us. Ultimately, we have a mathematical problem. We
try to represent an arbitrary function by a combination of more convenient functions.
More AOs will bring the basis closer to spanning the true MO space. It should also be
emphasized that sometimes it may even be more efficient to use rather unusual types
of functions to represent MOs5. The issues related to the choice of basis functions will
be discussed in much more detail in the next chapter.

The distinction of atomic single particle states as orbitals (that is occupied by
electrons) and as basis functions (not occupied by electrons) used to construct MOs,

3All orbitals in this figure were found by Hartree-Fock calculations. The visualizations are made by
cubeViz (see Appendix B.1).

4An isosurface is a surface that represents points of a constant value.
5As we will see in the next chapter, Gaussian functions turn out to be good candidates for repre-

senting MOs.
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Figure 2.1: Molecular orbitals (MOs) of H2O: combining seven atomic orbitals
(AOs) (left) to form the same number of MOs (right) with increasing orbital energy.
The oxygen atom (red) contributes with its 1s, 2s, 2px, 2py, and 2pz orbitals, while
the hydrogen atoms (green) contribute with their 1s orbital. The five lowest energy
orbitals are doubly occupied, while the two highest orbitals are unoccupied.

is critical in molecular orbital theory and one should avoid conceptually mixing them.
This is discussed in more detail in Ref. [10].

The secular equation

MOs can be constructed as a linear combination of AOs, as shown in Eq. (2.13). But
the coefficients, reflecting the contribution of each AO to the MO, are not yet known.
We will in the following give an recipe on how to find them.

Assuming real functions, we have from Eqs. (2.10) and (2.13);



Section 2.2 Construction of Trial Wave Functions 17

E =

∫ ∑
i

ciφi

H

∑
j

cjφj

 dr

∫ ∑
i

ciφi

∑
j

cjφj

 dr

=

∑
i,j

cicj

∫
φiHφj dr

∑
i,j

cicj

∫
φiφj dr

=

∑
i,j

cicjHij∑
i,j

cicjSij
, (2.14)

where we have introduced the shorthand notation Hij and Sij for the integrals. These
are often referred to as matrix elements, but are also known as ”resonance integral”
and ”overlap integral”, respectively.

We are interested in the coefficients that minimize the energy, so we require the
derivative of the energy with respect to each of the coefficients to be zero;

∂E

∂ck
= 0, ∀k. (2.15)

This gives rise to M equations that can be solved to find the M coefficients {ci}. After
performing the differentiation, these equations read

M∑
i

ci(Hki − ESki) = 0, ∀k. (2.16)

This is a linear algebra problem, which has a non-trivial solution, if and only if,
det(H − ES) = 0, i.e.∣∣∣∣∣∣∣∣∣∣

H11 − ES11 H12 − ES12 . . . H1M −ES1M
H21 − ES21 H22 − ES22 . . . H2M −ES2M

...
... . . . ...

HM1 − ESM1 HM2 − ESM2 . . . HMM −ESMM

∣∣∣∣∣∣∣∣∣∣
= 0. (2.17)

This equation is called the secular equation and has in general M roots, Ej . Each of
these gives rise to a different set of coefficients {cij} (by solving Eq. (2.16)), which will
represent the MO ϕj as

ϕj =
M∑
i=1

cijφi. (2.18)
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Here, index j is used for the MOs and index i for AOs. The set of coefficients which
gives the lowest energy eigenvalue, defines the ground state MO, and higher energies
define excited states.

2.3 Many-electron Wave Functions

In the previous section, we discussed how the wave function for a one-electron molecular
system can be constructed. We will now take the next step and show how the wave
function for a many-electron system can be approximated. We will do this in several
stages and increase the quality of the trail wave function gradually. As we will see, the
wave function will be based on the one-electron MOs, so that we can benefit from the
experience we have gained by studying the one-electron system.

2.3.1 Hartree Wave Function

The motion of one electron in many-electron systems, depends on the motion of all
the other electrons. This is due to the repulsion term in the Hamiltonian, given in
Eq. (2.11). We say that the electrons are correlated. We will for the moment, totally
ignore the interaction between electrons and simply drop the repulsion term. The
Hamiltonian in this case is separable and can be expressed as

H0 =

Ne∑
i=1

h i, (2.19)

where Ne is the total number of electrons, and h i is the one-electron Hamiltonian,
defined as (in atomic units, see Appendix A.1)

h i = −1

2
∇2
i −

Nn∑
n=1

Zn
|ri − Rn|

. (2.20)

The eigenfunctions of H0 can be expressed as a product of eigenfunctions of {h i}. That
is, the product

ΦH = ϕ1ϕ2 . . . ϕN , (2.21)

is an eigenfunction of H0, where the set {ϕi} are eigenfunctions of their respective
operator {h i}. This can easily be shown by
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H0ΦH = H0ϕ1ϕ2 . . . ϕN

=

Ne∑
i=1

h iϕ1ϕ2 . . . ϕN

= (h1ϕ1)ϕ2 . . . ϕN + ϕ1(h2ϕ2) . . . ϕN + · · ·+ ϕ1ϕ2 . . . (hNϕN )

= (ϵ1ϕ1)ϕ2 . . . ϕN + ϕ1(ϵ2ϕ2) . . . ϕN + · · ·+ ϕ1ϕ2 . . . (ϵNϕN )

=

Ne∑
i=1

ϵiϕ1ϕ2 . . . ϕN

=

 Ne∑
i=1

ϵi

ΦH , (2.22)

where we have used that

h iϕi = ϵiϕi, (2.23)

with ϵi as the energy eigenvalue of ϕi. Thus, the energy eigenvalue of ΦH is simply given
as the sum of the one-electron energy eigenvalues. The approximated wave function in
Eq. (2.21) is known as the Hartree product, thereby the subscript ”H”, and is one of
the simplest trail wave functions for a many-body system.

What we have done so far is simple and straightforward, but also not correct since
the interactions between the electrons are totally ignored. We will now include the
electron repulsion term in the molecular Hamiltonian and see if we can improve the
quality of the Hartree product. One option is to use the one-electron functions {ϕi},
that minimize the expectation value of the Hamiltonian. This can in practice be done
by applying variational calculus, which is described in details in Section 2.4.1. It turns
out that each of the optimal functions are eigenfunctions of their own operator h i,
given as

h i = −1

2
∇2 −

Nn∑
n=1

Zn
|r − Rn|

+ V H
i {j}, (2.24)

where the last term represent the interaction with all other electrons, occupying orbitals
{j} and is given by

V H
i {j} =

∑
i ̸=j

∫ |ϕj |2

|r − r′| dr′. (2.25)

This term is known as the Hartree potential, and is very much like the second term
in h i, but it involves an integration. This is because electrons are treated as wave
functions. Their charge will therefore be spread out, so integration over all space is
needed.

Now, Eq. (2.23) can be solved with the improved operators in Eq. (2.24) to find
optimal one-electron functions. These functions can thereafter be used in the Hartree
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product. However, due to the interaction term, the one-electron Hamiltonians depend
on the eigenfunctions themselves. Therefore, we need to apply the Self-Consistent Field
(SCF) procedure. In this scheme, we make a first guess on all {ϕi}, which are used
to construct the one-electron operators. We thereafter solve Eq. (2.23) to obtain a
new set of functions {ϕi}. Intuitively, we expect this new set to be closer to the true
optimal set, and hence it makes sense to repeat the calculations with the new set. We
can keep doing this procedure, until the change in the calculated energy eigenvalues
are less than some chosen threshold criterion.

Instead of totally ignoring the repulsion term in the electronic Hamiltonian, we
have added an effective interaction potential, which we hope describes some of the
correlations between the electrons. This is indeed a better approximation, compared
to just dropping the repulsion term, but the Hartree-potential is still defective and
corresponds to a ”non-interacting” system. This doesn’t mean that the electrons do
not see each other—they indeed do—but the interaction is just included in an average
way, and hence their interaction is not accounted for instantaneously.

In addition to our simplified Hamiltonian, the wave function we have been using
is also very simplified, and usually referred to as the uncorrelated or independent-
particle wave function. From a statistical point of view, this approximation of the
wave function is analogous to saying that the probability P (A,B) for the event A and
B is equal to probability of event A multiplied with the probability of event B. This
would, of course, be true if events A and B were independent, but not otherwise.

2.3.2 Electron Spin and Antisymmetry

One very important thing we have totally ignored so far in this chapter, is the fact
that electrons are identical fermions. This impacts the form of the wave function, due
to the Pauli antisymmetry principle. The later states that the total wave function,
including spin, for identical fermions must be antisymmetric with respect to exchange
of the particles [9]. Mathematically, this can be written as

PijΨ
(
q1, . . . ,qi, . . . ,qj , . . . ,qN

)
= Ψ

(
q1, . . . ,qj , . . . ,qi, . . . ,qN

)
= −Ψ

(
q1, . . . ,qi, . . . ,qj , . . . ,qN

)
, (2.26)

where Pij is the permutation operator, which interchanges the coordinates of particle
i and j. Note that q includes not only the three Cartesian coordinates, but also the
spin, i.e. qi = (ri, si), where si is the spin coordinate of particle i.

The spin coordinate is an additional degree of freedom, but it differs from the
spatial degrees of freedom, in the sense that it is not continuous. The spin coordinate
of the electrons takes only two values; 1

2 or −1
2 . In order to span the spin space we

only need two functions; α(s) and β(s), with functional form;
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α

(
1

2

)
= 1, α

(
−1

2

)
= 0,

β

(
1

2

)
= 0, β

(
−1

2

)
= 1, (2.27)

where α(s) denotes spin up and β(s) denotes spin down. These functions are by
definition orthonormal;

∫
α∗ (s)α (s)ds =

∫
β∗ (s)β (s) ds = 1,∫

α∗ (s)β (s)ds =
∫
β∗ (s)α (s) ds = 0, (2.28)

Note that integration in spin space is a summation over two discrete values of s, i.e.

∑
s

ξ(s) = ξ

(
1

2

)
+ ξ

(
1

2

)
. (2.29)

Therefore, integration with respect to q, denotes a summation over s and an integral
over the spatial degrees of freedom;∫

dq ⇒
∑
s

∫
dr. (2.30)

2.3.3 Slater Determinant
The quality of the trail wave function increases if it is antisymmetric. This is because
it then provides a more complete description of the system. In the following we will
discuss how we can construct an antisymmetric trial wave function in terms of one-
electron MOs. This can be achieved by representing the wave function as a Slater
determinant;

ΨSD =
1√
N !

∣∣∣∣∣∣∣∣∣∣
 ψ1(q1) ψ2(q1) · · · ψNe(q1) 
ψ1(q2) ψ2(q2) · · · ψNe(q2) 

...
... . . . ...

ψ1(qNe) ψ2(qNe) · · · ψNe(qNe) 

∣∣∣∣∣∣∣∣∣∣
 , (2.31)

where Ne is the total number of electrons, and ψi(qj) is molecular spin orbital i,
occupied by electron j. Each element is a product of a spatial orbital (MO) and an
electron spin eigenfunction:

ψi(qj) = ϕi(rj)ξi(sj), (2.32)
where ϕi is a pure spatial function, and ξi is a spin function (either spin up (α) or
spin down (β)). In some cases it is more convenient to write the Slater determinant in
terms of the antisymmetrization operator (see Appendix A.2), defined as
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A ≡ 1

N !

∑
P

(−1)PnP, (2.33)

where Pn is the number of pair interchanges, and the sum goes over all permutations P.
The latter permutes the coordinates of the spin orbitals only, and not their label. By
using the antisymmetrization operator we can express the Slater determinant simply
as

ΨSD =
√
N ! AΨH, (2.34)

where ΨH = ψ1(q1)ψ2(q2) . . . ψN (qN ) is the well-known Hartree product wave func-
tion.

A more compact notation for the Slater determinant is

|ΨSD⟩ = |ψ1ψ2ψ3 . . . ψN ⟩ , (2.35)

where the prefactor (N !)−1/2 is implicit. Moreover, if two spin orbitals, say ψ1 and ψ2,
have the same orbital function but different spin function, we can write

|ΨSD⟩ = |ϕ21ψ3 . . . ψN ⟩ , (2.36)

where ϕ1 represents a pure spatial function and the subscript ”2” indicates that this
orbital is doubly occupied.

A nice property of determinants is that they change sign when any two rows (or
columns) are interchanged, which is equivalent to interchanging the coordinates of two
electrons. As a result, exchange of any two particle’s coordinates changes the sign of
the wave function. Furthermore, if two spin orbitals are equal, say ψ1 = ψ2, then the
Slater determinant will vanish. This is in agreement with Pauli’s exclusion principle,
stating that two electrons cannot occupy the same quantum mechanical state [9].

In a Slater determinant, every spin orbital is evaluated for all electronic coordinates.
That is, every electron is associated to every spin orbital. This is an attempt to include
the indistinguishability of the electrons, which is an important feature of quantum
mechanics. In a Hartree product, in contrast, the electrons are distinguishable. Here,
each electron is associated with only their own spin orbital; electron i occupies spin
orbital i, electron i+ 1 occupies spin orbital i+ 1 and so on.

Exchange hole

In a Slater determinant, the electrons are no longer uncorrelated, in contrast to the
Hartree product. To see how the correlation arises, we consider the probability density
for finding one electron with coordinates q1 and another with q2, simultaneously. To
make the algebra easier, we consider a two-electron determinant given as

ΨSD(q1,q2) = |ψ1ψ2⟩ . (2.37)

The desired probability density with this wave function, is found by expanding the
Slater determinant;
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ρ(q1,q2) = |ΨSD|2

=
1

2

∣∣ψ1(q1)ψ2(q2)− ψ1(q2)ψ2(q1)
∣∣2

=
1

2

[
|ψ1(q1)|2|ψ2(q2)|2 + |ψ1(q2)|2|ψ2(q1)|2

− ψ∗
1(q1)ψ2(q1)ψ

∗
2(q2)ψ1(q2)− ψ1(q1)ψ

∗
2(q1)ψ2(q2)ψ

∗
1(q2)

]
. (2.38)

In the uncorrelated case (that is, with Hartree product), the same probability density
is given by

ρ(q1,q2) = |ψ1(q1)|2|ψ2(q2)|2. (2.39)

We see already at this point the inclusion of correlations in a Slater determinant com-
pared to Hartree product. In the latter the probability density is simplified to be the
product of the one-electron probability densities.

The probability density for finding one electron with coordinates r1 and another
with r2, simultaneously, is given by (after integration of spin degrees of freedom):

ρ(r1, r2) =
1

2

[
|ϕ1(r1)|2|ϕ2(r2)|2 + |ϕ1(r2)|2|ϕ2(r1)|2

− ϕ∗1(r1)ϕ1(r2)ϕ∗2(r2)ϕ2(r1)δξ1ξ2δξ1ξ2

− ϕ1(r1)ϕ∗2(r1)ϕ2(r2)ϕ∗1(r2)δξ1ξ2δξ1ξ2
]
. (2.40)

Now, if ψ1 and ψ2 have opposite spin, the two last terms on the right hand side vanish.
Thus, opposite spin orbitals are still uncorrelated. This becomes particularly apparent
if we consider the case where ϕ1 = ϕ2

6:

ρ(r1, r2) = |ϕ1(q1)|2|ϕ1(q2)|2, (2.41)

which is exactly the result from the uncorrelated case7.
But if ψ1 and ψ2 have same spin (δξ1ξ2 = 1), the two last terms in Eq. (2.40) will

not disappear. In this case, when r1 = r2, the terms on the right hand side will cancel
and the probability density will be zero. This indicates that electron pairs with parallel
spin are kept apart, which is a correlation effect. One can imagine that every electron
is surrounded by an ”exchange hole”, where other electrons with the same spin are
hardly found. Electrons with opposite spin, on the other hand, are not affected by the

6The electrons are allowed to have the same spatial orbital in this case, since they have opposite
spins.

7Note that when ϕ1 ̸= ϕ2, the probability density is given as an average, in contract to Eq. (2.39).
This is a consequence of the indistinguishability of the electrons, which is not respected in the Hartree
product.
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exchange hole. It is important to realize that the occurrence of exchange holes, has
nothing to do with the electron-electron repulsion, but is rather a consequence of the
antisymmetric nature of the wave function. This phenomena will, however, as we will
see shortly, have a direct effect on the energy of the system.

Note that we have referred to exchange hole as a correlation effect, but usually the
term ”correlation effects” is reserved for all correlations apart from exchange, and it
is in this sense, we are going to use this term from now on. Also, note that, since
the motion of electrons with opposite spin remains uncorrelated, it is customary to
refer to a single determinant wave function as an uncorrelated wave function. In fact,
every trial wave function, which at most includes exchange effects, is referred to as an
uncorrelated wave function [10].

2.4 The Hartree-Fock Theory
Earlier in this chapter, we saw that optimal one-electron functions in a Hartree prod-
uct can be found as eigenfunctions of a set of one-electron operators. These operators
(Eq. (2.24)) occurred as a result of applying variational calculus to minimize the ex-
pectation value of the Hamiltonian, given in Eq. (2.11). We will in this section follow
the same strategy, but use one single Slater determinant as wave function, instead of
the Hartree product. In other words, we wish to find optimal spin orbitals in the Slater
determinant, by invoking the variational method. This is the basic philosophy behind
the Hartree-Fock method, which is a natural extension of the Hartree’s SCF procedure.

In the following subsections we will describe the Hartree-Fock method in detail and
derive the so-called Hartree-Fock equation. We will first give a formal derivation of
this equation, and thereafter discuss the physical meaning of it in its general form. The
derivations in this section are based on Chapter 4 of Ref. [11].

2.4.1 Derivation of the Hartree-Fock Equation
In this section we will derive the Hartree-Fock equation in its general spin orbital
form, by minimizing the energy expression for a single Slater determinant, and without
making any assumptions on the spin orbitals. Later in this chapter, we will discuss
restricted and unrestricted spin orbitals and derive the corresponding equations for
each case.

The derivation of Eq. (2.24) is analogous, but in that case, we use the Hartree
product as wave function instead of Slater determinant.

Expectation value of the energy

We start by rewriting the Hamiltonian in Eq. (2.11) as

H =

Ne∑
i=1

h i +
1

2

Ne∑
i,j=1
i̸=j

g ij , (2.42)

with
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h i = −1

2
∇2
i −

Nn∑
n=1

Zn
|ri − Rn|

, (2.43)

g ij =
1

|ri − rj |
, (2.44)

where Ne and Nn are the number of electrons and nuclei (with charge Zn), respectively.
Wee see immediately that h i is a one-particle operator, since it depends only on ri,
while g ij is a two-particle operator and depends on both ri and rj . In order to find
the expectation value of the energy, we need to know the expectation value of both h i
and g ij .

The expectation value of the one-particle operator h i is found by integrating over
both spatial and spin degrees of freedom:

⟨ΨSD|
Ne∑
i=1

h i |ΨSD⟩ = N !

∫
[AΨH]

†

 Ne∑
i=1

h i

 [AΨH] dq

= N !

Ne∑
i=1

∫
ΨH

∗ (h iA)ΨH dq (2.45)

where we have used that A†A = A2 = A, and that A commutes with H and thereby
with all h i as well (see Appendix A.2). Now, any permutation of electron coordinates
will make the integral zero because of the orthonormality of the spin orbitals. Therefore,
the only nonzero contribution is when there is no permutation of coordinates;

⟨ΨSD|
Ne∑
i=1

h i |ΨSD⟩ =
∫

ΨH
∗

 Ne∑
i=1

h i

ΨH dq

=

(∫
ψ∗
1h1ψ1 dq1

)
+

(∫
ψ∗
2h2ψ2 dq2

)
+ · · ·+

(∫
ψ∗
NhNψN dqN

)
=

Nso∑
k=1

⟨ψk| h |ψk⟩ . (2.46)

Note that we have dropped the subscript on h , since this term has the same form for
all i (i.e. for all electrons), which is not surprising since electrons are indistinguishable.
We have also changed the summation index from i to k, to clearly indicate that we are
summing over spin orbitals and not electrons, although the number of each is the same
(Ne = Nso).

The expectation value of the two-particle integral g ij is found in the same way;
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⟨ΨSD|
Ne∑

i,j=1
i̸=j

g ij |ΨSD⟩ = N !

∫
[AΨH]

†

 Ne∑
i,j=1
i ̸=j

g ij

 [AΨH]dq

= N !

Ne∑
i,j=1
i ̸=j

∫
ΨH

∗ (g ijA)ΨH dq. (2.47)

In this case, we will get a nonzero contribution when i and j are interchanged on one
side, in addition to the contribution from zero permutation;

⟨ΨSD|
Ne∑

i,j=1
i̸=j

g ij |ΨSD⟩ =
(∫

ψ∗
1(q1)ψ

∗
2(q2) g12 ψ1(q1)ψ2(q2)dq1 dq2

)
+ . . .

+

(∫
ψ∗
N−1(qN−1)ψ

∗
N (qN ) gN−1,N ψN−1(qN−1)ψN (qN )dqN−1 dqN

)
−
(∫

ψ∗
1(q1)ψ

∗
2(q2) g12 ψ2(q1)ψ1(q2) dq1 dq2

)
− . . .

−
(∫

ψ∗
N−1(qN−1)ψ

∗
N (qN ) gN−1,N ψN (qN−1)ψN−1(qN )dqN−1 dqN

)
=

Nso∑
k,l=1

⟨ψkψl| g |ψkψl⟩ − ⟨ψkψl| g |ψlψk⟩ , (2.48)

where we have used the following notation in the last step:

⟨ψkψl| g |ψmψn⟩ =
∫
ψ∗
k(q)ψ∗

l (q′)
1

|r − r′| ψm(q)ψn(q
′)dq dq′. (2.49)

The negative sign in front of the second term in Eq. (2.48) arises because all permuta-
tions which yield a single interchange of electron coordinates will be generated by an
odd power of the permutation operator (Pn in Eq. (2.33) is odd).

Note that we have dropped the indices on g and changed the summation indices,
for the same reason as before; electrons are indistinguishable. Moreover, the restriction
in summation is ignored, since

⟨ψkψl| g |ψkψl⟩ − ⟨ψkψl| g |ψlψk⟩ = 0,

when k = l. We are therefore allowed to sum freely.
By combining Eqs. (2.46) and (2.48), the expectation value of the energy can be

expressed as

E = ⟨ΨSD|H |ΨSD⟩

=

Nso∑
k=1

⟨ψk| h |ψk⟩+
1

2

Nso∑
k,l=1

⟨ψkψl| g |ψkψl⟩ − ⟨ψkψl| g |ψlψk⟩ , (2.50)
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where the electron coordinate indices on h and g operator are not needed, due to the
indistinguishability of electrons. We can rewrite this expression in a more compact
form, if we introduce the following operators;

Jlψ(q) =
∫
ψ∗
l (q′)ψl(q′)

|r − r′| dq′ ψ(q), (2.51a)

Klψ(q) =
∫
ψ∗
l (q′)ψ(q′)

|r − r′| dq′ ψl(q), (2.51b)

and further

J =
∑
l

Jl, K =
∑
l

Kl, (2.52)

which are known as the Coulomb and exchange operator, respectively. Using these
operators we can rewrite Eq. (2.50) as

E =

Nso∑
k=1

⟨ψk| h +
1

2
(J −K) |ψk⟩ . (2.53)

If we were to use a Hartree product as a trail wave function instead of a Slater determi-
nant, the expectation value of the energy is almost the same as the expression above,
but without the exchange term and with the constraint k ̸= l in the summation over l
in J . This is because the Coulomb part doesn’t cancel without the exchange term, in
the case k = l.

Variational method

In order to find optimal spin orbitals, we can apply the standard techniques of calculus
of variations. This is, we seek for an optimal set of single-particle states that makes
the energy functional in Eq. (2.53) stationary under infinitesimal changes; |ψm⟩ →
|ψm⟩+ |δψm⟩. The variation in spin orbitals is, however, not completely arbitrary and
has to satisfy the orthonormality requirement;

⟨ψk|ψl⟩ =
∫
ψ∗
kψl dr = δkl. (2.54)

By introducing the Lagrange multipliers Λkl [13], we can set up the Lagrange functional,
which we wish to minimize;

L[ψ1, ψ2, . . . , ψNso ] = E −
∑
kl

Λkl
(
⟨ψk|ψl⟩ − δkl

)
(2.55)

By applying an arbitrary change on one arbitrary spin orbital in this functional, and
require

δL = L[ψ1, ψ2, . . . , ψm + δψm, . . . ψNso ]− L[ψ1, ψ2, . . . , ψm, . . . ψNso ] ≡ 0,
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we obtain (by considering only first order terms of variation)

0 ≡ δL = δE − δ
∑
kl

Λkl ⟨ψk|ψl⟩

= δE −

∑
l

Λml ⟨δψm|ψl⟩+
∑
k

Λkm ⟨ψk|δψm⟩


= δE −

∑
k

[
Λmk ⟨δψm|ψk⟩+ Λkm ⟨ψk|δψm⟩

]
= δE −

∑
k

[
Λmk ⟨δψm|ψk⟩+ Λkm ⟨δψm|ψk⟩∗

]
, (2.56)

with

δE = ⟨δψm| h |ψm⟩+ complex conj.

+
1

2

∑
k

(
⟨δψmψk| g |ψmψk⟩+ ⟨ψkδψm| g |ψkψm⟩

− ⟨δψmψk| g |ψkψm⟩ − ⟨ψkδψm| g |ψmψk⟩
)
+ complex conj.

= ⟨δψm| h |ψm⟩+ complex conj.

+
∑
k

(
⟨δψmψk| g |ψmψk⟩ − ⟨δψmψk| g |ψkψm⟩

)
+ complex conj., (2.57)

where we have used

⟨ψk|δψm⟩ = ⟨δψm|ψk⟩∗ , (2.58a)
⟨ψm| h |δψm⟩ = ⟨δψm| h |ψm⟩∗ , (2.58b)

⟨ψmψk| g |δψmψk⟩ = ⟨δψmψk| g |ψmψk⟩∗ , (2.58c)

etc., which follow from the definition of the integrals, in addition to the symmetry
property of the two-electron element;

⟨ψkψl| g |ψmψn⟩ = ⟨ψlψk| g |ψnψm⟩ . (2.59)

By introducing the Fock operator, defined as

F = h + J −K, (2.60)

we can rewrite Eq. (2.56) to

⟨δψm| F |ψm⟩+ complex conj. =
∑
k

[
Λmk ⟨δψm|ψk⟩+ Λkm ⟨δψm|ψk⟩∗

]
. (2.61)
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Since the variations δψ∗ and δψ are arbitrary and independent, Eq. (2.61) will lead to
two equations;

Fψm =
∑
k

Λmkψk, (2.62a)

F∗ψ∗
m =

∑
k

Λkmψ
∗
k. (2.62b)

These two equations can be combined, by taking the complex conjugate of the last one
and subtract from the first one, to give∑

k

(Λmk − Λ∗
km)ψk = 0. (2.63)

Now, since the spin orbitals are orthogonal, they are linearly independent, which means
that the vector equation

∑
k

ckψk = 0, (2.64)

has only the trivial solution (all ck are zero). Therefore will Eq. (2.63) be true only if

Λmk = Λ∗
km.

Thus the Lagrange multipliers are elements of an hermitian matrix, and the two equa-
tions in Eq. (2.62) are simply the complex conjugate of each other and therefore equiv-
alent. By using these observations, we can formulate the minimization condition as

Fψm =
∑
k

Λmkψk. (2.65)

Since the the varied spin orbital ψm is chosen arbitrary, an identical equation will
appear for each spin orbital in the set {ψl}, resulting in Nso identical equations. The
constraint on the solutions of these equations is that they should be orthogonal, and
the Lagrange parameters must, therefore, be chosen such that this is the case. One
option is to set Λmk = δmkϵm, leading to

Fψm = ϵmψm, (2.66)

which is an eigenvalue equation, with ψm as an eigenfunction of F . The solutions of
this equation form an orthonormal set and by taking this set as our spin orbitals, the
constraint equation (2.54) will be satisfied automatically.

Eq. (2.66) is known as the Hartree-Fock equation, which can be solved to find opti-
mal spin orbitals that minimize the energy expression for a single Slater determinant.
However, because of the nonlinear nature of this equation, a SCF iterative procedure,
must be applied. The philosophy is the same as before; make a first guess on all the
one-electron wave functions {ψl} to construct the Fock operator, and thereafter solve
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Eq. (2.66) to obtain a new set of one-electron functions {ψl}, which we expect to be
closer to the true optimal set. We solve the same equation with the new set, and repeat
this procedure until self-consistency is reached, i.e. until spin orbitals used to construct
F are the same as its eigenfunctions. Note that in principle, the Hartree-Fock equation
has infinite number of solutions, but in practice only the Nso lowest eigenfunctions are
used to construct the Slater determinant. These solutions are usually referred to as
occupied spin orbitals, while the remaining solutions are referred to as hole or virtual
spin orbitals.

2.4.2 Hartree-Fock Equation - Physical Picture
By taking antisymmetry into account, the one-electron Hamiltonian in Eq. (2.24) can
be extended to

F = −1

2
∇2 −

Nn∑
n=1

Zn
|r − Rn|

+ V HF , (2.67)

where the last term is the interaction potential operator, and can be expressed in terms
of its action on an arbitrary state ψk(q);

V HFψk(q) =
∑
l

[∫
ψ∗
l (q′)ψl(q′)

|r − r′| dq′ ψk(q)−
∫
ψ∗
l (q′)ψk(q′)

|r − r′| dq′ ψl(q)
]
. (2.68)

These two terms are known as the direct term (or Coulomb term) and exchange term,
respectively. If we exclude l = k in summation, the direct term is nothing but the
Hartree potential given in Eq. (2.25). The latter describes the total averaged potential
acting on an electron in spin orbital ψk, arising from other electrons in other spin
orbitals. However unlike Eq. (2.25), the direct term contains coupling between orbital
k and itself, since we don’t have any restriction in summation over l. This is of course
unphysical, since an electron does not interact with itself. But, fortunately, this term
is canceled by the exchange term, so we can nevertheless sum freely over l.

The exchange term looks much like the direct term, except that it is nonlocal. This
means that when acting on ψk its value at q is determined by the value assumed by
ψk at all possible positions q′. The occurrence of this term is a direct consequence of
the antisymmetric form of the wave function, which lowers the Coulomb interaction
between the electrons with same spin. This is because these electrons are kept apart
(due to exchange hole), and therefore will their interaction be reduced. As mentioned
earlier, it is important to realize that this behavior has nothing to do with the electron-
electron repulsion, and is a direct consequence of the antisymmetric nature of the wave
function. But it does keep the electrons with parallel spin apart, and therefore reduces
their Coulombic interaction, which effect the energy of the system.

The Hartree-Fock equation (Eq. (2.66)) has the form of an ordinary Schrödinger
equation, although {ϵk} are primarily identified as Lagrange multipliers, and not en-
ergies. But they are, however, related to the total energy by
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E =

Nso∑
k=1

⟨ψk| h +
1

2
(J −K) |ψk⟩ =

Nso∑
k=1

ϵk −
1

2
⟨ψk| J − K |ψk⟩ . (2.69)

It is thus apparent, that the total energy is not simply the sum of all ϵk, which is
due to the double counting of electron-electron interaction between pairs of electrons
in
∑

k ϵk. We must therefore compensate for this by subtracting 1
2 ⟨ψk| J − K |ψk⟩.

In the literature, {ϵk} are often referred to as orbital energies, and attached physical
significance through Koopmans’ theorem [11].

Solving the Hartree-Fock equation yields a set {ψk} of orthonormal spin orbitals
with orbital energies {ϵk}. In principle, the set consists of an infinite number of so-
lutions, leading to an infinite Hartree-Fock spectrum. For a system consisting of Ne

electrons, the ground state is approximated by taking the Ne lowest eigenstates of this
spectrum as spin orbitals of the electrons (see Figure 2.2). It is, however, not a clear
a priori that the the ground state is found by filling the lowest eigenstates, since the
energy is not simply the sum of spin orbital energies. But in practical applications this
turns out to be the case anyway [11].

Figure 2.2: Hartree-Fock spectrum: schematic representation of how the levels are
filled for (a): the ground state of an even number of electrons, (b): the ground state
of an odd number of electrons and (c): an exited spectrum of an even number of
electrons.
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2.5 Closed- and Open-shell Systems
We have so far discussed the Hartree-Fock equation in a formal way, without specifying
the explicit form of the spin orbitals. In order to do actual calculations using the
Hartree-Fock method, we most be more specific about the form of the spin orbitals.
Depending on the choice of spin orbitals we can formulate two different versions of
Hartree-Fock; restricted Hartree-Fock (RHF) and unrestricted Hartree-Fock (UHF).
In RHF, the spin orbitals have the same spatial part for different spin function, and
is usually used to describe closed-shell systems, where all levels are doubly occupied.
To describe open-shell systems, where there are partially filled levels containing only
one electron, it is more common to use the UHF formalism8. In this case the spin
orbitals have different spatial functions for different spin functions. In Figure 2.3 both
restricted and unrestricted configurations are shown.

Note that a system with even number of electrons is not necessarily a closed-shell
system, because of the possibility of degenerate levels. In addition, we may also consider
an exited state where an electron is exited to a higher level. In this case two levels will
be partially filled and we are therefore dealing with an open-shell system, although the
number of electrons is even. A system with odd number of electrons will always be an
open-shell system.

We will in the following sections describe both RHF and UHF, where we restrict the
discussion about RHF to just closed-shell systems, although the formalism also can be
applied to open-shell systems [6]. To describe open-shell systems the UHF formalism
is usually used.

2.5.1 Restricted Hartree-Fock
In RHF, the spin orbitals are grouped in pairs with the same spatial wave function,
but opposite spin;

ψ2k(q) = ϕk(r)α(s),
ψ2k−1(q) = ϕk(r)β(s), k = 1, . . . , N/2, (2.70)

where N is the total number of spin orbitals. Using these spin orbitals, we can express
the ground state as

|ΨRHF⟩ = |ψ1ψ2ψ3 . . . ψN ⟩ = |ϕ21ϕ22 . . . ϕ2N/2⟩ , (2.71)

where the subscript ”2” indicates doubly occupied spatial orbitals. We now want to
replace the general spin orbital Hartree-Fock equation in Eq. (2.66), with a pure spatial
eigenvalue equation, by integrating out the spin degrees of freedom. Our starting point
is naturally, the general spin orbital Hartree-Fock equation:

8The unrestricted formulation is sometimes also applied on systems that are normally thought as
closed-shell systems, since it gives a better description than the restricted formalism does. One example
is the dissociation problem discussed in Ref. [6].
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Figure 2.3: Restricted and unrestricted spectrum: schematic representation of (a):
spin-restricted configuration and (b): spin-unrestricted configuration.

Fψk(q) = ϵkψk(q), (2.72)

where ψk can either have spin α or spin β function. We will assume that ψk has spin
α function, but identical results will be obtained with spin β function;

F ϕk(r)α(s) = ϵk ϕk(r)α(s). (2.73)

By multiplying α∗(s) from left, and integrating over spin, we obtain

hϕk(r) +
N∑
l=1

∫
α∗(s) (Jl −Kl)ϕk(r)α(s)ds = ϵk ϕk(r), (2.74)

where h remains the same since it has no spin-dependency. Now, in a closed-shell
system the sum over spin orbitals includes a sum over those with spin α function and
a sum over those with spin β function;

N∑
l=1

→
N/2∑
lα=1

+

N/2∑
lβ=1

,

so we can rewrite the integral in last equation as
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N∑
l=1

∫
α∗(s) (Jl −Kl)ϕk(r)α(s)ds =

N/2∑
lα=1

∫
α∗(s)

(
Jlα −Klα

)
ϕk(r)α(s)ds

+

N/2∑
lβ=1

∫
α∗(s)

(
Jlβ −Klβ

)
ϕk(r)α(s)ds

=

N/2∑
l=1

2Jl(r)−Kl(r), (2.75)

where Jl(r) and Kl(r) are analogous to definitions in Eq. (2.51), but in terms of spatial
orbitals only;

Jlϕ(r) =
∫
ϕ∗l (r′)ϕl(r′)
|r − r′| dr′ ϕ(r), (2.76a)

Klϕ(r) =
∫
ϕ∗l (r′)ϕ(r′)
|r − r′| dr′ ϕl(r). (2.76b)

The factor two in front of Jl arises, because the Coulomb terms are equal for spin α
and β, while the exchange term for spin β vanishes due to spin orthogonality.

The closed-shell Fock operator can thus be written as

F spatial = h + 2J spatial −Kspatial, (2.77)

where

J spatial =

N/2∑
l=1

Jl(r), (2.78)

Kspatial =

N/2∑
l=1

Kl(r). (2.79)

The corresponding energy functional is given by

E =

N/2∑
k=1

⟨ϕk| 2h + 2J spatial −Kspatial |ϕk⟩ . (2.80)

Note that the energy is a functional of spatial orbitals {ϕk}, and not spin orbitals {ψk},
as it was in Eq. (2.53). From now on, we will drop the subscript ”spatial” on operators
in Eqs. (2.77) and (2.80), and instead specify the spatial form of the Fock operator by
F(r). The original form of the Fock operator including spin will be specified as F(q).
The operators J and K, will be specified in the same way.
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2.5.2 Introduction of a Basis: The Roothaan Equation
By eliminating the spin, we are left with a spatial eigenvalue problem;

F(r)ϕk(r) = ϵkϕk(r), k = 1, . . . , N/2, (2.81)

where N is the total number of spin orbitals. This equation is in practice solved by
introducing a set of known basis functions {φp}, which expand the unknown spatial
wave functions (MOs);

ϕk(r) =
M∑
p=1

Cpkφp(r), (2.82)

where the expansion coefficients Cpk are not yet known. This is analogous to what
we did earlier in this chapter, when we discussed the LCAO basis set approach (see
Section 2.2.2). Although the basis functions are assumed to be normalized and linearly
independent, they are not in general orthogonal. Orthogonality is required among the
MOs, but not among the basis functions representing the MOs. If the set {φp} was
complete, we could represent the MOs exact, but in practice we are limited to use a
finite set of M basis functions, because of computational reasons. Since we are limited
to finite basis sets, it is important to choose a basis that describe the MOs efficient. In
the next chapter, we will discuss the questions involved in the choice of a basis set in
detail, but for now we will assume that the set {φp} is some known basis set.

By inserting the expansion in Eq. (2.82), into the Hartree-Fock equation, we obtain

F(r)
M∑
q=1

Cqkφq(r) = ϵk

M∑
q=1

Cqkφq(r), (2.83)

which can be converted to a matrix equation by multiplying φ∗
p(r) from left and inte-

grating;

M∑
q=1

Cqk

∫
φ∗
p(r)F(r)φq(r)dr = ϵk

M∑
q=1

Cqk

∫
φ∗
p(r)φq(r)dr. (2.84)

This equation can be rewritten if we introduce the overlap and Fock matrix with
elements;

Spq =

∫
φ∗
p(r)φq(r)dr, (2.85a)

Fpq =

∫
φ∗
p(r)F(r)φq(r)dr. (2.85b)

Using these, we can rewrite the Hartree-Fock equation as

M∑
q=1

FpqCqk = ϵk

M∑
q=1

SpqCqk, (2.86)
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which also is known as the Roothaan equation. This equation can be written more
compactly as

FC = SCϵ, (2.87)

where C is an M ×N/2 matrix;

C =


C1,1 C1,2 · · · C1,N/2

C2,1 C2,2 · · · C2,N/2
...

... . . . ...
CM,1 CM,2 · · · CM,N/2

 , (2.88)

and ϵ is a rectangular diagonal matrix of the orbital energies ϵk;

ϵ =


ϵ1

ϵ2 0
0 . . .

 . (2.89)

Note that it is the columns of C that describe the MOs, i.e. the first column in C are
the coefficients of ϕ1, the second column are the the coefficients of ϕ2 and so on.

The matrix representation of the Fock operator

F(r) = h +

N/2∑
l=1

2Jl(r)−Kl(r), (2.90)

in the basis {φp} is given by

Fpq =

∫
φ∗
p(r)

h +

N/2∑
l=1

2Jl(r)−Kl(r)

φq(r)dr

= hpq +

N/2∑
l=1

M∑
r,s=1

C∗
rlCsl

(
2gprqs − gprsq

)
, (2.91)

where

hpq = ⟨p| h |q⟩ =
∫
φ∗
p(r)hφq(r)dr, (2.92)

and

gprqs = ⟨pr| g |qs⟩ =
∫
φ∗
p(r)φ∗

r(r′)
1

|r − r′| φq(r)φs(r
′)dr dr′. (2.93)

Note that l labels the MOs {ϕl}, while p, q, r and s label the basis functions {φp}. By
defining the density matrix;
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Ppq = 2

N/2∑
l=1

CplC
∗
ql, (2.94)

we can rewrite the Fock matrix as

Fpq = hpq +
1

2

M∑
r,s=1

Prs

(
2gprqs − gprsq

)
. (2.95)

By inserting the expansion in Eq. (2.82) into the energy expression in Eq. (2.80), we
can express the energy in terms of the density matrix as well;

E =

N/2∑
k=1

⟨ϕk| 2h + 2J (r)−K(r) |ϕk⟩

=

M∑
pq

Ppqhpq +
1

2

M∑
pqrs

PpqPrs

(
gprqs −

1

2
gprsq

)

=
1

2

M∑
pq

Ppq(hpq + Fpq). (2.96)

The density matrix is directly related to the charge density, as it is shown in Ref. [6],
and can be used to characterize the Hartree-Fock results. In practice when using
the SCF procedure, we make a guess on the density matrix (or equivalently on the
coefficients Cpk), which is equivalent to make a guess on the charge density. With our
guess we construct the Fock matrix and solve Eq. (2.87), to obtain a new and better
set of coefficients, which can be used to calculate a new density matrix. This procedure
can be repeated until self-consistency, as described earlier in this chapter.

2.5.3 Orthogonalization of the Basis
As mentioned in the last section, a basis set used to represent MOs is not required to
be orthogonal. The only requirement is that the basis functions are normalized. The
consequence of using a non-orthogonal basis set, is the occurrence of the overlap matrix
S in Eq. (2.87), which is a generalized eigenvalue equation. Of course, if the basis set
is an orthonormal set, then the overlap matrix is just the identity matrix, and we are
left with an ordinary eigenvalue equation, which can be solved by standard methods
in linear algebra.

The generalized eigenvalue problem in Eq. (2.87) can be transformed to an ordinary
eigenvalue problem by performing a basis transformation that orthogonalizes the basis.
This basis transformation involves finding a transformation matrix V that makes a
transformed set of functions {φ′

q} given by

φ′
q =

∑
p

Vpqφp, (2.97)
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orthonormal, i.e. ∫
dr φ′∗

p (r)φ′
q(r) = δpq. (2.98)

To investigate the properties of the transformation matrix V, we can insert the trans-
formation in Eq. (2.97) into the last equation to get

∫
dr φ′∗

p (r)φ′
q(r) =

∫
dr
[∑

r

V ∗
rpφ

∗
r(r)

][∑
s

Vsqφs(r)
]

=
∑
rs

V ∗
rpSrsVsq = δpq, (2.99)

where the last line can be written as

V†SV = 1. (2.100)

By using the relation above, we can rewrite the generalized eigenvalue equation

FC = SCϵ

V†FVV−1C = V†SVV−1Cϵ

F′C′ = C′ϵ, (2.101)

where F′ = V†FV and C′ = V−1C. This equation is an ordinary eigenvalue equation
which can be solved for C′ and thereafter transformed back to the original coefficient
matrix C by VC′.

The remaining problem is to find the transformation matrix V which brings S to
unit form according to Eq. (2.100). One alternative, known as symmetric orthogonal-
ization [6], is to define the transformation matrix as

V ≡ Us−1/2U†, (2.102)

where s is a diagonal matrix of the eigenvalues of S, and U is a unitary matrix that
diagonalizes the overlap matrix, i.e.

U†SU = s. (2.103)

This unitary matrix exists because of the Hermitian nature of S. Moreover, the eigen-
values of the overlap matrix are all positive, which follows directly from its definition.
Therefore there is no difficulty in Eq. (2.102) of taking the square roots. Inserting the
definition of the transformation matrix into Eq. (2.100), we obtain

(Us−1/2U†)†S(Us−1/2U†) = (Us−1/2U†)(UsU†)(Us−1/2U†)

= Us−1/2ss−1/2U† = 1, (2.104)
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which shows that V indeed has the desired property.
A second alternative to orthogonalize the basis set, known as canonical orthogonal-

ization [6], is to define the transformation matrix as

V ≡ Us−1/2, (2.105)

which also is an orthogonalizing transformation matrix;

(Us−1/2)†SUs−1/2 = s−1/2U†SUs−1/2 = s−1/2ss1/2 = 1. (2.106)

2.5.4 Unrestricted Hartree-Fock
Adding an electron to a closed-shell system will turn the system into an open-shell
system, where the new electron will interact differently with spin-up and spin-down
electrons present in the system. This is because exchange is felt by parallel spins only.
In such a case, using restricted spin orbitals is limiting, and it turns out that the energy
is lowered when the spin orbitals have different spatial function for different spins. This
motivates the introduction of unrestricted spin orbitals defined as

ψk(q) =


ϕαk (r)α(s),

or
ϕβk(r)β(s).

(2.107)

That is, electrons with spin α are described by a set of spatial orbitals {ϕαk}, while
electrons with spin β are described by a different set {ϕβk}.

To derive the unrestricted, spatial form of the Hartree-Fock equation, we need to
insert the definition in Eq. (2.107) into Eq. (2.72), resulting in

F(q)ψk(q) = ϵkψk(q) ⇒
F(r)ϕαk (r)α(s) = ϵαkϕ

α
k (r)α(s),

F(r)ϕβk(r)β(s) = ϵβkϕ
β
k(r)β(s),

(2.108)

where we have made distinction between the orbital energies ϵαk and ϵβk , since corre-
sponding spatial orbitals are different. The next step in derivation, is the same as for
the restricted spin orbitals; multiplying from left by α∗(s) or β∗(s) (depending on if
we are considering the equation for ϕαk or ϕβk), and integrating out the spin degrees of
freedom. This leads to

∫
α∗(s)F(r)α(s) dsϕαk (r) = ϵαkϕ

α
k (r), (2.109a)∫

β∗(s)F(r)β(s) dsϕβk(r) = ϵβkϕ
β
k(r). (2.109b)

Now, an electron with spin α will have an effective interaction, consisting of Coulomb
and exchange interaction with all spin α electrons, and only Coulomb interaction with
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spin β electrons. An analogous argument can be used for electrons of spin β. Thus,
the integrals on the left hand side can be written as

Fα(r) =
∫
α∗(s)F(r)α(s)ds = h +

Nα∑
l=1

Jαl (r)−Kα
l (r) +

Nβ∑
l=1

Jβl (r), (2.110a)

Fβ(r) =
∫
β∗(s)F(r)β(s)ds = h +

Nβ∑
l=1

Jβl (r)−Kβ
l (r) +

Nα∑
l=1

Jαl (r), (2.110b)

where the exchange and Coulomb operators are defined in analogy to our previous
definitions in Eq. (2.76)

Jαl ϕ
α(r) =

∫
ϕα∗l (r′)ϕαl (r′)

|r − r′| dr′ ϕα(r), (2.111a)

Kα
l ϕ

α(r) =
∫
ϕα∗l (r′)ϕα(r′)

|r − r′| dr′ ϕαl (r). (2.111b)

The definitions of Jβl and Kβ
l are analogous. Note that the self-interaction is eliminated

in both Fα and Fβ, since

[Jαl −Kα
l ]ϕ

α
l (r) = [Jβl −Kβ

l ]ϕ
β
l (r) = 0. (2.112)

Thus, we can now define the Hartree-Fock equations for unrestricted spin orbitals as

Fα(r)ϕαk (r) = ϵαkϕ
α
k (r), (2.113a)

Fβ(r)ϕβk(r) = ϵβkϕ
β
k(r). (2.113b)

These equations are, however, coupled and cannot be solved independently. This is
because Fα depends on β orbitals through Jβl , while Fβ depends on α orbitals through
Jαl .

2.5.5 Introduction of a Basis: Pople-Nesbet Equations
In order to solve the unrestricted Hartree-Fock equations (2.113), we use the same
philosophy as we used to derive the Roothaan equation; we introduce some known
basis set and convert the unrestricted Hartree-Fock equations to matrix equations.
More specific, we expand ϕα and ϕβ in terms of a set {φp};

ϕαk (r) =
M∑
q=1

Cαqkφq(r), k = 1, . . . , Nα, (2.114a)

ϕβk(r) =
M∑
q=1

Cβqkφq(r), k = 1, . . . , Nβ. (2.114b)
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Substituting these expansions in the corresponding equations, multiplying with φ∗
p(r)

and integrating over coordinate r, gives us the so-called Pople-Nesbet equations;

M∑
q=1

FαpqC
α
qk = ϵαk

M∑
q=1

SpqC
α
qk, (2.115a)

M∑
q=1

F βpqCqk = ϵβk

M∑
q=1

SpqC
β
qk, (2.115b)

or more compactly

FαCα = SCαϵα, (2.116a)
FβCβ = SCβϵβ, (2.116b)

where Fα and Fβ are the matrix representation of Fα and Fβ operators, Cα and Cβ

are the coefficient matrices with dimensions M ×Nα and M ×Nβ respectively, S is the
overlap matrix, and finally ϵα and ϵβ are the rectangular diagonal matrices of orbital
energies for the α and β orbitals.

By defining the density matrices

Pαpq =

Nα∑
l

Cαpl(C
α
ql)

∗, (2.117a)

P βpq =

Nβ∑
l

Cβpl(C
α
ql)

∗, (2.117b)

we can express the Fock matrix elements as9

Fαpq = hpq +
M∑
rs

Pαrs

(
gprqs − gprsq

)
+

M∑
rs

P βrsgprqs, (2.118a)

F βpq = hpq +

M∑
rs

P βrs

(
gprqs − gprsq

)
+

M∑
rs

Pαrsgprqs, (2.118b)

and the energy functional as

E =
1

2

M∑
pq

[
(Pαpq + P βpq)hpq + PαpqF

α
pq + P βpqF

β
pq

]
. (2.119)

In order to solve the matrix eigenvalue problems in Eq. (2.116), we must orthonor-
malize the basis set, diagonalize the Fock matrix in the new orthonormal basis, and
thereafter transform the resulting coefficient matrices back to the old basis, just as
described in Section 2.5.3.

9For more detailed derivation see Section 3.8 in Ref. [6].





Chapter 3

Atomic Basis Functions for
Molecular Hartree-Fock
Calculations

In Hartree-Fock theory, the exact electronic wave function of a physical system is
approximated by a single Slater determinant formed from one-electron spin orbitals ψk.
Each spin orbital is in most applications expressed as a product of a spatial function
and a spin function, where the former is expressed as a linear combination in some
known basis set (see Figure 3.1);

ϕk(r) =
∑
p

Cpkφp(r). (3.1)

The basis functions φp, along with the spin functions α and β, are the core elements in
the Hartree-Fock wave function. The quality of the wave function is fully determined by
the form of the spatial basis functions. By incorporating the physical characteristics
of the electronic system in our basis, we will improve the quality of the total wave
function. Thus, the choice of basis for expanding the spatial orbitals, is extremely
important, and an enormous amount of effort has gone into developing mathematical
and computational techniques to construct suitable basis sets.

In this chapter, the mathematical properties of the most common basis sets, used in
molecular orbital calculations, are investigated with focus on the Gaussian basis sets.
The material in this chapter is based on Chapter 6 of Ref. [10], Chapter 2 of Ref. [6],
and Chapter 6 of Ref. [7].

3.1 Basis Sets
An enormous amount of effort has gone into developing computational and mathe-
matical models to reach the Hartree-Fock limit (HF limit), which is to say to solve the
Hartree-Fock equation with the equivalent of an infinite basis set [10]. At this limit, the
error in energy (correlation energy) associated with the Hartree-Fock approximation is
given as

43
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Figure 3.1: The structure of the Hartree and Hartree-Fock wave function. The
coordinates q include both spatial and spin coordinates. ψk is spin orbital k, α(s)
and β(s) are spin functions, ϕk is the spatial part of spin orbital k, expanded in a set
of spatial functions {φp}.

Ecorr = E − EHF, (3.2)

where E is the true energy, and EHF is the energy of the system at the HF limit. In
practice, we are restricted to work with finite basis sets, generally leading to a solution
which is not at the HF limit. The best we can do is to use basis functions that allow for
an efficient and systematic extension towards the HF limit. A lot of work has therefore
been done to identify such basis functions. Ideally, a suitable set of basis functions
satisfy two other requirements, in addition to allow for a systematic extension towards
completeness. Firstly, the basis should allow for a rapid convergence to any atomic
or molecular electronic state, requiring only a few terms for a reasonably accurate
description of the electronic distribution [7]. Secondly, the basis functions should have
a closed-form that makes integral evaluations, required in Self-Consistent Field (SCF)
calculations, easy and efficient. It should be mentioned that, although keeping the
number of basis functions to a minimum is desired, sometimes it may be better to use
larger basis sets if the integral evaluations can be carried out faster than for a smaller
basis set.

3.1.1 Many-center Expansions

In the Born-Oppenheimer approximation (see Section 2.1.3), the electrons move in a
field generated by a static configuration of the nuclei. As a result, the electronic wave
function depends implicitly on the coordinates of the nuclei. Within this approxima-
tion, the most obvious difference between the wave function of an atomic system and
a molecular system, is that the wave function of the latter depends (implicitly) on the
coordinates of more than one nucleus. An atomic wave function, in contrast, depends
only on the coordinates of the single nucleus. This difference has, of course, important
consequences for the expansion of the spatial orbitals. While atomic orbitals (AOs) can
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simply be represented by one-center expansions (the basis functions are centered on
the single nucleus), there is often no simple way to do the same in the representation
of molecular orbitals (MOs).

One way to represent MOs, is to use the linear combination of atomic orbitals
(LCAO) (see Section 2.2.2) approach with many-center expansions. This involves in-
troducing a separate basis for each atom in the molecule. To illustrate this type of
construction, we consider the representation of MOs for the water molecule (H2O). In
this system all electrons have to deal with three nucleus; two hydrogen nuclei and one
oxygen nucleus. Using the many-center expansion we can express the MO ϕk as

ϕk (r;RH1 ,RH2 ,RO) =
∑
p

CH1

pk φ
H
p (r;RH1)

+
∑
p

CH2

pk φ
H
p (r;RH2)

+
∑
p

CO
pkφ

O
p (r;RO), (3.3)

where RH1 , RH2 and RO are the coordinates of the hydrogen nuclei and the oxygen
nucleus, respectively. The first two terms are linear combinations of AOs associated
with the hydrogen atoms, centered around the nuclei H1 and H2, respectively. The last
term is a linear combination of AOs associated with the oxygen atom, centered around
the oxygen nucleus. In this description all AOs, regardless of the atom they belong to,
serve simply as basis functions. Note the use of ”;” instead of a comma in the variable
list of the functions, to clearly show the implicit dependency on nuclear coordinates.
It is important to be aware that since the dependency on nuclear coordinates is just
implicit, the basis functions φH

p (r;RH1) and φH
p (r;RH2) are considered as different

functions, although the form of the functions are identical. Furthermore, the centering
of basis functions on the nuclei is just a choice we make, and certainly not a requirement.
This is just part of the many-center procedure of the MOs. Indeed, our intuition
suggests that they should be centered on the nuclei, but this should not limit our
mathematical flexibility. Ultimately, what we are trying is to express some unknown
function (MO ψk) in terms of a set of known functions. This is a mathematical problem,
without any requirements on the centering of the basis functions.

The idea of representing MOs by nucleus-centered AOs (Eq. (3.3)), must be applied
carefully and any additional functions that may be needed to describe the physical
characteristics of the molecular system, must be included as well. The main advantage
of using many-center expansions, is that the physical characteristics of the atomic
systems can be incorporated in the basis, and we can in a systematic way combine
AOs to set up the wave function of polyatomic molecules. The drawback of many-
center expansions is the lost of the analytic relationships such as orthogonality and
recurrence relations.
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3.1.2 Construction of Atomic Orbitals

With the exception of the hydrogen atom, where the exact form of its orbitals can
be found, numerical methods must be applied to find the AOs associated with other
atoms. In such cases, a numerical calculation with high precision is performed to
find the numerical orbitals. These numerical orbitals are thereafter approximated by
a least-square expansion of some convenient set of functions {φ̃a}. In mathematical
notation this means

φp =
∑
a

dapφ̃a, (3.4)

where the coefficients dap most be chosen such that the expansion fits the AO φp
in an optimal way. The expansion functions φ̃a are typically hydrogenic functions,
Slater-type functions or Gaussian-type functions. Today, we have good least-square
expansions for AOs associated with a large number of atoms, which are specially de-
signed for orbitals of various atoms. Note that the coefficients dap are fixed in the
course of a molecular SCF calculation and are not allowed to change. The variation in
molecular SCF calculations is done on the coefficients Cpk.

As an extension to Figure 3.1, all the different elements used to represent MOs in
a polyatomic molecule, are shown in Figure 3.2. The simple representation of an MO
given in Eq. (3.1), is first separated into sums over AOs associated with the different
atoms. Further, the AOs themselves are represented by an expansion over convenient
functions, such as hydrogenic functions, Slater-type functions or Gaussian functions.

Figure 3.2: The many-center expansion of AOs to form a single MO. The MO ϕk
depends parametrically on the coordinates of all nuclei, while the AOs φp,n depend
on the coordinates of their own nucleus only. Nn specifies the number of nuclei. Each
AO is represented by a least-square expansion, specially designed for the specific
AO, using well-known functions such as hydrogenic functions, Slater-type functions
or Gaussian functions.

It should be emphasized once more that the hierarchy shown in Figure 3.2, is just
one way to represent the MOs. There are no theoretical requirements, within the
Hartree-Fock theory, whatsoever on how the MOs should be represented as long as
they are orthogonal. However, the procedure represented here is the most usual way
to represent MOs, and is widely used in molecular orbital theory.
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3.2 Hydrogenic Functions
The one-electron hydrogenic system is one of very few systems where Schrödinger’s
equation can be solved exactly. The Hamiltonian for this system is given by

H = −1

2
∇2 − Z

r
, (3.5)

where Z is the nuclear charge, and r is the distance between the electron and the
nucleus. The eigenstates of this Hamiltonian can be written in a closed-form and it
is natural to use them as basis functions to expand AOs of other atoms. The set of
eigenstates can be written as a product of an angular part and a radial part [7];

φH
nℓmℓ

= RH
nℓ(r)Yℓmℓ

(θ, τ), (3.6)

Y mℓ
ℓ (θ, τ) =

√
2ℓ+ 1

4π

(ℓ−mℓ)!

(ℓ+mℓ)!
Pmℓ
ℓ (cos θ) eimℓτ , (3.7)

RH
nl(r) =

(
2Z

n

)3/2
√

(n− ℓ− 1)!

2n(n+ ℓ)!

(
2Zr

n

)ℓ
L2ℓ+1
n−ℓ−1

(
2Zr

n

)
exp

(
−Zr
n

)
, (3.8)

where Pmℓ
ℓ is the associated Legendre polynomial, L2ℓ+1

n−ℓ−1 is the generalized Laguerre
polynomial of degree n − ℓ − 1, n is the principal quantum number (n > 0), ℓ is the
angular quantum number (ℓ < n) and mℓ is the magnetic quantum number (mℓ ≤ |l|).
These eigenfunctions are usually referred to as 1s, 2s, 2p, 3s, 3p, 3d, etc., depending
on the quantum numbers n and ℓ. For example, φH

200 is known as the 2s eigenfunction,
while φH

210 is a 2p eigenfunction. In Figure 3.3, the radial distribution function (RH
nℓ r)

2

is plotted for some of the hydrogenic functions with Z = 1. This quantity is the
probability density of finding the electron in a thin spherical shell with radius r, divided
by 4π.

The hydrogenic eigenfunctions are orthonormal, which follows directly from the
fact that they are eigenfunctions of the Hermitian operator given in Eq. (3.5). This
has the advantage of making the overlap matrix identical to the identity matrix. Fur-
thermore, the presence of the exponential in −Zr/n, ensures that the wave function
decays exponentially at large distances, which is a required property. However, the
hydrogenic eigenfunctions have their disadvantages. In fact, they turns out to be not
so useful as basis functions for many-electron systems. First, the unbound states must
be supplemented by the continuum states [7], since they by themselves don’t set up a
complete basis, which of course is a disadvantage from a computational point of view.
Second, because of the presence of the inverse quantum number n−1 in the exponen-
tial, they tend to spread out quickly with increasing principal quantum number n. In
particular, this becomes clear in the expectation value of r;

⟨φH
nℓmℓ

| r |φH
nℓmℓ

⟩ = 3n2 − ℓ(ℓ+ 1)

2Z
, (3.9)

reflecting the diffuseness of the eigenfunctions. This behavior is problematic and we
will in practice need a large number of functions to describe both the core- and valence
regions of a many-electron system.
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Figure 3.3: The radial distribution function (RH
nℓr)

2 of hydrogenic functions for
Z = 1. The scales are the same in all plots.

3.3 Slater-Type Orbitals
Another class of functions that often is used as a basis set, are the so-called Slater-type
orbitals (STOs), which retain the exponential form of the hydrogenic functions, and
at the same time avoid the problems associated with the use of continuum states. The
mathematical form of these functions, for some exponent ζ, is given by

φSTO
nℓmℓ

= RSTO
n (r)Y mℓ

ℓ (θ, τ), (3.10)

RSTO
n (r) =

(2ζ)3/2√
(2n)!

(2ζr)n−1 exp (−ζr) , (3.11)

where the quantum numbers n, ℓ and mℓ take on the same values as in the hydrogenic
case, and the nomenclature is also the same as for hydrogenic functions. For example,
φSTO
200 is referred to as 2s STO (not the same as the 2s hydrogenic function!). For a fixed

exponent ζ, the STOs are complete, but not orthogonal. They are, however, still very
much attractive as basis functions, because of the flexibility they offer. This flexibility
is reflected in the representation of the radial part of the one-electron space, where
not only functions with different quantum numbers n can be used, but also functions
with different exponents ζn are available. The reason for this becomes clear if we study
where the maximum in the radial distribution curve occurs. This value is found by
setting the derivative of the radial distribution function (RSTO

n r)2 equal to zero;

d
dr (R

STO
n r)2 = 0, ⇒ rSTO

max =
n

ζ
. (3.12)
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Now, if we, for example, calculate the radial maximum rSTO
max for 1s STO with exponents

ζn = n−1, we will get the same radial maximum as we will get for 1s, 2s and 3s STOs
with fixed exponent ζ = 1 (see Figure 3.4). This hints to the possibility of using STOs
with different exponents as an alternative to functions with different quantum numbers
n.
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Figure 3.4: The radial distribution function (RSTO
n r)2, in atomic units, for 2s(1)

and 1s(1/2) STOs (left), and for 3s(1) and 1s(1/3) STOs (right). The notation is
ns(ζ). The radial maximum is the same for STOs in each figure.

The remaining question is if it is possible to generate a complete set of functions
by combining STOs with variable exponents. In particular, as discussed in Ref. [7], the
basis of type (1s(ζ1s), 1s(ζ2s), . . . ) , (2p(ζ1p), 2p(ζ2p), . . . ), etc., is complete. In this
basis for each angular momentum ℓ, only the functions of the lowest principal quantum
number n, are used. For example, to represent the numerically obtained 2s orbital of,
let say, carbon, the following expansion can be used

φ2s =
∑
n

dnφ
STO
100 (ζn), (3.13)

where only the 1s STO (lowest n with ℓ = 0) with variable exponent is used. An
alternative to this type of basis, is to use a single, fixed exponent basis of type (1s,
2s, . . . ), (2p, 3p, . . . ), and so on, where the radial space is described by functions with
different n, all with the same exponent ζ. Using this basis the 2s orbital of carbon can
be represented as

φ2s =
∑
n

dnφ
STO
n00 (ζ). (3.14)



50 Atomic Basis Functions for Molecular Hartree-Fock Calculations Chapter 3

In practice, the best results are achieved when the one-electron space is expanded both
in terms of principal quantum number and by means of variable exponents. For the
radial 1s, 2s and 2p orbitals of the carbon atom, using a mix of these two basis types
and only three STOs, the following least-square expansions are optimal1

φradial
1s = 0.998RSTO

1s (r, ζ1s) + 0.009RSTO
2s (r, ζ2s), (3.15)

φradial
2s = −0.231RSTO

1s (r, ζ1s) + 1.024RSTO
2s (r, ζ2s), (3.16)

φradial
2p = RSTO

2p (r, ζ2p), (3.17)

where ζ1s = 5.58, ζ2s = 1.57 and ζ2p = 1.46. Note that since we only had one STO
with p symmetry, φradial

2p is fully represented by the RSTO
2p . The s orbitals, in contrast,

are represented by STOs with different quantum numbers n and different exponents.
The STOs give quite remarkable results for atoms and diatomic molecules, but

are much less convenient for other molecular systems. This is mainly because of the
lack of efficient methods for calculating the many-center, two-electron STO integrals
required for molecular calculations. In fact, the integral evaluations are so inefficient
for molecular systems, that STOs are replaced with more convenient functions, namely
the Gaussian-type orbitals.

3.4 Gaussian-Type Orbitals
In modern computational chemistry, Gaussian-type orbitals (GTOs) are the most used
functions in molecular calculations. This is mainly due to the existence of efficient
methods for the evaluation of many-center integrals required in molecular SCF calcula-
tions. In spherical coordinates, the nonorthogonal basis functions spanning a complete
basis, known as the spherical-harmonic Gaussian-type orbitals (GTOs), are given by

φGTO
nℓmℓ

= RGTO
nℓ (r)Y mℓ

ℓ (θ, τ) (3.18)

RGTO
nℓ (r) =

2(2α)3/4

π1/4

√
(4α)2n−ℓ−2

(4n− 2ℓ− 3)!!
r2n−ℓ−2 exp

(
−αr2

)
, (3.19)

where the quantum numbers n, ℓ and mℓ take on the same values as STOs (and
hydrogenic functions), and the nomenclature is the same as for STOs (and hydrogenic
functions). As an example, φGTO

200 is referred to as 2s GTO. The exponent α is a
positive number larger than zero, and determines the size or the diffuseness of the
function; a large exponent implies a dense function, while a small exponent implies a
diffuse function. The most important difference between STOs and GTOs is the decay
term, which is an exponential in r2 for GTOs, in contrast to STOs where the decay
term is an exponential in r. Therefore, the GTOs will decay much more rapidly than
the STOs (see Figure 3.5).

As for the STOs, GTOs with variable exponents can be used to describe the radial
space. However, in contrast to STOs, the radial space is exclusively described by means

1The expansion coefficients and the exponents are taken from Ref. [7].
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Figure 3.5: The radial forms RSTO
n of the STOs (left) and RGTO

n0 of the GTOs (right)
for ℓ = 0 with unit exponent.

of variable exponents, with the same quantum number n = ℓ+1. In practice, any basis
function of s symmetry, for example 2s and 3s Slater functions, will be expanded in
only 1s Gaussians (with variable exponent), any basis function of p symmetry, will be
expanded in only 2p Gaussians (with variable exponent), and so on. The reason for just
using functions with lowest quantum number n for each ℓ, is due to the simplifications
that arise in the integral evaluations. These simplifications are not present for higher
quantum numbers n [10]. In the case of variable exponent, we can rewrite Eq. (3.18)
simply by inserting ℓ + 1 for n, to arrive at the following complete set of spherical-
harmonic GTOs

φGTO
αnℓmℓ

= RGTO
αnℓ (r)Y mℓ

ℓ (θ, τ), (3.20)

RGTO
αnℓ (r) =

2(2αn)
3/4

π1/4

√
(4αn)ℓ

(2ℓ+ 1)!!
rℓ exp

(
−αnr2

)
. (3.21)

The completeness of this modified set is discussed in Ref. [7].

3.4.1 Cartesian Gaussian-Type Orbitals
A very important feature of the Gaussian distributions is their separability in Cartesian
directions. This simplifies integral evaluations in SCF calculations significantly. The
set of Cartesian GTOs are defined as
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φGTO
ijk (x, y, x) = φGTO

i (x)φGTO
j (y)φGTO

k (z), (3.22)

where the x component is given by

φGTO
i (x) =

(
2α

π

)(1/4)
√

(4α)i

(2i− 1)!!
xi exp(−αx2), (3.23)

and similar for the y and z component. When all the non-negative integers i, j and
k are zero, the GTO has the spherical symmetry and is called an s-type GTO. When
one of the indices is one, the GTO has axial symmetry about a single axis and is called
p-type GTO. In this case there are three possibilities, leading to px, py and pz GTOs.
Further, if the sum of indices is two, we have d-type GTO, where there are in total
six possible combinations of i,j and k that sum up to two. The f-type GTOs, g-type
GTOs, etc. can be defined in the same way.

3.4.2 Contracted Gaussian-Type Orbitals

Normally one would prefer to use STOs as basis functions in expansion of AOs instead
of GTOs. This because the former describe more correctly the qualitative features of
the electronic structure. A fewer number of functions would therefore be needed in
the expansion for comparable results. The evaluation of many-center integrals with
STOs is, however, extremely time consuming compared to GTOs, where all integrals
can be evaluated rapidly and efficiently. As an attempt to combine the best feature
of GTOs (computational efficiency) with that of STOs (proper radial shape), a fixed
linear combination of Gaussian functions is used to represent AOs. This is equivalent to
what we did with STOs, but linear combinations of Gaussian functions usually involve
more terms compared to the corresponding linear combination of STOs. The linear
combination of GTOs, known as contracted Gaussian-type orbitals (CGTOs), can in
Cartesian coordinates be written as

φCGTO
p (x, y, z; {α}) =

∑
a

dap φ
GTO
ijk (x, y, z;αa), (3.24)

where the contraction coefficients dap and the exponent αa are chosen to optimize the
description of the specific AO. The individual Gaussian functions φGTO

ijk are called prim-
itive Gaussian-type orbitals (GTOs), and the total number of them used to form the
CGTO is referred to as contraction length. Note that the contraction parameters are
chosen in advance, and are not allowed to change in the course of an SCF calculations.

With a proper choice of parameters, the expansion in Eq. (3.24) can in principle
be used to describe any function, such as Slater-type functions, atomic Hartree-Fock
functions, etc. In this way we can avail ourselves of the efficient methods associated
with integral evaluation of Gaussian functions, and at the same time have an acceptable
description of the electronic structure. Indeed, the number of functions in the expansion
of AOs is larger compared to STOs, but the integral evaluations are much more efficient
when using GTOs.
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3.4.3 Minimal Basis Sets

A minimum or single-zeta basis set is usually defined as a set with only one basis
function for each occupied AO in the atom. This definition is, however, a bit imprecise.
For example, a basis consisting of the basis functions2 1s, 2s, 2px, 2py, and 2pz is
considered as minimal for Li and Be, although the 2p orbitals are not occupied in these
two atoms. The reason for why the term minimal is still used, is because one considers
the occupation (partially or completely) of electron shells (2sp, 3sp, . . . , etc.) in atoms,
instead of orbitals, when using the term minimal basis. It doesn’t matter if the shell
is partially or completely filled, what matters is if any orbital in the shell is occupied.
Thus the minimal basis for H and He consists of just one function, Li to Ne contain
five functions, Na to Ar contain nine function, and so on.

Since the minimal basis set contains very few basis functions, these should, at least,
have good quality, in order to compensate for the low number of functions in the set.
From this perspective STOs should be used rather than GTOs, but then we will have
efficiency issues in the integral evaluations. One way to get around this problem is
to use GTOs to approximate STOs. This is the idea behind the most common mini-
mal basis set used in molecular SCF calculations, namely STO-kG. Here, one uses a
contraction of k primitive GTOs for each basis function, where the contraction param-
eters (coefficients and exponents) are chosen so that the basis functions approximate
Slater functions. That is, each STO is approximated by one CGTO, made up of three
primitive GTOs. In Figure 3.6, the 1s STO-kG functions for k = 1, . . . , 6 with the
corresponding 1s STO with unit exponent, is shown. It is clear that at least three
Gaussian functions are needed to get an acceptable representation of the 1s STO. In
fact, for minimal basis set calculations the STO-3G basis set is the most popular one
for exploratory investigations. Figure 3.7 gives an overview of the STO-3G minimal
basis for the first-row atoms, illustrating how the Gaussian functions are combined to
construct basis functions.

One important aspect of the STO-kG basis sets, is the sharing of contraction expo-
nents in 2sp, 3sp, . . . , etc., shells. That is, the contracted basis functions corresponding
to 2s and 2p have the same set of exponents (see Figure 3.7). Similarly the contracted
basis functions corresponding to 3s and 3p have the same exponent, and so on. This
constraint leads to a considerable efficiency in integral evaluations, since all integrals
involving any sp shell can be treated together. This constraint is also used in other
basis set types, as we will see shortly.

3.4.4 Split-Valence Basis Sets

A minimal basis set has limited flexibility, and is not capable of giving highly accurate
result in molecular calculations. One way to introduce more flexibility in the repre-
sentation of AOs, is to use split-valence basis sets. This approach is based on the
observation that molecule formation has little impact on the shape of inner atomic
shells. Intuitively, we may therefore expect that the contracted basis functions, fitted
to core AOs of separated atoms, appears with the same contraction parameters when

2The basis functions can be hydrogenic, STOs or GTOs.
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Figure 3.6: The radial distribution functions of the 1s STO-kG basis functions
(dashed line) for k = 1, . . . , 6, together with the 1s STO basis function (solid line)
with ζ = 1.

used to represent MOs. It is therefore reasonable to claim that more is gained by
having flexibility in the valence basis functions than in the core. In split-valence basis
sets, core orbitals continue to be represented by a single contracted basis function,
while the valence orbitals are split into arbitrarily many functions (thereby the name
split-valence), where each can be varied independently during construction of the MOs.
The notation for these basis sets is typically X − Y ZG, where X represents the num-
ber of primitive GTOs used in the contracted basis functions for each core AO. The
letters Y and Z indicate that the valence orbitals are represented by two contracted
basis functions each, the first one consisting of Y primitive Gaussians and the other
one consisting of Z primitive Gaussians.

In Figure 3.8, an overview of the 3-21G basis is shown for the first-row atoms.
As for the minimal basis sets, sharing of exponents between 2s and 2p CGTOs, is
present but now the sharing is in 2sI -2pI and in 2sII -2pII . In addition to that, the
contraction coefficients are shared in 2pI ’s px, py and pz part, and similarly for 2pII .
The valence AOs can of course be represented by more than two contracted basis
functions, as it is the case in the basis set 6-311G, where the valence AOs are represented
by three contracted basis functions consisting of three primitives, one primitive, and one
primitive, respectively. The notation used for these types of sets is X − Y ZWG. The
presence of three numbers after the hyphens implies that this basis set is a split-valence
triple-zeta basis set. Using this terminology X − Y ZG is a split-valence double-zeta
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basis set, while X − Y ZWVG is a split-valence quad-zeta basis set.
As an example on how the flexibility in theX−Y ZG basis is present in construction

of MOs, we consider the expansion in Eq. (3.3) for the MOs of H2O. Using the 3-21G
basis this expansion can be written as

ϕk =C1,k

( 2∑
a=1

dH
1sI ,a φ

GTO
000 (αH

1sI ,a;RH1)

)
+ C2,k

(
dH

1sII φ
GTO
000 (αH

1sII ;RH1)

)

+C3,k

( 2∑
a=1

dH
1sI ,a φ

GTO
000 (αH

1sI ,a;RH2)

)
+ C4,k

(
dH

1sII φ
GTO
000 (αH

1sII ;RH2)

)

+C5,k

( 3∑
a=1

dO
1s,a φ

GTO
000 (αO

1s,a;RO)

)

+C6,k

( 2∑
a=1

dO
2sI ,a φ

GTO
000 (αO

2spI ,a
;RO)

)
+ C7,k

(
dO
2sII

φGTO
000 (αO

2spII
;RO)

)

+C8,k

( 2∑
a=1

dO
2pI ,a

φGTO
100 (αO

2spI ,a
;RO)

)
+ C9,k

(
dO

2pII
φGTO
100 (αO

2spII
;RO)

)

+C10,k

( 2∑
a=1

dO
2pI ,a

φGTO
010 (αO

2spI ,a
;RO)

)
+ C11,k

(
dO

2pII
φGTO
010 (αO

2spII
;RO)

)

+C12,k

( 2∑
a=1

dO
2pI ,a

φGTO
001 (αO

2spI ,a
;RO)

)
+ C13,k

(
dO

2pII
φGTO
001 (αO

2spII
;RO)

)
, (3.25)

where the 1s AO of hydrogen atoms are represented by two CGTOs consisting of one
and two primitives, respectively. The 1s oxygen AO is a core orbital, and is therefore
represented by only one CGTO with three primitives. The valence orbitals of oxygen
(2s, 2px, 2py, 2pz) are represented by two CGTOs, with two and one primitives,
respectively. We have in total 13 coefficients Cpk that can be varied independently
during the construction of the MOs. For comparison, using the STO-3G basis, we will
have just seven coefficients to vary.

One question that arises for split-valence basis sets, is how the contraction parame-
ters are chosen. In the minimal basis set STO-kG, the parameters were found by fitting
the CGTOs to STOs, but when using split-valence basis sets there is no point in doing
this. Instead, the contraction parameters are optimized to fit the AOs directly. This
is can be done by optimizing the parameters to minimize the energy for some test sets
of atoms and/or molecules [10].

3.4.5 Polarization Functions
In the present chapter and last chapter, we have several times emphasized the dis-
tinction between AOs and basis functions. One example on why this distinction is
so important is illustrated in the geometry calculations of ammonia NH3. By doing
a Hartree-Fock calculation on this molecule, using a basis consisting of only s and p
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functions, we will find that the equilibrium geometry is planar, while NH3 in reality
has a trigonal pyramidal geometry. This is observed although the s and p functions
describe the separate atoms hydrogen and nitrogen, reasonably well. The reason for
this is simply because we don’t have enough flexibility in our basis. Recall that the
many-center expansions should be supplemented with any additional functions that
may be needed to describe the physical characteristics of the molecular system. These
additional functions are almost always added in the form of basis functions correspond-
ing to one quantum number of higher angular momentum than the valence orbitals.
So, for example, for NH3, it means to include d−type functions, in addition to s and p.
This gives the needed flexibility in our basis to obtain a more reasonable equilibrium
geometry.

Adding basis functions corresponding to one quantum number of higher angular
momentum than the valence orbitals, is referred to as polarization of basis, and the
additional functions are called polarization functions. The polarization functions for
H and He is p-type functions, d-type functions for first-row atoms, and so on. The
notation used for polarized basis sets is characterized by the presence of the symbol
”*”. An example is the 6-31G∗ basis, which implies the addition of d functions, to
polarize the valence p functions in 6-31G. A second star (e.g. 6-31G∗∗) implies the
polarization of s functions in H and He with p functions. A more explicit notation is
of the form 6-31G(3d2fg,2pd), which indicates that first-row atoms are polarized by
three sets of d functions, two sets of f functions, and a set of g functions, and H and
He are polarized by two sets of p functions and one of d.

3.4.6 Diffuse Functions
In molecules with unshared pairs or anions, the electronic structure tends to be more
spatially diffuse, since some of the electrons are barely bound. A basis without the
flexibility to allow for weakly bound electrons far from the remaining density, can lead
to significant errors in energy and other molecular properties. This type of flexibility is
usually added to the basis, by additional s and p functions, with very small exponents
(very diffuse functions). The presence of diffuse functions in the basis set is symbolized
by the addition of a plus sign ”++” (e.g. 6-31++G), which indicates the addition of
diffuse p functions for first-row atoms. A second plus sign (e.g. 6-31++G) in the name
indicates the presence of a diffuse s function for H and He, in addition to diffuse p
functions. The more explicit notation of the from 6-311G(2df,2pd) is also much used.
This notation indicates the addition of two sets of d functions and one set of f functions
for first-row atoms, and addition of two sets of p functions and one set of d functions
for H and He.
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Figure 3.7: Overview of the minimal basis set STO-3G for first-row atoms (Li to
Ne). Each AO φp is approximated by one STO φSTO

p . The basis consists of five basis
functions, where each is given in contracted form, consisting of three primitives each,
optimized to fit STOs. Note the sharing of exponent α2sp between the primitives in
2s and 2p CGTOs. The contraction coefficients are also the same for all 2p CGTOs.
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Figure 3.8: Overview of the 3-21G basis for first-row atoms (Li to Ne). The core
1s AO is represented by one CGTO, with three primitives. The valence AOs (2s and
2p) are each represented by two CGTOs, where the first one consist of two primitives,
while the second one has one primitive. Note the sharing of exponents α2sp1

and α2sp2

in the 2s and 2p CGTOs, in addition to sharing of coefficients in 2pI CGTOs and
2pII CGTOs.



Chapter 4

Molecular Integral Evaluation

In computational chemistry, an enormous amount of effort has gone into developing
mathematical and computational techniques to efficiently evaluate molecular integrals
of the type

Opq =

∫
φ∗
p(r)O(r)φq(r)dr, (4.1)

and
gprqs =

∫
φ∗
p(r)φ∗

r(r′)
1

|r − r′| φq(r)φs(r
′)dr dr′, (4.2)

where O(r) is a one-electron operator, |r − r′| is the separation between the electrons,
and φp belongs to a set of functions used to expand the molecular orbital (MO). The
choice of basis is heavily affected by how efficient the integrals above can be evaluated.
For many-center molecular calculations, the Gaussian functions are by far the most
widely used, due to fast computation of the two-electron integral. The success of
Gaussian basis sets in molecular calculations is closely related to the development of
efficient recursive procedures for the calculations of molecular integrals. One such
procedure is provided by the McMurchie-Davidson scheme [7], where an expansion in
Hermite Gaussians is used to obtain efficient integral expressions.

This chapter presents the techniques provided by the McMurchie-Davidson scheme
for evaluating of the one- and two-electron integrals. We will first investigate the
properties of the Cartesian and Hermite Gaussians, before discussing the evaluation
of simple one-electron integrals. Thereafter, the Coulomb integrals are considered,
and the properties and evaluation of the nearly related function, known as the Boys
function, are discussed. Finally, in the last part of this chapter, the calculation of
integral derivatives is considered. The material in this chapter is adopted from Chapter
12 of Ref. [7] and Chapter 9 of Ref. [14].

4.1 Cartesian Gaussians
In last chapter we defined the normalized Cartesian Gaussians as

φGTO
ijk (x, y, x) = φGTO

i (x)φGTO
j (y)φGTO

k (z), (4.3)

59
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where the x component is given by

φGTO
i (x) =

(
2α

π

)(1/4)
√

(4α)i

(2i− 1)!!
xi exp(−αx2), (4.4)

and similar for the y and z component. Since we in this chapter are exclusively con-
cerned with Gaussian functions, it is desirable to extend this notation somewhat. We
will therefore, hereafter, write a (non-normalized) Cartesian Gaussian as

Ga(r) = Gijk(r, a,A)

= (x−Ax)
i(y −Ay)

j(z −Az)
k exp(−ar2A)

= xiAy
j
Az

k
A exp(−ar2A), (4.5)

where a is the orbital exponent, r is the electronic coordinate, A is the origin of the
Gaussian (nuclear position) and

rA = r − A,
with total angular momentum quantum number l = i+ j+ k ≥ 0. In a factorized form
the Cartesian Gaussians can be written as

Gijk(r, a,A) = Gi(xA, a)Gj(yA, a)Gk(zA, a), (4.6)
where for example

Gi(xA, a) = xiA exp(−ax2A). (4.7)
The factorization is a very important feature of Cartesian Gaussians, and, as we shall
see shortly, this feature simplifies the molecular integral evaluations significantly.

Another very important feature of Cartesian Gaussians is their differentiation prop-
erty. Taking the first derivative of Eq. (4.7), we obtain

∂Gi
∂Ax

= −∂Gi
∂x

= 2aGi+1 − iGi−1, (4.8)

which is a linear combination of two undifferentiated Gaussians with incremented and
decremented quantum numbers. More generally, using the notation

Gqi =
∂qGi
∂Aqx

, (4.9)

we have the following recurrence relation for the derivatives

Gq+1
i = 2aGqi+1 − iGqi−1, (4.10)

which can be used to construct higher derivatives from those of lower order. We should
also note the trivial recurrence

xAGi = Gi+1, (4.11)
which is going to be used frequently in this chapter.
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Cartesian Gaussian Hermite Gaussian

Definition: Gi = xiA exp(−ax2A) Λt =
(
∂/∂Px

)t exp(−px2P )

Recurrence: xAGi = Gi+1 xPΛt =
1
2pΛt+1 + tΛt−1

Differentiation: ∂Gi
∂Ax

= 2aGi+1 − iGi−1
∂Λ
∂Px

= Λt+1

Table 4.1: Comparison of Cartesian and Hermite Gaussians.

4.2 Hermite Gaussians
Another class of Gaussian functions, which are useful in molecular integral evaluations,
are the Hermite Gaussians. Although, these functions can be used as basis functions
themselves, they are often used as intermediates in the calculation of integrals over
Cartesian Gaussians. This is mainly due to their convenient form in terms of differen-
tiation. The Hermite Gaussians of exponent p and centered on P are defined by

Λtuv(r, p,P) =
(
∂/∂Px

)t (
∂/∂Py

)u (
∂/∂Pz

)v exp(−pr2P ), (4.12)
where

rP = r − P.
Like the Cartesian Gaussians, these function can be factorized as

Λt(xP , a) =
(
∂/∂Px

)t exp(−px2P ), (4.13)
which only differs from the Cartesian Gaussian in the polynomial factors. Using the
definition in Eq. (4.13) we obtain the simple relation:

∂Λ

∂Px
= −∂Λ

∂x
= Λt+1. (4.14)

Furthermore, we have the following recurrence relation

xPΛt =
1

2p
Λt+1 + tΛt−1, (4.15)

which can be proved by combining

Λt+1 =
(
∂/∂Px

)t ∂Λ0

∂Px
= 2p

(
∂/∂Px

)t
xpΛ0, (4.16)

with the commutator [(
∂/∂Px

)t
, xp

]
= −t

(
∂/∂Px

)t−1
. (4.17)

The relations in Eqs. (4.14) and (4.15) are compared to the corresponding relations for
Cartesian Gaussians in Table 4.1.

A very useful result, which simplifies the calculation of one-electron integrals, is
obtained by integrating the Hermite Gaussians over all space;
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∫ ∞

−∞
Λt(x)dx =

(
∂/∂Px

)t ∫ ∞

−∞
exp(−px2P )dx

=
(
∂/∂Px

)t√π

p

= δt0

√
π

p
. (4.18)

This result illustrates an important technique which we shall use on several occasions,
and involves taking the differential operators of Hermite Gaussians outside the inte-
gration sign. In this way, the integrals over Hermite Gaussians are replaced with dif-
ferentiated integrals over ”spherical” Gaussians, i.e. functions with no angular terms.

4.3 Overlap Distributions
The Gaussian product theorem states that the product of two Gaussians centered on
two different centers A and B, is a finite sum of Gaussians centered on a point along
the axis connecting them [7]. This theorem has a central role in molecular integral cal-
culations since the integrals always occur in pairs. For simplicity consider the product
of two s-type (spherical) Gaussians

exp(−ax2A) exp(−bx2B) = exp(−qQ2
x) exp(−px2P ), (4.19)

where

p = a+ b, (4.20)

Px =
aAx + bBx

p
, (4.21)

Qx = Ax −Bx, (4.22)

q =
ab

a+ b
. (4.23)

The product in Eq. (4.19) consists of one term which depends on the electronic coor-
dinate x, while the other term, known as the pre-exponential factor, is a constant and
doesn’t depend on x. The latter is small when the separation between the centers Qx
is large. Thus, an integral over two Gaussian functions (two-center integral) can be
reduced to a one-center integral, and similarly a four-center integral can be reduced to
a two-center integral. This simplifies the integral evaluations significantly. Figure 4.1
illustrates how the product of two Gaussians form a new Gaussian centered at a new
point Px.

The product of two general Gaussian functions is usually referred to as overlap
distribution;

Ωij(x) = Gi(xA, a)Gj(xB, b)

= Kx
ABx

i
Ax

j
B exp(−px2P ), (4.24)
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Figure 4.1: The Gaussian product rule: the shaded areas represent the product of
two individual Gaussians. Left: the exponents are equal to 1 and the two Gaussians
are centered at x = ±1. Right: the exponents are equal to 1/2 and 25, and the two
Gaussians are centered at = 0 and x = 1.

where the constant Kx
AB is the pre-exponential factor. For integral calculations, this

form of the overlap distribution is, however, not so useful because it involves xiA and
xjB. Hermite Gaussians on the other hand are much more suited for integration as we
saw in last section, and one should therefore expand the Cartesian overlap distribution
in Hermite Gaussians centered at P. This is possible since any polynomial of degree
i + j, as the one in Eq. (4.24), may be expanded in Hermite polynomials of degree
t ≤ i+ j [14]. We can therefore write

Ωij =

i+j∑
t=0

Eijt Λt, (4.25)

where the expansion coefficients Eijt are independent of electronic coordinates and
therefore constants. The expansion coefficients are found through a set of recurrence
relations. We consider the incremented distribution

Ωi+1,j =

i+j+1∑
t=0

Ei+1,j
t Λt. (4.26)

To relate this expansion to that of Ωi,j we consider an alternative Hermite expansion
of Ωi+1,j , by using the relation xPΛt = 1

2pΛt+1 + tΛt−1:
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Ωi+1,j = xAΩij

= (x−Ax)Ωij

= (x− Px)Ωij + (Px −Ax)Ωij

= xpΩij −
qQx
a

Ωij

=

i+j∑
t=0

Eijt xpΛt −
qQx
a

i+j∑
t=0

Eijt Λt

=

i+j∑
t=0

Eijt

(
1

2p
Λt+1 + tΛt−1 −

qQx
a

Λt

)

=

i+j+1∑
t=0

(
1

2p
Eijt−1 + (t+ 1)Eijt+1 −

qQx
a
Eij
t

)
Λt, (4.27)

where the coefficients are taken to satisfy the relations

Eijt = 0, for t < 0 or t > i+ j. (4.28)

A comparison of the expansions in Eqs. (4.26) and (4.27), yields the McMurchie-
Davidson recurrence relations for the Hermite coefficients

Ei+1,j
t =

1

2p
Eij
t−1 −

qQx
a
Eijt + (t+ 1)Eijt+1, (4.29)

and similarly it can be shown that

Ei,j+1
t =

1

2p
Eij
t−1 +

qQx
b
Eijt + (t+ 1)Eijt+1, (4.30)

with starting coefficient

E00
0 = Kx

AB. (4.31)

From these recurrence relations, the Hermite coefficients are easily generated and can
be used to expand the overlap distribution in terms of Hermite Gaussians.

Note that the Hermite expansion coefficients are functions of Q but are independent
of P. Therefore, the derivatives of these coefficients with respect to P will vanish while
the derivatives with respect to Q can be generated from the following equations [14]:

E00; n+1
0 = −2q

[
QxE

00; n
0 + nE00; n−1

0

]
, (4.32a)

Ei+1,j; n
t =

1

2p
Eij; nt−1 − q

a

[
QxE

ij; n
t + nEij;n−1

t

]
+ (t+ 1)Eij; nt+1 , (4.32b)

Ei,j+1; n
t =

1

2p
Eij; nt−1 +

q

b

[
QxE

ij; n
t + nEij; n−1

t

]
+ (t+ 1)Eij; nt+1 , (4.32c)
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where

Eij; n
t =

∂nEijt
∂Qnx

. (4.33)

These expressions become very useful in calculations of geometrical derivatives.

4.4 Simple One-Electron Integrals
From a computational point of view, molecular integrals can be divided into those
that involve Coulomb interactions and those that do not. The reason for this division
is due to numerical aspects, and is reflected in the way these integrals are found.
While non-Coulomb integrals can be expressed in closed analytical form, the Coulomb
integrals involve at some stage a numerical procedure. We will in the following first
treat non-Coulomb integrals and thereafter the Coulomb integrals.

4.4.1 Multipole Moments
A general Cartesian multipole moment integral is given by

Sefgab = ⟨Ga|xeCy
f
Cz

g
C |Gb⟩

=

∫
Gikm(r, a,A) [xeCy

f
Cz

g
C ] Gjln(r, b,B) dxdy dz. (4.34)

A special case of this integral is the overlap integral. Since the multipole integrals are
separable in Cartesian directions, they may be calculated as

Sefgab = SeijS
f
klS

g
mn, (4.35)

where for example

Seij = ⟨Gi|xeC |Gj⟩ =
∫
Gi(xA, a) [x

e
C ] Gj(xB, b) dx. (4.36)

We can therefore consider one of the Cartesian directions in the following discussion.
The other two are obtained in the same manner. Inserting the expanded overlap
distribution in Eq. (4.25) into the last equation, we obtain

Seij =

i+j∑
t=0

Eijt

∫ ∞

−∞
xeCΛt dx. (4.37)

In the last equation, the Hermite coefficients can be found by recursion as already
described. Here we will therefore focus on the Hermite integrals, given by

M e
t =

∫ ∞

−∞
xeCΛt dx. (4.38)

In the special case when e = 0, this integral is nothing but the integral in Eq. (4.18)
and the result is simply
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M0
t = δt0

√
π

p
. (4.39)

The remaining integrals can be found by recursion. These are easily obtained by
combining

M e+1
t =

∫ ∞

−∞
xeCxCΛt dx, (4.40)

with the relation

xCΛt = xPΛt +XPCΛt =
1

2p
Λt+1 + tΛt−1 +XPCΛt, (4.41)

to give

M e+1
t = tM e

t−1 +XPCM
e
t +

1

2p
M e
t+1, (4.42)

where XPC = Px − Cx. The final expression for the Cartesian multipole moment
integrals, becomes

Seij =

min(i+j,e)∑
t=0

Eijt M
e
t , (4.43)

where the Hermite coefficients are found from the recurrence relations in Eqs. (4.29)–
(4.31), while the moments are found by using Eqs. (4.39) and (4.42). Note that the
sum over t goes to min(i+ j, e), since the Hermite multipole moment integrals vanish
for t > e, as shown in Ref. [14].

The most important simple one-electron integral in the Self-Consistent Field (SCF)
calculations is the overlap integral. By using the expressions above we can express this
integral as

S000
ab = Eij0 E

kl
0 E

mn
0

(
π

p

)3/2

. (4.44)

4.4.2 Momentum and Kinetic Energy Integrals
A general one-electron integral involving differential operators is given by

Defg
ab = ⟨Ga| (∂/∂x)e(∂/∂y)f (∂/∂z)g |Gb⟩ , (4.45)

which can be factorized in the same way as the multipole moment integrals

Defg
ab = De

ijD
f
klD

g
mn, (4.46)

where for example

De
ij = ⟨Gi| (∂/∂x)e |Gj⟩ . (4.47)
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As shown earlier in this chapter, the differential operator on Gaussian functions, gen-
erates a linear combination of undifferentiated Gaussians. Therefore, will integrals
like the one in Eq. (4.47), reduce to a combination of overlap integrals. Using the
differentiation relation of Cartesian Gaussian shown in Table 4.1 we find that

D0
ij = S0

ij , (4.48)

and

De+1
ij = jDe

i,j−1 − 2bDe
i,j+1, (4.49)

which can be used to generate differentiated integrals of arbitrary order. As an example
we consider the kinetic energy integral:

Tab = −1

2

[
D2
ijD

0
klD

0
mn +D0

ijD
2
klD

0
mn +D0

ijD
0
klD

2
mn

]
= TijS

0
klS

0
mn + S0

ijTklS
0
mn + S0

ijS
0
klTmn, (4.50)

where for example

Tij = −1

2
D2
ij = −1

2

[
j(j − 1)S0

i,j−2 − 2b(2j + 1)S0
ij + 4b2S0

i,j+2

]
. (4.51)

Once the Hermite coefficients are computed, there is really not much work to do in
order to find the overlap and kinetic integrals.

4.5 Coulomb Integrals
Unlike the multipole moment integrals and momentum integrals, the Coulomb inte-
grals cannot be expressed in closed analytical form. They can, however, be reduced
to one-dimensional integrals, which are relatively straightforward to compute. In the
present section, we consider first the electrostatics of spherical Gaussian charge distri-
butions, leading to an interaction potential described by the so-called Boys function.
We thereafter show how Coulomb integrals over Hermite Gaussians can be obtained by
differentiating the Boys function, and derive a set of recursion formulas for generating
these derivatives. Finally, we will show how the Cartesian Coulomb integrals can be
obtained from the corresponding integrals over Hermite Gaussians.

4.5.1 Electrostatics for Gaussian Charge Distributions
The Gaussian distribution of a unit charge of exponent p, centered at P is given by

ρp(rP ) =
(
p

π

)3/2

exp(−pr2P ). (4.52)

We consider the electrostatic potential at C due to this charge distribution:

Vp(C) =

∫
ρP (rP )
rC

dr, (4.53)



68 Molecular Integral Evaluation Chapter 4

and the energy of repulsion between two such distributions:

Vpq =

∫
ρP (r1P )ρQ(r2Q)

r12
dr1 dr2, (4.54)

where the second distribution ρQ(r2Q) of exponent q, is centered at Q. For large
separations of RPC and RPQ, these two expressions should, of course, reduce to the
expression for point charges.

One-electron integral

In contrast to simple one-electron integrals discussed in the previous sections, the
Coulomb integral in Eq. (4.53), cannot be factorized in Cartesian directions due to the
inverse operator. The presence of rC is avoided by the substitution

1

rC
=

1√
π

∫ ∞

−∞
exp(−r2Ct2)dt, (4.55)

yielding the four dimensional integral

Vp(C) =
p3/2

π2

∫
exp(−pr2P )

[∫ ∞

−∞
exp(−r2Ct2) dt

]
dr. (4.56)

The last expression can be rewritten by invoking the Gaussian product rule (Eq. (4.19)):

Vp(C) =
p3/2

π2

∫ ∞

−∞

[∫
exp(−[p+ t2]r2S)dr

]
exp

(
− pt2

p+ t2
R2
CP

)
dt, (4.57)

where RCP = C − P and S is some point on the line connecting C and P:

S =
pP + t2C
p+ t2

. (4.58)

Integrating over the spatial coordinates now gives a one-dimensional integral

Vp(C) =
p3/2√
π

∫ ∞

−∞
(p+ t2)−3/2 exp

(
−pR2

CP

t2

p+ t2

)
dt, (4.59)

which can be simplified even further by making the substitution

u2 =
t2

p+ t2
, (4.60)

to obtain the final expression

Vp(C) =

√
4p

π

∫ 1

0
exp

(
−pR2

CPu
2
)

du. (4.61)

We have thus reduced a three-dimensional integral over all space (Eq. (4.53)) to a one-
dimensional integral over [0, 1]. The integral in the last equation, is the (zeroth-order)
Boys function, defined as
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Fn(x) =

∫ 1

0
exp

(
−xt2

)
t2n dt, with n = 0. (4.62)

We will discuss the nature of this function in detail shortly, but for the moment we
note that the potential from the Gaussian charge distribution can be written in terms
of the Boys function, by

Vp(C) =

√
4p

π
F0(pR

2
CP ). (4.63)

Two-electron integral

The interaction between two Gaussian charge distributions can be expressed as the
electrostatic energy of the second distribution in the potential due to the first distri-
bution:

Vpq =

∫
Vp(r2)ρQ(r2Q)dr2

=

√
4p

π

(
q

π

)3/2 ∫
F0(pr

2
2P ) exp(−qr22Q)dr2. (4.64)

Once again by invoking the Gaussian product rule and integrating over all space, we
obtain

Vpq =

√
4pq

π

∫ 1

0

q

(pt2 + q)3/2
exp

(
−
pqt2R2

PQ

pt2 + q

)
dt. (4.65)

If we now substitute

u2 =
p+ q

pt2 + q
t2, (4.66)

we obtain the final result

Vpq =

√
4α

π
F0(αR

2
PQ), (4.67)

where the reduced exponent α is

α =
pq

p+ q
. (4.68)

The two-electron integral for two spherical Gaussian distributions, may therefore be
expressed in terms of the Boys function as well.
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4.5.2 The Boys function
We have seen that the Coulomb integrals can be described by the Boys function F0(x),
which simplifies the evaluations of Coulomb integrals significantly. In this section, we
discuss in more detail the nature of this function. We will first present some of the
most important properties of the Boys function and thereafter show how this function
can be evaluated.

Properties

The Boys function of order n is defined by

Fn(x) =

∫ 1

0
exp

(
−xt2

)
t2n dt, (4.69)

for x ≥ 0.

• the Boys function is strictly positive since the integrand is positive:

Fn(x) > 0. (4.70)

• The Boys function is strictly decreasing function since its derivatives are negative:

dFn(x)
dx = −Fn+1(x) < 0. (4.71)

• Since the integrand in

Fn(x)− Fn+1(x) =

∫ 1

0
exp

(
−xt2

)
t2n(1− t2)dt, (4.72)

is positive within the integration range, we have that

Fn(x) > Fn+1(x), (4.73)

for all n.

• The values at x = 0 can be expressed in closed form as

Fn(0) =

∫ 1

0
t2n dt = 1

2n+ 1
, (4.74)

which implies

Fn(x) ≤
1

2n+ 1
, (4.75)

since the function is strictly decreasing.
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• For large values of x, the Boys function can be approximated by

Fn(x) =

∫ 1

0
exp

(
−xt2

)
t2n dt

≈
∫ ∞

0
exp

(
−xt2

)
t2n dt

=
(2n− 1)!!

2n+1

√
π

x2n+1
, (large x), (4.76)

from which we conclude that the Boys function goes to zero
as x goes to infinity.

• The zeroth-order boys function is related to the error function by

F0(x) =

√
π

4π
erf(

√
x). (4.77)

Some of the properties listed above are illustrated for the three lowest order of Boys
function in Figure 4.2.

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

Fn(x)

n = 0
n = 1
n = 2

Figure 4.2: The Boys function Fn(x) for n = 0, 1, 2.

Evaluation

The Boys function is central in evaluation of Coulomb integrals, and it is, therefore,
important to calculate it efficiently. We first note that for large values of x, Eq. (4.76)
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provides a good approximation for the Boys function. Unfortunately, this approxima-
tion breaks down for small x. One option for small values of x, is to construct a Taylor
expansion, based on Eqs. (4.71) and (4.74);

Fn(x) =
∞∑
k=0

(−x)k

k!(2n+ 2k + 1)
. (4.78)

This approximation for small values of x, together with the approximation for large
values of x (Eq. (4.76)) are shown in Figure 4.3. Although these two expressions seem

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

F0(x)

Exact
Small x
Asymptotic

Figure 4.3: The zeroth-order Boys function F0(x) (solid line) as approximated by
the long range formula (Eq. (4.76)) for large x and by a sixth-order Taylor expansion
(Eq. (4.78)) around x = 0 for small x.

to give a reasonable approximation of the Boys function, they don’t provide the desired
accuracy for all values of x. We therefore need more accurate methods (with an error
of order 10−10 or smaller) to approximate the Boys function.

A common way to approximate this function, is to numerically calculate and pretab-
ulate the function at regular intervals xt for small arguments. The Boys function at
some point x is then expanded around the nearest tabulated point xt = x−∆x:

Fn(xt +∆x) =

∞∑
k=0

Fn+k(xt)(−∆x)k

k!
. (4.79)

By using intervals of 0.1, convergence to errors smaller than 10−14 is obtained after six
terms [7]. The tabulated values can be computed by evaluating Eq. (4.69), by some
numerical integral scheme, such as the trapezoidal method [13]. For larger arguments,
the Boys function is approximated by the asymptotic formula in Eq. (4.76).
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The Boys functions of different orders n are related by recursion, which can be
obtained by integrating the Boys function by parts. The resulting relation for upward
recursion is given by [7]

Fn+1 =
(2n+ 1)Fn(x)− exp(−x)

2x
, (4.80)

and for downward recursion

Fn =
2xFn+1(x) + exp(−x)

2n+ 1
. (4.81)

By using these recurrence relations, we only need to calculate Fn(x) for one value of n,
obtaining the others by upward or downward recursion. However, for small x, upward
recursion is numerically unstable, since it involves the difference of two almost equal
numbers. Therefore, in practice the downward recursion is preferred.

4.5.3 Hermite Integrals

Having discussed the Coulomb integrals over spherical Gaussian distributions and Boys
function, we are now in position to go one step further and consider Coulomb integrals
over nonspherical Gaussians. Following the McMurchie-Davidson scheme, we first show
how Coulomb integrals over Hermite integrals may be obtained by differentiating the
Boys function, and thereafter how the corresponding integrals over Cartesian Gaussians
can obtained by expansion.

The one-electron Coulomb integral can be expressed in terms of Hermite Gaussians
by

V efg
tuv =

∫
Λtuv(r)(∂/∂Cx)e(∂/∂Cy)f (∂/∂Cz)g r−1

C dr, (4.82)

where for example V 000
tuv is the potential. The two-electron integral can similarly be

expressed as

Vtuv; t′u′v′ =

∫ ∫
Λtuv(r1)Λt′u′v′(r2)

r12
dr1 dr2, (4.83)

where r12 is the separation between the electrons, Λtuv is a Hermite Gaussian of expo-
nent p centered on P and Λt′u′v′ is a Hermite Gaussian of exponent q centered on Q.
Inserting the definition of Hermite Gaussians, given in Eq. (4.12), we obtain

V efg
tuv =

(
∂

∂Px

)t( ∂

∂Py

)u( ∂

∂Pz

)v( ∂

∂Cx

)e( ∂

∂Cy

)f( ∂

∂Cz

)g
×
∫ exp(−pr2P )

rC
dr, (4.84)
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and

Vtuv; t′u′v′ =

(
∂

∂Px

)t( ∂

∂Py

)u( ∂

∂Pz

)v( ∂

∂Qx

)t′( ∂

∂Qy

)u′( ∂

∂Qz

)v′
×
∫ exp(−pr21P ) exp(−qr22Q)

r12
dr1 dr2. (4.85)

These two expressions may now be written in terms of the Boys function, by using the
results from the previous sections (Eqs. (4.63) and (4.67));

V efg
tuv =

2π

p

(
∂

∂Px

)t( ∂

∂Py

)u( ∂

∂Pz

)v( ∂

∂Cx

)e( ∂

∂Cy

)f( ∂

∂Cz

)g
× F0(pR

2
PC), (4.86)

and

Vtuv; t′u′v′ =
2π5/2

pq
√
p+ q

(
∂

∂Px

)t( ∂

∂Py

)u( ∂

∂Pz

)v( ∂

∂Qx

)t′( ∂

∂Qy

)u′( ∂

∂Qz

)v′
× F0(αR

2
PQ), (4.87)

where the factors in front arise due to the normalization of the charge distributions
given in Eq. (4.52). Thus, we have managed to express integrals over nonspherical
distributions as derivatives of integrals over spherical distributions. The derivatives
may be simplified even further, since the Boys function depends only on the relative
separation of the two centers, leading to much more simpler expressions;

V efg
tuv = (−1)e+f+g

2π

p
Rt+e,u+f,v+g(p,RPC), (4.88)

and

Vtuv; t′u′v′ = (−1)t
′+u′+v′ 2π5/2

pq
√
p+ q

Rt+t′,u+u′,v+v′(α,RPQ), (4.89)

where we have introduced the integrals

Rtuv(a,A) =

(
∂

∂Ax

)t( ∂

∂Ay

)u( ∂

∂Az

)v
F0(aA

2). (4.90)

It remains now to find a way to calculate the integrals in Eq. (4.90).

Evaluation of Hermite Coulomb Integrals

The Integrals in Eq. (4.90) are often referred to as Hermite Coulomb integrals, even
though the factors in front of actual Coulomb integrals (Eqs. (4.88)–(4.89)) are missing.
In order to develop a scheme for evaluating these integrals, we introduce the auxiliary
integrals [7]:



Section 4.5 Coulomb Integrals 75

Rntuv(a,A) =

(
∂

∂Ax

)t( ∂

∂Ay

)u( ∂

∂Az

)v
Rn000(a,A), (4.91)

where

Rn000(a,A) = (−2a)nFn(aA
2). (4.92)

By incrementing t, we obtain

Rnt+1,u,v(a,A) =

(
∂

∂Ax

)t( ∂

∂Ay

)u( ∂

∂Az

)v ∂Rn000(a,A)

∂Ax

=

(
∂

∂Ax

)t
AxR

n+1
0uv (a,A), (4.93)

where we have used the differentiating properties of the nth order Boys function. The
operator on the last line may be written as

(
∂

∂Ax

)t
Ax =

[(
∂

∂Ax

)t
, Ax

]
+Ax

(
∂

∂Ax

)t
= t

(
∂

∂Ax

)t−1

+Ax

(
∂

∂Ax

)t
, (4.94)

which leads to the following recurrence relation

Rnt+1,u,v = tRn+1
t−1,u,v +AxR

n+1
tuv , (4.95)

and similarly for the other indices

Rnt,u+1,v = uRn+1
t,u−1,v +AyR

n+1
tuv , (4.96)

Rnt,u,v+1 = vRn+1
t,u,v−1 +AzR

n+1
tuv . (4.97)

Thus, all Hermite Coulomb integrals of order t+u+ v ≤ N can be generated from the
Boys functions of order n ≤ N by recursion.

4.5.4 Cartesian Coulomb integrals

We are now in a position to calculate the Cartesian Coulomb integrals:

V efg
ab = ⟨Ga|

(
∂

∂Cx

)e( ∂

∂Cy

)f( ∂

∂Cz

)g
r−1
C |Gb⟩

=

∫
Ωab(r)

(
∂

∂Cx

)e( ∂

∂Cy

)f( ∂

∂Cz

)g
r−1
C dr, (4.98)
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and

gacbd = ⟨Ga(r1)Gc(r2)|
1

r12
|Gb(r1)Gd(r2)⟩

=

∫
Ωab(r1)Ωcd(r2)

r12
dr1 dr2. (4.99)

Earlier in this chapter we show that the overlap distribution can be expanded in terms
of Hermite Gaussians (Eq. (4.25)), which we can insert into the above equations

V efg
ab =

∑
tuv

Eabtuv

∫
Λtuv(r)

(
∂

∂Cx

)e( ∂

∂Cy

)f( ∂

∂Cz

)g
r−1
C dr (4.100)

gacbd =
∑
tuv

Eabtuv
∑
t′u′v′

Ecdt′u′v′

∫ ∫
Λtuv(r1)Λt′u′v′(r2)

r12
dr1 dr2, (4.101)

where for example

Eab
tuv = Eijt E

kl
u E

mn
v . (4.102)

The integrals in these two equations are nothing but the integrals in Eqs. (4.82)–
(4.83). Thus, we can use the result from last section to obtain the final expressions for
Cartesian Coulomb integrals:

V efg
ab = (−1)e+f+g

2π

p

∑
tuv

EabtuvRt+e,u+f,v+g(p,RPC), (4.103)

gacbd =
2π5/2

pq
√
p+ q

∑
tuv

Eabtuv
∑
t′u′v′

(−1)t
′+u′+v′Ecdt′u′v′Rt+t′,u+u′,v+v′(α,RPQ), (4.104)

where

p = a+ b, (4.105)
q = c+ d, (4.106)

P =
aA + bB

p
, (4.107)

Q =
cC + dD

q
. (4.108)

Using these expressions, in combination with the recurrence relations for Hermite co-
efficients Eabtuv and Hermite Coulomb integrals Rtuv, the Cartesian Coulomb integrals
can be calculated straightforwardly.
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4.6 Geometrical Derivative Integral
The derivatives of molecular integrals with respect to the nuclei positions, is required
for studying various molecular properties, such as characterization of stationary points
on molecular potential energy surfaces and magnetic properties involving an external
magnetic field [7]. The former involves calculation of the derivatives of the energy,
which we will focus on in the following.

We consider the (restricted) Hartree-Fock energy (see Chapter (2.5.2)):

E =
M∑
pq

Ppqhpq +
1

2

M∑
pqrs

PpqPrs

(
gprqs −

1

2
gprsq

)
, (4.109)

where the sums run over contracted Gaussian-type orbitals (CGTOs). The derivatives
of this expression with respect to the nuclear coordinate Nx is given by

∂E

∂Nx
=
∑
pq

Ppq
∂hpq
∂Nx

+
1

2

∑
pqrs

PpqPrs

(
∂gprqs
∂Nx

− 1

2

∂gprsq
∂Nx

)
+
∑
pq

∂Ppq
∂Nx

hpq +
∑
pqrs

∂Ppq
∂Nx

Prs

(
gprqs −

1

2
gprsq

)
, (4.110)

where the two last terms arise due to implicit dependency of molecular orbital coeffi-
cients on the nuclear coordinates. As it is shown in Ref. [6], these two terms can be
rewritten to give the following expression for the derivative of the energy

∂E

∂Nx
=
∑
pq

Ppq
∂hpq
∂Nx

+
1

2

∑
pqrs

PpqPcd

(
∂gprqs
∂Nx

− 1

2

∂gprsq
∂Nx

)
−
∑
pq

Wpq
∂Spq
∂Nx

, (4.111)

where
Wpq = 2

∑
l

ϵlCplCql. (4.112)

Thus, the derivatives of the energy with respect to the nuclear positions is given by the
derivatives of the one-electron integral hpq, the derivatives of the two-electron integral
gprqs and the derivatives of the overlap integral Spq. Now, since the sums over p, q, r
and s run over CGTOs (which are linear combination of single Gaussian functions) the
derivatives of these molecular integrals involve derivatives of integrals over primitive
GTOs. This means that we need to calculate integral derivatives of the form

∂Sab
∂Nx

= δAN
∂Sab
∂Ax

+ δBN
∂Sab
∂Bx

, (4.113)

∂hab
∂Nx

= δAN
∂Tab
∂Ax

+ δBN
∂Tab
∂Bx

− ZNV
100
ab (CN )

− δAN
∑
K

ZK
∂V 000

ab (CK)

∂Ax
− δBN

∑
K

ZK
∂V 000

ab (CK)

∂Bx
, (4.114)
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and
∂gacbd
∂Nx

= δAN
∂gacbd
∂Ax

+ δBN
∂gacbd
∂Bx

+ δCN
∂gacbd
∂Cx

+ δDN
∂gacbd
∂Dx

, (4.115)

where a, b, c and d now are indices of primitive Gaussian-type orbitals (GTOs). The
molecular integrals Sab, Tab, V 000

ab and gacbd are all expressed in terms of the overlap
distribution Ωab (Eqs. (4.37), (4.98) and (4.99)), so we need a method for calculating
the derivatives of the overlap distribution with respect to the nuclear coordinates. Once
we know the derivatives of the overlap distribution we can compute the derivatives of
the molecular integrals.

To find the geometrical derivatives of the overlap distribution, we could compute the
derivatives with respect to the nuclear coordinates directly. This leads to an analogous
expansion like the one in Eq. (4.25), but with a higher summation range. Therefore,
the amount of work required to transform from the Hermite Gaussians to the Cartesian
Gaussians, is greater for the expansion of the differentiated overlap distributions, com-
pared to the undifferentiated one. The amount of extra work increases as the order of
differentiation increases. A better approach is to calculate the derivatives indirectly, as
suggested in Ref. [14]. This approach is based on the fact that in the Hermite expansion:

Ωij =

i+j∑
t=0

Eijt Λt, (4.116)

the expansion coefficients Eijt are functions of Qx = Ax−Bx only (independent of Px),
and the Hermite Gaussians are functions of Px = aAx+bBx

p only (independent of Qx).
The derivatives with respect to those coordinates take a simple form and by using the
notation

Ωmnij =
∂m+nΩij
∂Pmx ∂Q

n
x

, (4.117)

we obtain

Ωmnij =

i+j∑
t=0

Eij; nt Λt+m, (4.118)

where the differentiated coefficients are those given by Eq. (4.32). Note that the sum-
mation range is the same as for the undifferentiated expansion, and hence is the number
of operations the same as the undifferentiated case. Now, these derivatives are related
to the derivatives with respect to the nuclear coordinates by

∂

∂Ax
=
a

p

∂

∂Px
+

∂

∂Qx
, (4.119)

∂

∂Bx
=
b

p

∂

∂Px
− ∂

∂Qx
, (4.120)
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and

∂

∂Px
=

∂

∂Ax
+

∂

∂Bx
, (4.121)

∂

∂Qx
=
q

a

∂

∂Px
− q

a

∂

∂Bx
. (4.122)

Thus, the derivatives with respect to nuclear coordinates can be found by using these
relations. Higher order derivatives can be generated according to the binomial expan-
sion [14]

(
∂

∂Ax

)q
=

q∑
k=0

(
q

k

)(
a

p

)k ( ∂

∂Qx

)q−k ( ∂

∂Px

)k
, (4.123)

(
∂

∂Bx

)r
=

(
∂

∂Px

)r
−

r−1∑
k=0

(
r

k

)(
∂

∂Ax

)r−k ( ∂

∂Bx

)k
. (4.124)

Note that these expansions are independent of Cartesian quantum numbers.





Chapter 5

From Quantum Mechanics to
Molecular Dynamics

In quantum mechanics, the dynamics of particles is described by the Schrödinger equa-
tion. In classical mechanics, on the other hand, the evolution of a system is determined
by the classical equations of motion, in particular Newton’s second law. From a concep-
tual point of view, quantum mechanics is more fundamental than classical mechanics
as it encompasses classical mechanics as a special case, in the limit of large quantum
numbers. This is the essence of the correspondence principle [9]. In studies of pro-
cesses at the molecular and (sub)atomic level, quantum mechanics has had a major
success, but the complexity of the Schrödinger equation has limited its applications
to very simple systems and very small number of particles. Macroscopic processes
are therefore extremely difficult to handle quantum mechanically. However, classically
these problems are simpler to solve, leading to the development of a new technique
for molecular studies, namely molecular dynamics (MD) [15]. This technique involves
computer simulations of systems at the atomic level, where the equations of motion are
solved numerically to follow the time evolution of the system, allowing for ”computer
measurement” of thermodynamic properties of the system.

In this chapter the transition from quantum mechanics to MD is discussed. First,
a derivation of classical MD is given, starting from the time-dependent Schrödinger
equation. Then, an outlook on the methods of ab initio MD is provided. Finally, in
the last part of this chapter, the interaction potentials in MD simulations are discussed.
The material in this chapter is based on Refs. [5, 15, 16].

5.1 Deriving Classical Molecular Dynamics
In the upcoming sections, we will follow the route suggested by Ref. [16] to derive
classical MD, starting from Schrödinger equation.

5.1.1 Decomposition of the Hamiltonian
We start with the time-dependent Schrödinger equation for a system of electrons and
nuclei:

81
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ih̄
∂

∂t
Ψtot({ri}, {Rn}; t) = HΨtot({ri}, {Rn}; t), (5.1)

where Ψtot({ri}, {Rn}; t) is the total wave function of the system, and the Hamiltonian
is given by

H = −
Nn∑
n=1

h̄2

2Mn
∇2
n −

Ne∑
i=1

h̄2

2me
∇2
i +

1

4πϵ0

1

2

Ne∑
i,j=1
i ̸=j

e2

|ri − rj |
(5.2)

− 1

4πϵ0

Nn∑
n=1

Ne∑
i=1

Zne
2

|ri − Rn|
− 1

4πϵ0

1

2

Nn∑
n,m=1
n̸=m

ZnZme
2

|Rn − Rm|
.

The indices i and j refer to the electrons while n and m refer to the nuclei, me is
the electron mass and Mn is the mass of nucleus n. The first two terms represent the
kinetic energy of the nuclei and electrons, while the third and fourth terms represent
the Coulomb repulsion between the electrons and the Coulomb attraction between
the electrons and nuclei, respectively. Finally, the last term represents the Coulomb
repulsion between the nuclei. For our purpose, it is convenient to decompose this
Hamiltonian into

H = −
Nn∑
n=1

h̄2

2Mn
∇2
n −

Ne∑
i=1

h̄2

2me
∇2
i + VN({Rn}) + Ve({ri}, {Rn}), (5.3)

where VN is the Coulomb interaction energy between the nuclei, and Ve contains the
Coulomb repulsion between the electrons and the Coulomb attraction between the
electrons and nuclei. The Hamiltonian can be decomposed even further by

H =

Nn∑
n=1

h̄2

2Mn
∇2
n +HNe({ri}, {Rn}), (5.4)

where HNe is

HNe({ri}, {Rn}) =
Ne∑
i=1

h̄2

2me
∇2
i + VN({Rn}) + Ve({ri}, {Rn})

=

Ne∑
i=1

h̄2

2me
∇2
i + VNe({ri}, {Rn}). (5.5)

To keep the notation simple we will use r = {ri} and R = {Rn}, for electronic and
nuclear coordinates, respectively, unless otherwise specified.
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5.1.2 Separation of the Wave function
As a first approximation we assume that the solution Ψtot(r,R; t) of the full Schrödinger
equation (5.2) has the form of a separated wave function with a nuclear and an elec-
tronic component:

Ψtot(r,R; t) ≈ Ψ̃tot(r,R; t) = χ(R; t)Ψ(r; t) exp
[
i

h̄

∫ t

t0

ẼNe(t
′)dt′

]
, (5.6)

where χ and Ψ are the nuclear and electronic wave functions, respectively. Each
component is assumed to be separately normalized to unity at every instant of time,
i.e.

⟨Ψ; t|Ψ; t⟩ =
∫

Ψ∗(r; t)Ψ(r; t)dr = 1, (5.7)

⟨χ; t|χ; t⟩ =
∫
χ∗(R; t)χ(R; t)dR = 1. (5.8)

The phase factor ẼNe is defined as

ẼNe(t) =

∫
Ψ∗(r; t)χ∗(R; t)HNeΨ(r; t)χ(R; t)dR dr, (5.9)

which has a convenient form for the following derivation. Inserting the separation
ansatz in Eq. (5.6) into the time-dependent Schrödinger equation, multiplying from
the left by Ψ∗(r; t)χ∗(R; t) and integrating over r and R, and finally imposing the
energy conservation

d
dt

∫
Ψ̃∗HΨ̃dR dr = 0, (5.10)

yields the following relations

ih̄
∂Ψ

∂t
= −

Ne∑
i=1

h̄2

2me
∇2
iΨ+

(∫
χ∗(R; t)VNe(R, r)χ(R; t)dR

)
Ψ, (5.11)

ih̄
∂χ
∂t

= −
Nn∑
n=1

h̄2

2Mn
∇2
nχ+

(∫
Ψ∗(r; t)HNe(R, r)Ψ(r; t)dr

)
χ. (5.12)

Note that in these two equations, the phase factor doesn’t arise. This is due to the
chosen form for the phase of the wave function in Eq. (5.9). The obtained coupled sys-
tem of equations can be solved instead of the original Schrödinger equation, whenever
the explicit knowledge of the phase is of no importance. This is for example the case
in expectation value calculations since all expectation values are invariant under phase
shift.

In this description, both electrons and nuclei move in time-dependent effective
potentials. These are obtained from appropriate expectation values over the coordi-
nates of the other unknown. This picture is the foundation of the time-dependent
self-consistent field (TDSCF) approach.
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5.1.3 The Nuclear Wave function
The next step in the derivation of classical MD is to approximate the nuclei as classical
point particles. In order to do this, we first rewrite χ(R; t) in terms of a real amplitude
factor A > 0, and a real phase factor S (see Chapter 2.4 in Ref. [17]):

χ(R; t) = A(R; t) exp
[
i

h̄
S(R; t)

]
. (5.13)

This rewrite to polar form can be done for any complex function of R and t. By
inserting the new form of χ(R; t) into Eq. (5.12) and separating the real and imaginary
parts, we get

∂S

∂t
+

Nn∑
n=1

1

2Mn
(∇nS)

2 +

∫
Ψ∗HNeΨdr = h̄2

Nn∑
n=1

1

2Mn

∇2
nA

A
, (5.14a)

∂A

∂t
+

Nn∑
n=1

1

Mn
(∇nA)(∇nS) +

Nn∑
n=1

1

2Mn
A(∇2

nS) = 0. (5.14b)

This set of equations corresponds exactly to Eq. (5.12), but is expressed in the new
variables A and S, and can be used to solve the time-dependent Schrödinger equation
for the nuclear component.

The Relation for the Amplitude factor A

The relation for A, given in Eq. (5.14b), is nothing but a continuity equation. This
relation is independent of h̄ and ensures locally the conservation of the particle prob-
ability |χ|2 = A2 associated to the nuclei. This can be shown by examining how the
probability density |χ|2 changes in time, i.e.

∂

∂t
|χ|2 = χ∗∂χ

∂t
+
∂χ∗

∂t
χ. (5.15)

Inserting the nuclear Schrödinger equation (5.12) and its complex conjugate, we obtain

∂

∂t
|χ|2 = −

Nn∑
n=1

h̄

2iMn

(
χ∗∇2

nχ−χ∇2
nχ

∗
)

= −
Nn∑
n=1

∇n ·
[

h̄

2iMn

(
χ∗∇nχ−χ∇nχ∗)]

= −
Nn∑
n=1

∇n ·
[
h̄

Mn
Im
(
χ∗∇nχ

)]
, (5.16)

where the Hermiticity of the operator HNe has been used. This equation is of the form
of a standard continuity equation;
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∂ρ

∂t
= −∇ · j, (5.17)

and ensures local conservation of the particle probability.
Now, by inserting the polar form of the nuclear equation (Eq. (5.13)) into Eq. (5.16)

and using the relation

χ∗∇nχ = A(∇nA) +
i

h̄
A2(∇nS), (5.18)

we obtain

∂A2

∂t
= −

Nn∑
n=1

∇n ·
(
A2∇nS

Mn

)
. (5.19)

This is exactly the same expression we get by multiplying 2A on both sides of Eq. (5.14b).
Thus, we have shown that the relation for the amplitude A, is nothing but the conti-
nuity relation for the particle density associated with the nuclei.

The Relation for the Phase Factor S

For our purpose, the relation for the phase S of the nuclear wave function is much
more interesting. By considering h̄ → 0 as the classical limit, Eq. (5.14a) reduces to

∂S

∂t
+

Nn∑
n=1

1

2Mn
(∇nS)

2 +

∫
Ψ∗HNeΨdr = 0, (5.20)

or, by setting ∇RS = (∇1S, . . . ,∇NnS),

∂S

∂t
+H(R,∇RS) = 0, (5.21)

where H(R,∇RS) contains the two last terms on the left hand side in Eq. (5.20). We
recognize the last equation as the Hamiltonian-Jacobi form of the equation of motion
of classical mechanics with the classical Hamiltonian function [16]:

H(R,P) = T (P) + V (R). (5.22)
This function is defined in terms of the generalized coordinates R = {Rn} and their
conjugated momenta P = {Pn}, where one puts

Pn ≡ ∇nS. (5.23)
In this description the potential is the time-dependent term ⟨Ψ|HNe|Ψ⟩. The equations
of motion associated to Eq. (5.20) can then be written as

dPn

dt
= −∇n ⟨Ψ|HNe|Ψ⟩ , (5.24)
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or

MnR̈n = −∇n ⟨Ψ|HNe|Ψ⟩
= −∇nV

Ehr(R(t)). (5.25)

Thus, the nuclei move according to classical mechanics in an effective potential V Ehr

due to the electrons. This potential depends on the nuclear positions at time t while
they are fixed at their instantaneous values {Rn(t)}.

5.1.4 Nuclei as Classical Point Particles
As already mentioned, the nuclei are approximated as point particles in classical MD.
Therefore, the nuclear wave function has to replaced by the positions of the nuclei in
the electronic equations of motion. This can be done by rewriting the nuclear wave
function as a product of delta functions. More precisely, we write (in the limit h̄ → 0):

|χ(R; t)|2 =
∏
n

δ(Rn − Rn(t)), (5.26)

so that for example ∫
χ∗(R; t)Rnχ(R; t)dR h̄→0−−−→ Rn(t). (5.27)

This leads to the following equation for the electronic degrees of freedom

ih̄
∂

∂t
ΨR(t)(r; t) =

−
Ne∑
i=1

h̄2

2me
∇2
i + VNe(R(t), r)

ΨR(t)(r; t)

= HNe(r,R(t))ΨR(t)(r; t), (5.28)

where the electronic wave function Ψ is indexed with R(t), to clearly show the implicit
dependency on R via the coupling in the system. Note that the electronic wave func-
tion in the last equation is not equal to the wave function in Eq. (5.11), due to the
approximation introduced by letting h̄ → 0.

The approach relying on solving Eq. (5.25) together with Eq. (5.28) is known as
Ehrenfest MD, named after Paul Ehrenfest, who was the first to show how Newtonian
classical dynamics can be derived from Schrödinger wave equation [16]. This approach
is a mixed approach because only the nuclei are treated classically, while the electrons
are still considered as quantum mechanical particles.

5.2 Ab Initio Molecular Dynamics
The basic idea of the so-called ab initio MD, is to solve the electronic Schrödinger
equation approximately to determine an effective potential for the nuclei. From the
obtained potential the nuclear forces can be computed, and Newton’s equations can
be applied to find the motion of the nuclei. This hybrid approach in its different
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variants forms the basis for the Ehrenfest MD, Born-Oppenheimer MD (BOMD) and
Car-Parrinello MD (CPMD).

In the next three sections, we will give a short description of each of these ab initio
methods. Our goal is not give a detailed description of these methods, but only a
quick overview without discussing all the details. The reader is referred to Ref. [16] for
details and more complementary description.

5.2.1 Ehrenfest Molecular Dynamics
Ehrenfest MD involves solving the following equations of motion:

MnR̈n = −∇n ⟨Ψ|HNe|Ψ⟩ , (5.29)

ih̄
∂ΨR(t)

∂t
= HNeΨR(t), (5.30)

where HNe is time-dependent via the nuclear coordinates {Rn}. This method is, as
already mentioned, a mean field self-consistent method, where the time-dependent
electronic Schrödinger equation is solved on-the-fly, i.e. for each time step of Newton’s
equation.

A common restriction, which normally is introduced in Ehrenfest MD, is to first
expand the electronic wave function in the so-called adiabatic basis [15], and thereafter
restrict the whole electronic wave function to a single state in that basis, typically the
ground state. The adiabatic basis consists of the solutions of the time-independent
electronic Schrödinger equation given by

HNeΨk(r;R) = Ek(R)Ψk(r;R). (5.31)

The solutions Ψk of this equation are combined with complex, time-dependent coeffi-
cients to construct the electronic wave function. Mathematically, this can be stated
as

ΨR(t)(r; t) =
∞∑
j=0

cj(t)Ψk(r;R), (5.32)

where the coefficients describe how the occupancy of the different states evolves over
time. Restricting the electronic wave function to the ground state in this basis cor-
responds to only include the first term in the sum. Since the time evolution of the
wave function corresponds to a unitary propagation [16], the ground state wave func-
tion which minimizes the expectation value of HNe initially, will stay in its respective
minimum as the nuclei move.

In Ehrenfest MD the time scale and thus the time step to integrate the equations
motion is determined by the dynamics of the electrons. As a result, since the electrons
move much faster than the nuclei, the largest possible time step is the one that allows
to integrate the electronic equations of motion. This is a huge disadvantage of the
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Ehrenfest MD, since we are confined to work with much smaller time scales than the
one given by the nuclear motion. Because of this, the Ehrenfest MD is not in widespread
use, specially if the system has many active degrees of freedom, although it has been
used to study collision and scattering-type problems [16].

5.2.2 Born-Oppenheimer Molecular Dynamics
The BOMD is based on the Born-Oppenheimer approximation (see Section 2.1.3),
which rests on the fact that nuclei are much more massive than electrons. Because of
the huge difference in mass between electrons and nuclei, the former can be considered
as particles that follow the nuclear motion adiabatically. This means that the electrons
respond instantaneously to the nuclear motion and relax to the instantaneous ground-
state configuration. We may therefore consider the nuclei as fixed with respect to
the electronic motion. This means that we can fix the nuclear configuration {Rn} at
some value and solve for the electronic wave function, which only depends implicitly
on {Rn}.

The ansatz for the wave function in BOMD, using r = {ri} and R = {Rn}, is

Ψtot(r,R; t) ≈ Ψ̃BO(r,R) = χBO(R; t)ΨBO(r;R), (5.33)
which is separated in a time-dependent nuclear term and an electronic term which
depends parametrically on R. We assume that both terms are separately normalized
to unity at every instant of time;

⟨ΨBO;R|ΨBO;R⟩ =
∫

Ψ∗
BO(r;R)ΨBO(r;R)dr = 1, (5.34)

⟨χBO; t|χBO; t⟩ =
∫
χ∗

BO(R; t)χBO(R; t)dR = 1. (5.35)

Moreover we require the electronic wave function ΨBO(r,R) to satisfy the time-independent
Schrödinger equation for the electrons with fixed nuclei:

−
Ne∑
i=1

h̄2

2me
∇2
i + VNe(r,R)

ΨBO = ENe(R)ΨBO, (5.36)

where VNe contains the Coulomb interaction energies. This equation yields a set of
normalized eigenfunctions ΨBO,k with corresponding eigenvalues ENe,k.

The total time-independent Schrödinger equation for both electrons and nuclei, is
given by

−
Nn∑
n=1

h̄2

2Mn
∇2
n −

Ne∑
i=1

h̄2

2me
∇2
i + VNe(r,R)

χBOΨBO = EχBOΨBO, (5.37)

where E must not be confused with the electronic energy ENe(R). Multiplying both
sides from left with Ψ∗

BO and integrating over r gives
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−
Nn∑
n=1

h̄2

2Mn
∇2
n + ENe(R)

χBO

−
Nn∑
n=1

h̄2

2Mn

∫
Ψ∗

BO

(
χBO∇2

nΨBO + 2∇nχBO · ∇nΨBO
)

dr = EχBO. (5.38)

The terms in the second brackets are normally ignored since their contribution is neg-
ligible compared to the other terms, due to the mass difference between electrons and
nuclei (see for example Chapter 3 in Ref. [18]). We may therefore drop these terms, to
obtain

−
Nn∑
n=1

h̄2

2Mn
∇2
n + ENe(R)

χBO = EχBO, (5.39)

where the electronic energy ENe(R) enters the nuclear equation as the internuclear
potential. But, as already mentioned, solving the electronic equation (Eq. (5.36))
yields a set of eigenvalues ENe,k. This means that each electronic eigenvalue will give
rise to a different internuclear potential. However, one can assume that the electronic
states are at the ground state. This is because electrons move much faster than the
nuclei and will be able to adjust themselves to the electronic ground state for the
current nuclear positions. We can therefore use the ground-state eigenvalue ENe,0 to
set up the time-dependent Schrödinger equation for the system (after multiplication of
Ψ∗

BO from left and integrating over r);

ih̄
∂

∂t
χBO =

−
Nn∑
n=1

h̄2

2Mn
∇2
n + ENe,0(R)

χBO. (5.40)

We can now perform the same steps as we did in the derivation of Ehrenfest MD: (i)
approximate the nuclear wave function in terms of an amplitude factor and a phase
factor, (ii) insert this form in Eq. (5.40) and separate the real and imaginary parts,
(iii) neglect terms involving h̄ and (iv) recognize the relation for the phase factor as
the Hamiltonian-Jacobi form of the equations of motion of classical mechanics, with a
potential given by

ENe,0(R) = ⟨ΨBO,0|HNe|ΨBO,0⟩ . (5.41)
By performing these steps, we find the equations of motion fro BOMD to be

MnR̈n = −∇n min
ΨBO,0

{
⟨ΨBO,0|HNe|ΨBO,0⟩

}
, (5.42)

HNeΨBO,0 = ENe,0(R)ΨBO,0. (5.43)
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Thus, the computation of the electronic structure is reduced to the solution of the
time-independent electronic Schrödinger equation, which is then used for computations
of forces acting on the nuclei at each time step. The only time-dependency of the
electrons is due to the classical motion of the nuclei. This is in contrast to Ehrenfest
MD where the dynamics is determined from the time-dependent electronic Schrödinger
equation. Because of this, the time step in BOMD is determined by the nuclear motion.
This is a huge advantage of BOMD compared to Ehrenfest MD, where the time step
is determined by the electronic motion. The disadvantage of BOMD is, however, that
a minimization is required at each time step.

BOMD with Hartree-Fock

As an ending of our discussion of BOMD, we will consider the Born-Oppenheimer
equations of motion for the special case when the Hartree-Fock method is used. Within
the Hartree-Fock method, the electronic wave function is approximated by a single
Slater determinant ΨSD = det{ψi}, where the one-particle orbitals ψi, subjected to the
orthonormality constraint ⟨ψi|ψj⟩ = δij , are optimized to give the variational minimum
of the energy expectation value EHF = ⟨ΨSD|HNe|ΨSD⟩ (see Section 2.4)1. In this case,
the Lagrange functional, which we wish to minimize by varying the orbitals, is given
by

L{ψi} = ⟨ΨSD|HNe|ΨSD⟩ −
∑
ij

Λij
(
⟨ψi|ψj⟩ − δij

)
, (5.44)

leading to the well-known Hartree-Fock equations given by

Fψi =
∑
j

λijψj , (5.45)

with F as the Fock operator and λij as the Lagrange multipliers. Thus, the corre-
sponding equations of motion to those in Eqs. (5.42)–(5.43), read

MnR̈n = −∇nmin
{ψi}

{EHF}, (5.46)

Fψi =
∑
j

λijψj , (5.47)

for the Hartree-Fock case.

1Note that HNe includes the electrostatic energy of the nuclei, but in Chapter 4 this term was not
included in the derivation of the Hartree-Fock equations. However, since the nuclear coordinates are
fixed during Hartree-Fock calculations, this term is a constant and the derivation will not be affected
by this term.
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5.2.3 Car-Parrinello Molecular Dynamics
One of the breakthrough in ab initio MD, came with the development of the Car-
Parrinello method [5], which made it possible to treat large-scale problems via ab initio
MD. CPMD attempts to combine the advantages of Ehrenfest MD and BOMD, and at
the same time avoid their disadvantages. The advantage of Ehrenfest MD is that the
wave function that minimize the energy initially, will stay in its respective minimum as
the nuclei move, but has the disadvantage of having a time step determined by the fast
electronic motion. In BOMD, on the other hand, the time step is determined by the
nuclear motion, but a minimization is required at each time step. Ideally, one wishes
to integrate the equations of motion on the large time scale set by the nuclear motion,
and at the same time avoid the minimization of the energy at each time step. This is
exactly what the Car-Parrinello method offers. In CPMD, the electrons are explicitly
included as active degrees of freedom via a fictitious dynamic, which is used to keep
the electrons near the ground state. In particular, an extended Lagrangian for the
system is introduced, leading to a system of coupled equations of motion for the nuclei
and the electrons. Thus, an electronic minimization is not needed in every time step,
since after an initial, standard minimization, the fictitious dynamics of the electrons
will keep them at (or near) the ground state as the nuclei move.

To set up the extended Lagrangian, we consider first the Ehrenfest MD and BOMD,
which when restricted to the ground state, have the effective potential felt by the nuclei

E0(R) ≡ ENe,0(R) = ⟨Ψ0|HNe|Ψ0⟩ . (5.48)

It is clear that the energy of the electronic ground state can be regarded as a functional
of the wave function Ψ0. If the wave function is expanded in a set of time-dependent
one-particle functions {ψi(r, t)}, E0 can be considered as a functional of the orbitals, i.e.
E0(R, {ψi}). Now, if we treat the orbitals as ”classical particles”, one can determine the
forces acting on the orbitals as the functional derivatives of the extended Lagrangian
with respect to the orbitals—analog to finding the forces acting on the nuclei by taking
the derivative with respect to nuclei positions. Using this idea we can set up the
extended Lagrangian as

LCP =

Nn∑
n=1

1

2
MnṘn +

No∑
i=1

1

2
µi

∫
ψ̇∗
i ψ̇i dr − E0(R, {ψi}) + constraint, (5.49)

where µi is the fictitious mass of orbital ψi and the constraint can for example be the
orthonormality of the orbitals;

∑
ij

λij

(∫
ψ∗
i ψj dr − δij

)
, (5.50)

with λij as the Lagrange multipliers. This extended Lagrangian consist of two kinetic
energy terms, one for the nuclei and one for the electronic orbitals, followed by the
potential energy term and possible appropriate constraints. Setting up the respective
Euler-Lagrangian equations [19]:
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d
dt
∂LCP

∂Ṙn

=
∂LCP
∂Rn

,
d
dt
∂LCP

δψ̇∗
k

=
∂LCP
δψ∗

k

, (5.51)

we obtain the following equations of motion

MnR̈n = −∇nE0

(
R, {ψi}

)
+
∑
ij

λij∇n

(∫
ψ∗
i ψj dr

)
, (5.52)

µkψ̈k = −δE0

δψ∗
k

+
∑
j

λkjψj . (5.53)

where the second term on the right hand side of Eq. (5.52) is kept, due to implicit
dependency on the nuclear coordinates. Thus, we can use these two equations to evolve
the nuclei and the orbitals forward in time without requiring energy minimization at
each step.

The kinetic energy term for the orbitals is perhaps the most unusual and coun-
terintuitive term in the Lagrangian. This term is a consequence of the initial idea of
treating the orbitals as classical particles. Note that the mass µ should be sufficiently
small to enable the orbitals to adapt reasonably to the changing nuclear configuration.
Therefore, the fictitious mass is much smaller than the mass of the nuclei [11]. An
extensive discussion about how to choose the fictitious mass and the Car-Parrinello
method in general is given in Ref. [16].

CPMD with Hartree-Fock

As for the BOMD, we end the formal discussion of the CPMD by formulating the Car-
Parrinello dynamics for the special case of the Hartree-Fock approximation. When
using the Lagrangian given by

LCP =

Nn∑
n=1

1

2
MnṘn +

No∑
i=1

1

2
µi ⟨ψ̇∗

i |ψ̇i⟩ − ⟨ΨSD|HNe|ΨSD⟩+
∑
ij

Λij
(
⟨ψi|ψj⟩ − δij

)
,

(5.54)
the following equations of motion is obtained

MnR̈n = −∇nE
HF +

∑
ij

λij∇n ⟨ψi|ψj⟩ , (5.55)

µkψ̈k = −Fψk +
∑
j

λkjψj . (5.56)

This set of equations is very similar to the one we obtained for BOMD in Eqs. (5.46)–
(5.47), but in this case no minimization of the electronic total energy is required and
an additional fictitious kinetic energy term is added. It is worth mentioning that in the
limit µk → 0, the equations of motion become identical to those in Born-Oppenheimer
dynamics, as discussed in Ref. [16].
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Model calculation on Hydrogen Molecule

In order to illustrate some of the applications of the CPMD, we will in this section
represent the results from a simple calculation on the hydrogen molecule. This example
is based on several programming exercises in Ref. [11], and all expressions and basis set
parameters are taken from there. The electronic wave function is constructed using the
linear combination of atomic orbitals (LCAO) approach, with Gaussian basis functions.
The basis set used is an STO-4G basis.

For this diatomic system an C++ code is written2, which uses the Car-Parrinello
method to compute the dynamics of two hydrogen atoms. The simulated annealing
method (see Ref. [16], Sect. 2.4.6) is used to evolve the system towards the energy
ground state. This is done by adding a frictional term of the form −γeψ̇i to the
electronic Car-Parrinello equation of motion, where γe ≥ 0 is the friction constant.
Thus, we can start at some initial configuration which might be far away from the
equilibrium, and let the wave function find its way to the minimum, given that the
energy dissipation is done slowly. In Figure 5.1, the change in the electronic energy
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Figure 5.1: Evolution of the electronic energy in a Car-Parrinello simulation of the
hydrogen molecule with bond length X = 1 a.u., and with frictional force included.
The number of electronic integration steps is shown along the x-axis. The time step
was set to 0.1 a.u. and the frictional constant was set to 1. The energy stabilizes at
EH2

= −1.078 5476 a.u.

versus the number of time steps is shown. This figure illustrates how the energy evolves
towards the ground state energy. The distance between the two atoms is X = 1 a.u.,
the electronic time step is 0.1 a.u., the fictitious mass is set to µ = 0.5 and the frictional

2 The source code for this example can be found at: https://github.com/miladh/CPMD

https://github.com/miladh/CPMD
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constant is set to one. Using these parameters, the energy tends to EH2 = −1.078 5476
a.u., which is the same value one gets by doing a pure Hartree-Fock calculation, with
the same basis set and the same distance between the atoms [11].
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Figure 5.2: The change of the bond length in a hydrogen molecule as function
of time. The number of nuclear integration steps is shown along the x-axis. The
nuclear time step is 4.3 a.u., while the electronic time step is 0.1 a.u. The frictional
constant for electrons is set to 1, and 5 for the nuclei. The equilibrium bond length
is X = 1.3881 a.u.

The equation of motion for the nuclei can also be extended with a frictional term.
This will slow down the nuclei and eventually make them end up with zero velocity at
their equilibrium spacing. The frictional term is typically of the form −γnẊ, where
γn ≥ 0 is the frictional constant and Ẋ is the time-derivative of the spacing between
the two atoms. In Figure 5.2, the change of the bond length is shown as a function
of time, with the frictional force included. In this case the nuclear mass is set to be
1000 times larger than µ, the electronic time step is, as before, 0.1 a.u., while a time
step of 4.3 a.u. is used for the nuclear motion. The damping factor for nuclei is five,
and one for the electrons. The equilibrium spacing becomes X = 1.3881 a.u., which is
quite near the experimental value of 1.401 a.u.

By removing the frictional term in the equation of motion of the nuclei, the atoms
will oscillate around their equilibrium spacing, as shown in Figure 5.3. In this case the
mass of the nuclei is set to M = 1836.15 (proton mass), while the other parameters are
the same as before. With an initial separation of 1.35 a.u., the frequency of the oscilla-
tions is approximately 1.359 × 1014 Hz, which is to be compared with the experimental
value of 1.248 × 1014 Hz [11].
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Figure 5.3: The change of the bond length in a hydrogen molecule as function of
time. The number of nuclear integration steps is shown along the x-axis. The nuclear
time step is 4.3 a.u., while the electronic time step is 0.1 a.u. The frictional constant
for electrons is 1.

5.3 Classical Molecular Dynamics

We have so far discussed the time-evolution of molecular systems in cases where the
Schrödinger equation is solved directly using certain approximations. In these cases
the nuclear and electronic degrees of freedom are separated. While the electrons are
treated as quantum mechanical particles, the nuclei are considered as classical point
particles moving in a mean field set up by the electrons. The mean field is obtained
from quantum mechanical calculations which are computationally expensive.

As a substitute for the semi-quantum mechanical approach described above, one
can use an entirely classical approach, wherein the quantum mechanical mean field
felt by the nuclei is replaced by a closed-form analytical potential. Assuming the
stationary electronic Schrödinger equation (Eq. (5.31) or Eq. (5.36)) can be solved for
a fixed nuclear configuration, we can find the potential energy surface for the system of
interest by calculating the electronic energy ENe = ⟨Ψ|HNe|Ψ⟩ for a sufficient number
of configurations. The calculated energies can then used to construct an analytical
expression for the potential. This can be done by making an expansion of the quantum
mechanical potential of the form

ENe(R) ≈ VCM =

Nn∑
k

V1(Rk) +

Nn∑
k<l

V2(Rk,Rl) +

Nn∑
k<l<m

V3(Rk,Rl,Rm) + . . . , (5.57)
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which is appropriately truncated. In this way, the electronic degrees of freedom are
replaced by the interaction potential VCM and are no longer part of the equations of
motion. Thus, the semi-quantum mechanical approach in ab initio MD is reduced to
a completely classical problem, with the equations of motion given by

MnR̈n = −∇nVCM(R). (5.58)

Approximating the mean field potential by an analytical function is of course a
challenging and drastic approximation that needs to be justified in many respects.
Perhaps the most critical problem with this approximation is the assumption that the
interaction potential is represented by a sum of simple potential forms. This certainly
does not include quantum mechanically effects. Even if the potential actually is rep-
resented well by this sum, we still have the problem of knowing how many and which
nuclear configurations one has to consider to get a reasonably good approximation of
the mean field potential. It may, for example, be that we haven’t sampled specific
nuclear configurations and therefore lose some of the information in the mean field
potential. In addition, the truncation of the sum in Eq. (5.57) affects the quality of
the approximated potential. Despite all the problems and shortcomings related to
derivation of analytical potentials, classical MD simulations have been proven to be
extremely useful, and their applications span over many fields of physics, including
biophysics and materials science [4].

5.4 Forcefield Parameterizations

In classical MD the interaction between the particles is described by a sum of analyt-
ical functions involving bond stretching, angle bending and nonbonded interactions.
These terms typically consist of adjustable parameters that can be parametrized either
based on quantum mechanical calculations or experimental data, or a combination of
both. Today, there are many different types of analytical potentials available for MD
simulations, such as Lennard-Jones [20], Stillinger-Weber-Potential [21], Tersoff [22],
ReaxFF [23], and ClayFF [24]. The ”FF” stands for ”force field”. To illustrate how
an interaction potential can be parametrized based on quantum mechanical calcula-
tions, we will in the following sections give a recipe on parameterization of the ClayFF
potential for a system of water molecules (H2O).

The ClayFF potential is given by

V = VCoul + VVDW + Vbond stretch + Vangle bend. (5.59)

The Coulombic (VCoul) and the van der Waals term (VVDW) describe the nonbonded in-
teractions, while the bonded interactions are represented by the bond stretch (Vbond stretch)
and angle bend term (Vangle bend). In this model a molecule is considered as a collec-
tion of balls held together by springs, meaning that the bonded terms are described
using the classical spring model [19]. The different terms in ClayFF are illustrated in
Figure 5.4.
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5.4.1 Bond Stretching
The bond stretch term in ClayFF is given by

Vbond stretch =
1

2
kS(rij − r0)

2, (5.60)

where kS is a force constant, rij is the distance between two atoms, and r0 represents
the equilibrium bond length. The force constant kS describes the stiffness of a bond
in a molecule, i.e. how much the bond resists begin stretched. The equilibrium bond
length r0 corresponds to the atomic separation that minimize the energy.

The force constant kS and the equilibrium bond length r0 are the two parameters
that must be parameterized in the bond stretch term of ClayFF. This can be done by
sampling the potential energy surface (PES) for many different atomic configurations
of an H2O molecule. The PES is thereafter fitted by the bond stretch term in Eq. (5.60)
and the angle bend term in Eq. (5.61).

5.4.2 Angle Bending
The angle bend term in ClayFF is given by

Vangle bend =
1

2
kB(θijk − θ0)

2, (5.61)

where kB is a force constant, θijk is the size of the angle (HOH), and θ0 represents
the equilibrium size of the angle. The force constant kB describes how much the
bond resists begin bended and the equilibrium bond angle θ0 corresponds to the angle
between the hydrogen-oxygen-hydrogen that minimize the energy.

The parameters that needs to be parameterized in the angle bend term of ClayFF
is the force constant kB and the equilibrium bond angle θ0. This is done as described
in the last subsection; the energy of an H2O molecule is calculated for different bond
lengths (H—O) and bond angles (HOH), and the obtained energies are used to fit the
potential energy surface by the bond stretch term in Eq. (5.60) and the angle bend
term in Eq. (5.61).

5.4.3 Van der Waals Interaction
The van der Waals term in ClayFF is given by

VVDW =
∑
i ̸=j

4ϵij

(σij
rij

)12

−

(
σij
rij

)6
 , (5.62)

where ϵij and σij are optimized for intermolecular interactions. This term is also known
as the Lennard-Jones (12-6) function and is responsible for the short-range repulsion
associated with the increase in energy as two atoms approach each other, and the
attractive dispersion energy [24]. Note that this term is excluded when evaluating
intramolecular (bonded) interactions.

The adjustable parameters in VVDW are ϵij and σij . These interaction parameters
for atoms of different kinds are usually computed by mixing:
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ϵij = ϵji =
√
ϵiiϵjj , (5.63)

σij = σji =
1

2

(
σii + σjj

)
, (5.64)

where ϵii and σii are the interaction parameters of two identical atoms. In H2O, ϵii and
σii are parameterized by individual calculations of the PES of the diatomic systems H2
and O2, which are fitted by their own Lenard-Jones potential. Once the interaction
parameters for H2 and O2 are obtained, the expressions in Eq. (5.63) can be used to
find the interaction parameters in the van der Waals term of ClayFF (Eq. (5.62)).

5.4.4 Coulomb Interaction
The Coulombic term in ClayFF is given by

VCoul =
∑
i̸=j

qiqj
rij

, (5.65)

where qi and qj are partial charges of atom i and j. This term describes the non-
bonded, electrostatic interaction between the atoms. Thus, the Coulombic term is
excluded in evaluation of intramolecular interactions, like the van der Waals term.
The partial charges are derived from quantum mechanical calculations, where methods
such as Mulliken population analysis can be applied (see Section 9.1.3). The simplest
approach is to use the partial charges obtained from Mulliken population analysis at
the equilibrium configuration.
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Figure 5.4: Potential energy functions in ClayFF. See text for details.
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Chapter 6

Scientific Programming

In this chapter, the concepts, methods, and tools used to develop the code for this thesis
are discussed. First a short intro to essential concepts regarding object-orientation in
the programming language C++ is presented. Thereafter, useful tools that has been
used during the development of the code are presented and in the final part of this
chapter, the concept of unit testing is discussed. The reader is assumed to have basic
background in programming and familiar with the programming languages C++ and
Python.

6.1 Object-Orientation

C++ is an object-oriented programming language built on the C language. The main
purpose of its development was to allow for object-oriented programming, which is
essential for being able to design modular and reusable software. This ability is very
beneficial in science and engineering applications, allowing us to treat various forms of
the same problem, without the need to write a completely new code for each instance.
Below, some of the most central features of C++ are introduced. For more details about
object-orientation in C++ , the reader is referred to [25].

6.1.1 Class

A class is a collection of variables and functions. By defining a class one determines
what type of data and which kind of operations that can be performed on these
data. The variables and functions in a class are called class members. As an exam-
ple, we consider the definition of a class for primitive Gaussian-type orbitals (GTOs):

103
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class PrimitiveGTO
{
public:

PrimitiveGTO();
~PrimitiveGTO();
const double &exponent() const;
void setExponent(const double &exponent);

const double &weight() const;
void setWeight(const double &weight);
...

private:
double m_exponent;
double m_weight;
...

};

A class definition starts with the keyword class followed by the name of the class.
The class body contains member variables and functions, in this example m_exponent,
m_weight and their getter and setter functions1. The keywords public and private are
access modifiers and set the accessibility of member variables and member functions.
A public member can be assessed anywhere outside the class, while a private member
only can be accessed within the current class.

6.1.2 Object
An instance of a class is called object. That is, a self-contained component that consist
of both data and methods to manipulate the data. A PrimitiveGTO object can be declared
by

PrimitiveGTO pGTO(); //or as a pointer
PrimitiveGTO* pGTO = new PrimitiveGTO();

The declaration of an object calls the constructor function (PrimitiveGTO()) in a class,
which initializes the new object. The constructor can have input parameters, used
to assign values to member variables. To delete an object the destructor function
(~PrimitiveGTO()) is called.

6.1.3 Inheritance
In object-oriented programming, objects can inherit properties and methods from ex-
isting classes. Inheritance provides the opportunity to reuse existing code. A class
that is defined in terms of another class, is called a subclass or derived class, while the
class used as the basis for inheritance is called a superclass or base class. The terms
child class and parent class are also common to use for the subclass and superclass,

1The prefix m_<memberName> is a naming convention used for class members to distinguish them
from other variables.
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respectively. An example of inheritance is shown below, where the class RHF (restricted
Hartree-Fock (RHF)) is derived from the base class HFsolver:

class HFsolver
{
public:

HFsolver(ElectronicSystem *system);

virtual void solveSingle() = 0;
virtual void calculateEnergy() = 0;
...

protected:
int m_nElectrons;
...

};

class RHF : public HFsolver
{
public:

RHF(ElectronicSystem *system);

void solveSingle();
void calculateEnergy();
...

};

When an object of class RHF is declared, it inherits all the members of HFsolver beside
the private members of HFsolver. Note the special deceleration of the functions in the
HFsolver class. These functions are virtual functions whose behavior can be overridden
in a derived class, allowing efficient implementation of new solvers.

6.2 Scientific Toolbox

In this section the tools used during the development of the code is presented. We
will not go into the details of each of these tools, but we are including them as a
recommendation for the reader.

6.2.1 Git

Git is an open source version control software, that makes it possible to have ”versions”
of a project. That is, snapshots of the files in the project at certain points in time. By
having different versions of a project, it is possible to see the changes that have been
made to the code over time, and it is also possible to revert the project to another
version. It should mentioned that when files remain unchanged from one version to
another, Git simply links to the previous files, making everything fast and clean. For
more details about Git the reader is referred to Ref. [26].
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6.2.2 Qt Creator

Qt Creator is a cross-platform integrated development environment (IDE) and is part
of the Qt Project [27]. It consist of a number of features with the aim to increase
the productivity of the developer and to help organizing large projects. Some of the
features included in its editor, with C++ support, are [28]:

• rapid code navigation tools,

• syntax highlighting and code completion,

• static code checking and style hints as you type,

• context sensitive help,

• code folding.

Qt Creator includes a debugger plugin, providing a simplified representation of the raw
information provided by the external native debuggers to debug the C++ language.
Some of the possibilities in debugging mode are [28]:

• interrupt program execution,

• step through the program line-by-line or instruction-by-instruction,

• set breakpoints,

• examine call stack contents, watchers, and local and global variables.

Qt Creator also provides useful code analysis tools for detecting memory leaks and
profiling function execution. For more details see Ref. [27].

6.2.3 Armadillo

Armadillo is an open source C++ linear algebra library, with the aim to provide an
intuitive interface combined with efficient calculations. Its functionalities includes ef-
ficient classes for vectors, matrices and cubes, as well as many functions which operate
on the classes [29]. Some of the functionalities of Armadillo are demonstrated in the
example below:

vec x(10); // column vector of length 10
rowvec y = zeros<rowvec>(10); // row vector of length 10

mat A = randu<mat>(10,10); // random matrix of dimension 10 X 10
rowvec z = A.row(5); // extract a row vector

cube q(4,5,6); // cube of dimension 4 X 5 X 6
mat B = q.slice(1); // extract a slice from the cube

// (each slice is a matrix)
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One very useful class in Armadillo is field, where arbitrary objects in matrix-like or
cube-like layouts can be stored. Each of these objects can have an arbitrary size. Here
is an example of the usage of the field class [29]:

field<vec> F(3,2); // a field of dimension 3 X 2 containing vectors

// each vector in the field can have an arbitrary size
F(0,0) = vec(5);
F(1,1) = randu<vec>(6);
F(2,0).set_size(7);

double x = F(2,0)(1); // access element 1 of vector stored at 2,0
F.row(0) = F.row(2); // copy a row of vectors
field<vec> G = F.row(1); // extract a row of vectors from F

6.2.4 IPython Notebook
IPython Notebook is a web-based interactive computational environment for Python
where code execution, text, mathematics, plots and rich media can be combined into
a single document [30]. Some of the main features of IPython Notebook are [31]:

• In-browser editing for code, with automatic syntax highlighting, indentation, and
tab completion/introspection.

• The ability to execute code from the browser, with the results of computations
attached to the code which generated them.

• Displaying the result of computation using rich media representations, such as
HTML, LaTeX, PNG, SVG, etc.

• In-browser editing for rich text using the Markdown markup language, which can
provide commentary for the code.

• The ability to easily include mathematical notation within markdown cells using
LaTeX, and rendered natively by MathJax.

One very nice of feature of IPython Notebook documents is that they can be shared via
the IPython Notebook Viewer [32], as long as they are publicly available. This service
renders the notebook document, specified by an url, as a static web page. This makes
it easy to share a document with other users that can read the document immediately
without having to install anything.

6.2.5 SymPy
SymPy is a Python library for doing symbolic math, including features such as basic
symbolic arithmetic, simplification and other methods of rewriting, algebra, differen-
tiation and integration, discrete mathematics and even quantum physics [33]. SymPy
is also able to format the result of the computations as LaTeX, ASCII, Fortran, C++

and Python code. Some of the named features of SymPy are shown below:
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>>> from sympy import *
>>> x = Symbol('x')
>>> y = Symbol('y')
>>> x+y+x–y
2*x
>>> simplify((x+x*y)/x)
1 + y
>>> series(cos(x), x)
1 – x**2/2 + x**4/24 + O(x**6)
>>> diff(sin(x), x)
cos(x)
>>> integrate(log(x), x)
–x + x*log(x)
>>> solve([x + 5*y – 2, –3*x + 6*y – 15], [x, y])
{y: 1, x: –3}

For more examples and details see Ref. [33].

6.2.6 Hierarchical Data Format 5
Hierarchical Data Format 5 (HDF5) is a library and binary file format for storing
and organizing large amounts of numerical data, and is supported by many software
platforms including C++ and Python. The core concepts in HDF5 are datasets, groups
and attributes. Datasets are array-like collections of data which can be of any size and
dimension, groups are folder-like collections consisting of datasets and other groups,
and attributes are metadata associated with a group or dataset, stored right next to
the data it describes. This limited primary structure makes the file design simple, but
provides at the same time a very structured way to store data. Here is a short list of
advantages of the HDF5 format:

• open-source software,

• different data types (images, tables, arrays, etc.) can be combined in one single
file,

• support for user-defined data types,

• data can be accessed independently of the platform that generated the data,

• possible to read only part of the data, not the whole file,

• source code examples for reading and writing in this format is widely available.

For HDF5 software documentation see Ref. [34], and for the documentation of the
Pythonic interface to the HDF5 see Ref. [35].

6.3 Unit Testing
Unit testing is the practice of testing the smallest testable parts, called units, of an
application individually and independently to determine if they behave exactly as ex-
pected. Unit tests (short code fragments) are usually written such that they can be
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performed at any time during the development to continually verify the behavior of
the code. In this way, possible bugs will be identified early in the development cycle,
making the debugging at later stage much easier. There are many benefits associated
with unit testing, such as

• It increases confidence in changing and maintaining code. Big changes can be
made to the code quickly, since the tests will ensure that everything still is working
properly.

• Since the code needs to be modular to make unit testing possible, the code will
be easier to reuse. This improves the code design.

• Debugging is easier, since when a test fails, only the latest changes need to be
debugged.

• Different parts of a project can be tested without the need to wait for the other
parts to be available.

• A unit test can serve as a documentation on the functionality of a unit of the
code.

The unit testing of the code for this thesis has been performed by using the framework
UnitTest++ [36]. An example of this framework is shown below, where we consider the
unit testing of a multiply function in a class:

// test.cpp
#include <unittest++/UnitTest++.h>

class MyMultiplyClass{
public:

double multiply(double x, double y) {
return x + y;

}
};

TEST(MyMath) {
MyMultiplyClass my;
CHECK_EQUAL(56, my.multiply(7,8));

}

int main()
{

return UnitTest::RunAllTests();
}

Compiling and linking to UnitTest++’s static library, and running this program will
produce the following output (details may vary):

.\test.cpp:12: error: Failure in MyMath: Expected 56 but was 15
FAILURE: 1 out of 1 tests failed (1 failures).
Test time: 0.00 seconds.
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By replacing the addition operator with the multiplication operator in the multiply
function, and rerunning the program, we get the following output:

Success: 1 tests passed.
Test time: 0.00 seconds.

For more details about UnitTest++ see Ref. [36].



Chapter 7

Hartree-Fock Implementation

In this chapter the numerical implementation of the Hartree-Fock method is discussed1.
We start by describing the Self-Consistent Field (SCF) procedure step by step, and
thereafter specific details related to this scheme are discussed. Further, the implemen-
tation of the most central elements in molecular integral calculations are demonstrated,
including the implementation of Hermite coefficients, Hermite integrals, and Boys func-
tion. The parallelization of the two-particle integral is also discussed. In the final part
of this chapter the structure of the Hartree-Fock code is presented and the verification
of the code is discussed.

The code developed for this thesis is written in the C++ programming language and
the development is done using Qt Creator. Data-analysis is performed using several
small Python scripts, written in IPython Notebook. The Hartree-Fock code developed
for this thesis is publicly available at https://github.com/miladh/HF under a GPL
license.

7.1 The Self-Consistent Field Procedure
The Roothaan equation in matrix form is given by (see Section 2.5.2)

FC = SCϵ, (7.1)

where C is the coefficient matrix, ϵ is a rectangular diagonal matrix of the orbital
energies, S is the overlap matrix and F is the Fock matrix with elements

Fpq = hpq +
1

2

M∑
rs

Prs

(
2gprqs − gprsq

)
, (7.2)

hpq =

∫
φ∗
p(r)

−1

2
∇2 −

Nn∑
n=1

Zn
|r − Rn|

φq(r)dr, (7.3)

gprqs =

∫
φ∗
p(r)φ∗

r(r′)
1

|r − r′| φq(r)φs(r
′)dr dr′. (7.4)

1For the theory behind the Hartree-Fock method, see Chapter 2.
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In these expressions Prs is the density matrix, and {φp} are basis functions used to
expand the unknown spatial molecular orbitals (MOs) (see Section 2.5.2). Equation
(7.1) cannot be solved directly because the matrix elements Fpq involve integrals over
the Coulomb and exchange operators which themselves depend on the expansion co-
efficients C. Therefore, a SCF iterative procedure must be applied. The procedure
is illustrated in Figure 7.1. The first step is to specify a basis in which the unknown

Specify a basis:

Calculate 
overlap integral: 

Calculate one-body 
and two-body integral: 

Calculate 
transformation matrix: 

Guess an intial
density matrix: 

Calculate 
Fock matrix: 

Calculate transformed
Fock matrix: 

Diagonalize 
to find: 

Compute
   from the new 

coefficients

Convergence? 

YesNo
Done 

Compute 

and normalize  

Figure 7.1: Flow-chart diagram of the SCF procedure. For details see the text.

spatial MOs are expanded. This basis can for example be a basis of Slater-type or-
bitals (STOs) or contracted Gaussian-type orbitals (CGTOs). After having specified
the basis set, all molecular integrals can be calculated and stored in their own array.
These integrals includes the overlap integral Spq, the one-particle integral hpq, and
the two-particle integral gprqs. The next step is to find the transformation matrix V
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that brings S to unit form (see Section 2.5.3), that is, to find the matrix V such that
V†SV = 1 is satisfied. Afterwards, an initial guess on the density matrix P is made,
and used together with hpq and gprqs to set up the initial Fock matrix. Using the trans-
formation matrix V, the transformed Fock matrix F′ can be calculated and thereafter
diagonalized to find C′ and ϵ. In the next step the transformed coefficient matrix
C′ is transformed back to the actual coefficient matrix C, using V, and thereafter
normalized according to2

M∑
pq

CpkSpqCqk = 1, k = 0, 1, . . . , Ne/2, (7.5)

where Ne is the number of electrons and M is the number of basis functions. The
normalized coefficients are used to compute a new density matrix P. In the final step,
the convergence of the solution is checked. If convergence is not obtained the new
obtained density matrix P is used to set up a new Fock matrix, and the same steps
are repeated (the small circle in Figure 7.1).

The procedure described above is also used to solve the Pople-Nesbet equations
(see Section 2.5.5), but in that case there are two Fock matrices involved; Fα and Fβ,
for spin up and spin down electrons, respectively. These are constructed from their
own density matrices and diagonalized individually.

7.1.1 Convergence
There are several ways to define a convergence criteria. A simple and not so uncommon
criterion is to require that the total calculated energy of two successive iterations should
not differ by more than a small value δ. For this criterion an appropriate value for δ is
10−6 a.u. [6]. Alternatively, one can define convergence using elements of the density
matrix instead.

The convergence criterion used in our implementation is based on the convergence
of the orbital energies ϵi. More precisely, we require

1

M

∑
i

|ϵni − ϵn−1
i | ≤ δ, (7.6)

where n specifies the iteration number, δ is a user prefixed quantity (δ ∼ 10−8 or
smaller), i runs over all calculated orbital energies, and M is the number of orbitals.

7.1.2 Damping
The initial guess on the density matrix P is usually a null (zero) matrix, and is equiv-
alent to neglecting all electron-electron interaction in the first iteration step. This is a
convenient way to start the iterations, but it does happen that the solution either fails
to converge and ends up oscillating between two or more configurations, or diverge.
This is often due to a poor initial guess on the density matrix P. In many cases the

2This requirement is a consequence of the orthonormalization requirement of the MOs in Hartree-
Fock.
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convergence problems are solved by mixing, that is to use a weighted average of the
last and the previous density matrix for the density matrix in the next iteration [11]:

Pnew = αPlast + (1− α)Pprevious, 0 < α < 1. (7.7)

It should also be mentioned that convergence issues also arise when the atoms mak-
ing up the molecule are far from the global energy minimum configuration. In these
cases, it sometimes helps to start the iterations with the converged density matrix P
corresponding to the equilibrium configuration. Alternatively, one can use the Direct
Inversion in the Iterative Subspace (DIIS) procedure [7].

7.1.3 Exploiting Symmetries
The most time consuming part of the SCF procedure is the calculation of the molecular
integrals, and especially the two-particle integrals. Since there are four basis functions
involved in a two-particle integral, for M basis functions there will be of the order of
M4 integrals that need to be calculated. However, not all of them are unique, because
of the symmetries in the two-particle integral. These symmetries arise because we have
real matrix elements and the basis functions used to calculate these elements are also
real. As a result we have the following symmetries in the overlap, one-particle, and
two particle integral:

Spq = Sqp, (7.8)
hpq = hqp, (7.9)

gprqs = gqrps = gpsqr = gqspr = grpsq = gsprq = grqsp = gsqrp (7.10)

Using these symmetries there are M4/8 unique two-particle integrals that need to be
calculated.

7.1.4 Implementation
The SCF scheme is implemented in the HFsolver class and its two subclasses RHF and UHF.
In the parent class, all operations that are common for both the restricted Hartree-
Fock (RHF) method and the unrestricted Hartree-Fock (UHF) method are performed.
These operations include the calculation and storing of the overlap, one-particle and
two-particle integrals. To start the calculations the runSolver() function in Hfsolver is
called. The code is presented below:|

void HFsolver::runSolver()
{

setupOneParticleMatrix();
setupTwoParticleMatrix();
updateFockMatrix();
advance();
calculateEnergy();

}
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The functions updateFockMatrix(), advance() and calculateEnergy() are virtual functions,
with different implementations in the RHF class and the UHF class. The implementation
of the advance() function in the RHF class is shown below:

void RHF::advance()
{

...
while (stdDeviation > HFSOLVERTOLERANCE){ // convergence criterion

fockEnergyOld = m_fockEnergy;
solveSingle(); // perform one SCF iteration
stdDeviation = computeStdDeviation(m_fockEnergy, fockEnergyOld);
updateFockMatrix();
...

}
}

In this function (and similarly in the advance() function in UHF class) the SCF iter-
ations are performed. The diagonalization of the transformed Fock matrix and the
normalization of the expansion coefficients are performed in the solveSingle() function.
The implementation is given below:

void RHF::solveSingle()
{

mat Ctilde;
eig_sym(m_fockEnergy, Ctilde, m_V.t() * m_F * m_V); //diagonalize F'
m_C = m_V*Ctilde; //C = VC'
normalize(m_C, m_nElectrons/2); //normaliziation

// new density matrix with mixing:
m_P = m_dampingFactor * m_P

+ (1 – m_dampingFactor) * 2.0
* m_C.cols(0, m_nElectrons/2.0–1) * m_C.cols(0, m_nElectrons/2.0–1).t();

}

Note that the density matrix is constructed by using only the occupied orbitals, i.e.
the Ne/2 lowest orbitals. These correspond to the Ne/2 first columns in the coefficient
matrix.

7.2 Implementation of the Hermite Coefficients

Hermite coefficients are the central quantities in the molecular integral evaluation tech-
niques presented in Chapter 4. These coefficients are needed for the computation of
the overlap integral (Eq. (4.44)), the one-particle integrals (Eqs. (4.50) and (4.103))
and the two-particle integral (Eq. (4.104)). In the following we will discuss how these
coefficients are calculated in the x-direction. The sets of coefficients in the y- and
z-direction are found in exactly the same way.

We recall that given two Gaussian functions
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Gikm(r, a,A) = (x−Ax)
i(y −Ay)

k(z −Az)
m exp(−ar2A), (7.11)

Gjln(r, b,B) = (x−Bx)
j(y −By)

l(z −Bz)
n exp(−br2B), (7.12)

the recursion relation for the Hermite coefficients in the x-direction is expressed as (see
Chapter 4):

Ei+1,j
t =

1

2p
Eijt−1 −

bQx
p
Eijt + (t+ 1)Eij

t+1, (7.13a)

Ei,j+1
t =

1

2p
Eijt−1 +

aQx
p
Eijt + (t+ 1)Eij

t+1, (7.13b)

with initial coefficient

E00
0 = Kx

AB = exp(−qQ2
x), (7.14)

where

p = a+ b, (7.15)
Qx = Ax −Bx, (7.16)

q =
ab

a+ b
. (7.17)

The relations for the y- and z-direction can be expressed similarly. Additionally, the
coefficients are forced to satisfy the relation

Eijt = 0, t < 0 or t > i+ j. (7.18)

In the following we will show how these elements can be calculated from the relations
in Eq. (7.13). An example implementation will also be given. Note that the coefficients
can be calculated more efficiently than what will be presented here, but to keep things
simple we have chosen to present a more intuitive implementation of the Hermite
coefficients.

7.2.1 Starting Coefficient
The first step is to calculate the initial coefficient given in Eq. (7.14). This term is
the only non-vanishing element in E00

t for all t. All the other terms vanish due to the
relation in Eq. 7.18. The code for calculating the initial coefficients is shown below:

for(uint cor = 0; cor < 3; cor++){
m_E(cor)(0,0,0) = std::exp(–q*Q(cor)*Q(cor));

}

The calculated Hermite coefficients are stored in an Armadillo field<cube> object with
three elements, for each Cartesian direction. For example, element m_E(0)(0,2,1) corre-
sponds to Hermite coefficient Ei=0,j=2

t=1 in the x-direction.
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7.2.2 Forward Recursion of j

From the calculated coefficients E00
t , we are able to calculate E0j

t for all t and j by
using Eq. (7.13b). This must, however, be done in order. First E01

t is found for all t.
These are then used to find E02

t for all t, which again is used to find E03
t for all t, and

so on.

for(uint cor=0; cor < 3; cor++){ //Loop for x,y,z

//p = previous, n = next
//E(t,i,j) = 1/(2*p) * E(t–1,i,j–1) + a*Q/p * E(t,i,j–1) + (t + 1)*E(t+1,i,j–1)
//iA = i, iB = j

for(int iB = 1; iB < iBmax(cor); iB++){
for(int t = 0; t < tmax(cor); t++){

int iA = 0;
int iBp = iB – 1;
int tp = t – 1;
int tn = t + 1;

double E_iA_iBp_tp = 0.0;
if(interiorPoint(iA, iBp, tp)){

E_iA_iBp_tp = m_E(cor)(iA, iBp, tp);
}

double E_iA_iBp_t = 0;
if(interiorPoint(iA, iBp, t)) {

E_iA_iBp_t = m_E(cor)(iA, iBp, t);
}

double E_iA_iBp_tn = 0;
if(interiorPoint(iA, iBp, tn)) {

E_iA_iBp_tn = m_E(cor)(iA, iBp, tn);
}

m_E(cor)(iA,iB,t) = 1.0/(2*p) * E_iA_iBp_tp + a/p * Q(cor) *
E_iA_iBp_t + (t + 1)*E_iA_iBp_tn;

}
}
...

The interiorPoint function makes sure that the relation in Eq. (7.18) is satisfied. Note
that in the implementation above the index j is shifted to j−1 compared to Eq. (7.13b).

7.2.3 Forward Recursion of i

So far we have calculated E0j
t for all t and j. We can now do the exact same thing as

we did in the last step to find Ei0t for all t and i, but by using the recursion relation
in Eq. (7.13a) instead. However, since we already know E0j

t for all t and j, we can use
E01
t to compute Ei1t for all t and i, E02

t can be used to compute Ei2
t for all t and i,

and so on. Completing this scheme enables us to calculate Eij
t for all i, j and t. An

implementation of this last step is shown below.
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...
//p = previous, n = next
//E(t,i,j) = 1/(2*p) * E(t–1,i–1,j) – b*Q/p * E(t,i–1,j) + (t + 1)*E(t+1,i–1,j)
//iA = i, iB = j
for(int iB = 0; iB < iBmax(cor); iB++){

for(int iA = 1; iA < iAmax(cor); iA++){ // iA starts at 1 since we using
for(int t = 0; t < tmax(cor); t++) {// forward recursion relation for iA

int iAp = iA – 1;
int tp = t – 1;
int tn = t + 1;

double E_iAp_iB_tp = 0;
if(interiorPoint(iAp, iB, tp)) {

E_iAp_iB_tp = m_E(cor)(iAp, iB, tp);
}

double E_iAp_iB_t = 0;
if(interiorPoint(iAp, iB, t)) {

E_iAp_iB_t = m_E(cor)(iAp, iB, t);
}

double E_iAp_iB_tn = 0;
if(interiorPoint(iAp, iB, tn)) {

E_iAp_iB_tn = m_E(cor)(iAp, iB, tn);
}

m_E(cor)(iA,iB,t) = 1.0/(2*p) * E_iAp_iB_tp – b/p * Q(cor) *
E_iAp_iB_t + (t + 1)*E_iAp_iB_tn;

}
}

}
...

Note that in the implementation above the index i is shifted to i − 1 compared to
Eq. (7.13a).

7.3 Implementation of Hermite Integrals
Hermite integrals are needed for the computation of the Coulomb integrals (Eqs. (4.103)
and (4.104)). In the following we will discuss how these integrals are calculated.

We start by recalling that given the following Gaussian functions

Ga(r, a,A) = (x−Ax)
i(y −Ay)

k(z −Az)
m exp(−ar2A), (7.19)

Gb(r, b,B) = (x−Bx)
j(y −By)

l(z −Bz)
n exp(−br2B), (7.20)

Gc(r, c,C) = (x− Cx)
i′(y − Cy)

k′(z − Cz)
m′ exp(−cr2C), (7.21)

Gd(r, d,D) = (x−Dx)
j′(y −Dy)

l′(z −Dz)
n′ exp(−dr2D), (7.22)

the expressions for Cartesian Coulomb integrals in terms of Hermite coefficients and
Hermite integrals can be written as (see Section 4.5.4):
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V NA
ab =

2π

p

∑
tuv

EabtuvRt+e,u+f,v+g(p,RPN ) (7.23)

gacbd =
2π5/2

pq
√
p+ q

∑
tuv

Eab
tuv

∑
t′u′v′

(−1)t
′+u′+v′Ecdt′u′v′Rt+t′,u+u′,v+v′(α,RPQ) (7.24)

where for example

Eab
tuv = Eijt E

kl
u E

mn
v , (7.25)

and

p = a+ b, q = c+ d, α =
pq

p+ q
, (7.26)

P =
aA + bB

p
, Q =

cC + dD
q

, (7.27)

RPN = P − N, RPQ = P − Q, (7.28)

with N as the position vector of the interacting nucleus in the nuclear attraction
integral. The Hermite integrals Rtuv are defined as

Rntuv(a,A) = (−2a)n

(
∂

∂Ax

)t(
∂

∂Ay

)u(
∂

∂Az

)v
Fn(aA

2), (7.29)

where Fn is the n-th order Boys function. Also recall that tmax = i+ j, umax = k + l,
vmax = m+n, and so on. The Hermite integral Rtuv for all t, u and v can be calculated
by using the recursion relations:

Rnt+1,u,v = tRn+1
t−1,u,v +AxR

n+1
tuv , (7.30a)

Rnt,u+1,v = uRn+1
t,u−1,v +AyR

n+1
tuv , (7.30b)

Rnt,u,v+1 = vRn+1
t,u,v−1 +AzR

n+1
tuv , (7.30c)

where n goes from 0 up to nmax = tmax + umax + vmax. Note that only the elements
R0
tuv for all t, u and v, are needed in the computation of Coulomb integrals, but finding

these requires that also elements with n > 0 are known.

7.3.1 Starting Integrals
The first step is to calculate the starting integrals with t = u = v = 0 for all n. These
elements are simply different orders of Boys function. An implementation of this is
shown below:

m_boys–>evaluateBoysFunctions(a*dot(A,A));
for(int n = 0; n < nMax+1; n++){

m_R(n)(0,0,0) = std::pow(–2*a,n)*m_boys–>getBoysFunctions(n);
}
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The calculated Hermite integrals are stored in an Armadillo field<cube> object with
nmax elements. For example, element m_R(2)(0,3,1) corresponds to Hermite integral
R2
t=0,u=3,v=1.

7.3.2 Forward Recursion of v

Having calculated Rn0,0,0 for all n, we are now able to calculate Rn0,0,v for all v and
n ≤ nmax − v, using Eq. (7.30c). Note that n+ v ≤ nmax at all iterations. An example
implementation of this step is shown below

// p = previous
// R(n,t,u,v+1) = v * R(n+1,t,u,v–1) + Az * R(n+1,t,u,v)
for(int v = 0; v < vMax; v++){//not including vMax –> v+1 in formula

for(int n = 0; n < nMax–v; n++){//not including nMax –> n+1 in formula
int t = 0.0; int u = 0.0;
int vp = v – 1.0;

double R_t_u_vp = 0.0;
if(!(vp < 0)){

R_t_u_vp = m_R(n+1)(t,u,vp);
}

double R_t_u_v = m_R(n+1)(t,u,v);

m_R(n)(t,u,v+1) = v * R_t_u_vp + A(2) * R_t_u_v;
}

}

7.3.3 Forward Recursion of u

So far we have calculated R0
0,0,v for all v. The next step is to calculate Rn0,u,0 for all u

and n ≤ nmax − u, using Eq. (7.30b). However, since we already have calculated R0
0,0,v

for all v, we can calculate Rn0,u,0 not only for the case where v = 0, but for all v. Doing
so, will modify the loop over n which now goes up to nmax − u − v. This means that
the relation n+ u+ v ≤ nmax is satisfied at all iterations. An example implementation
of this step is shown below
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// p = previous
// R(n,t,u+1,v) = u * R(n+1,t,u–1,v) + Ay * R(n+1,t,u,v)
for(int v = 0; v < vMax+1; v++) { // including vMax –> v in formula (not v+1)

for(int u = 0; u < uMax; u++) { // excluding uMax –> u+1 in formula
for(int n = 0; n < nMax–u–v; n++) { // excluding nMax –> n+1 in formula

int t = 0.0;
int up = u – 1.0;

double R_t_up_v = 0.0;
if(!(up < 0)){

R_t_up_v = m_R(n+1)(t,up,v);
}

double R_t_u_v = m_R(n+1)(t,u,v);
m_R(n)(t,u+1,v) = u * R_t_up_v + A(1) * R_t_u_v;

}
}

}

7.3.4 Forward Recursion of t

In the previous steps we have calculated R0
0,u,v for all u and v. The remaining integrals

are those with t < 0. These integrals can be calculated doing similar calculations, as
in the last step. But now we know R0

0,u,v for all u and v. Thus, we can calculate all
R0
t,u,v for all t, u and v. The loop over n goes up to nmax − t− u− v and the relation

n+ t+ u+ v ≤ nmax is satisfied at all iterations. An example implementation of this
final step is shown below:

// p = previous
// R(n,t+1,u,v) = t * R(n+1,t–1,u,v) + Ax * R(n+1,t,u,v)
for(int u = 0; u < uMax+1; u++) { // including uMax –> u in formula (not u+1)

for(int v = 0; v < vMax+1; v++) { // including vMax –> v in formula (not v+1)
for(int t = 0; t < tMax; t++) { // excluding tMax –> t+1 in formula

for(int n = 0; n < nMax–t–u–v; n++) { // excluding nMax–>n+1 in formula
int tp = t – 1.0;

double R_tp_u_v = 0.0;
if(!(tp < 0)){

R_tp_u_v = m_R(n+1)(tp,u,v);
}

double R_t_u_v = m_R(n+1)(t,u,v);

m_R(n)(t+1,u,v) = t * R_tp_u_v + A(0) * R_t_u_v;
}

}
}

}
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7.4 Calculating the Boys Function
The Boys function of order n is defined as (see Section 4.5.2):

Fn(x) =

∫ 1

0
exp

(
−xt2

)
t2ndt (7.31)

This function is central in the computation of Coulomb integrals, and hence it is
important to calculate it efficiently. The order n depends on the powers of primitive
Gaussian-type orbitals (GTOs), with a maximum value nmax equal to the sum of the
powers of the primitive GTOs involved in the Coulomb integral (see Eqs. (7.23)–(7.24)).
For a given argument x the Boys function is calculated as follows:

• The highest order nmax is determined.

• For n = nmax the Boys function function is evaluated by

Fn(x) =


(2n− 1)!!

2n+1

√
π

x2n+1
if x > 50,

6∑
k=0

Fn+k(xt)(−∆x)k

k!
if x ≤ 50,

(7.32)

where Fn+k(xt) are tabulated values at xt which is the nearest tabulated value to
x, and ∆x = x− xt. The tabulated values are found by numerical integration of
Eq. (7.31), using the trapezoidal method [13] with 1.0 ·106 points. The numerical
integration were performed at 1000 equally spaced points between [0, 50]3.

• In the last step, the Boys function function for all n < nmax are calculated by
downward recursion:

Fn(x) =
2xFn+1(x) + exp(−x)

2n+ 1
. (7.33)

7.5 Parallelization of the Two-Particle Integral
The most time-consuming part in SCF calculations is by far the computation of the two-
particle integral gprqs. This part of the code has therefore been parallelized, using the
Boost MPI library [37]. Since each two-particle integral involves four basis functions,
four for-loops are required (over p, q, r and s), where the two outermost loops are
parallelized (p and q). For M basis functions there are M

2 (M + 1) unique pairs of
p and q (when taking the symmetries in the two-particle integral into account), that
can distributed among the processes. An implementation on how tasks (i.e. pairs
of p and q) are distributed among the processes is shown below. In this example all
processes have a vector (m_myPQIndices) filled with their own p, q pairs that they are
going to calculate. The Armadillo matrix m_pqIndicesToProcsMap registers which process
is responsible for calculating which pair of p, q.

3The tabulated values used in the Hartree-Fock code are taken from calculations done by Henrik
M. Eiding [2].
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int nPQElements = 0.5 * m_nBasisFunctions * (m_nBasisFunctions + 1);
int procs = 0;
int s = 0;

for (int p = 0; p < m_nBasisFunctions; p++) {
for (int q = p; q < m_nBasisFunctions; q++) {

if (m_rank == procs){
m_myPQIndices.push_back(pair<int, int>(p,q));

}
m_pqIndicesToProcsMap(p,q) = procs;
s++;
if(s >= BLOCK_SIZE(procs, m_nProcs, nPQElements)){

s = 0;
procs++;

}
}

}

The vector m_myPQIndices is filled with new pairs of p, q, until the variable s is larger or
equal the output of the BLOCK_SIZE function. This function returns the number of tasks
each process should have for a given number of processes and tasks:

#define BLOCK_SIZE(id,p,n) (BLOCK_HIGH(id,p,n) – BLOCK_LOW(id,p,n)+1)
#define BLOCK_LOW(id,p,n) (((id)*(n))/(p))
#define BLOCK_HIGH(id,p,n) (BLOCK_LOW((id)+1,p,n)–1)

Having distributed the tasks, each process calculates its own set of integrals. Af-
terwards the calculated integrals are broadcasted between the processes by using the
Boost MPI’s broadcast function:

boost::mpi::communicator m_world;
for (int p = 0; p < m_nBasisFunctions; p++) {

for(int q = p; q < m_nBasisFunctions; q++){

boost::mpi::broadcast(m_world, m_Q(p,q).memptr(), m_Q(p,q).n_elem,
m_pqIndicesToProcsMap(p,q));

...

The variable m_Q is an Armadillo field<mat> object that stores the calculated two-particle
integral values. m_pqIndicesToProcsMap tells which process that will be transmitting data.
Note that whole matrices are broadcasted. To read more about the broadcast function
in Boost MPI library see Ref. [37].

7.6 Code Structure
The Hartree-Fock code for this thesis is implemented in such way that it can be used
as a library by other functions. For example, Hartree-Fock calculations are often com-
bined with other many-body theory methods and it would be beneficial to be able to
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use the Hartree-Fock implementation as a library in the implementation of these other
methods. Other examples where it would be relevant to use the Hartree-Fock imple-
mentation as a library is in the implementation of ab initio molecular dynamics (MD)
codes. Furthermore, writing a code with the aim to use it as a library eases the process
of writing modular code, and thereby improves the quality of the implementation. One
essential point when writing a library is to separate the source code from the rest of
the project. In a sense, it corresponds to an implementation without a main function,
where we a have header file that includes everything necessary to use the library. To
read about project structuring with Qt Creator and how a program can be separated
into its own library see Ref. [1].

The structure of the Hartree-Fock project in Qt Creator is shown below:

HF
hf.pro
defaults.pri
include/

hf.h
infiles/

turbomole/
...

tabulatedBoys.dat
apps/

apps.pro
default/

default.pro
defaultmain.cpp

tests/
tests.pro
testsmain.cpp

src/
src.pro/
hfSolver/

...
...

The main project file is hf.pro and defaults.pri is a helper project file [1]. In turbomole

directory the input basis files are found. All header includes are in hf.h. The apps

directory consists of the app (.cpp file that uses the functions in the source code) itself
(default/defaultmain.cpp) and unit tests. The source code including all classes is found
in the src directory.

In Figure 7.2, an overview of the class hierarchy of the code is given. Note that, in
order to keep the diagram clean and simple, only the most essential relations between
the classes are shown. Here is a short description of the central elements:

• TurbomoleParser: Reads input basis file to construct the CGTOs associated with
an Atom object, in addition to atom type, mass and core charge.

• Atom: Consist of various atom properties (type, mass, charge, position) and a
vector of CGTOs.

• ElectronicSystem: Has a vector of atoms and an Integrator object. The summation
of integrals over primitive GTOs is done in this class.

• Integrator: Consist of different integral-type classes (kinetic, overlap, nuclear,
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etc.), including their geometric derivatives. All operations in this class and the
integral-classes it consist of, is on primitive GTOs.

• HFsolver: Has an ElectronicSystem object. When setting up the molecular integral
matrices the indices of CGTOs are send to ElectronicSystem class.

• Analyzer: Computes different quantities such as partial charge, dipole moment
and densities based on the results from the solver.

• OutputManager: Responsible for writing the results from the computation to file.

7.6.1 Basis Set Exchange
The input basis files read by the code are in the Turbomole format with file extension
.tm. These files are taken from the website Basis Set Exchange [38], which is a web-
accessible environment where different basis sets can be downloaded in various formats
[39]. Here is an example of an input file for the oxygen atom with the 3-21G basis:

#...
$basis
*
O 3–21G
*

3 s
322.0370000 0.0592394
48.4308000 0.3515000
10.4206000 0.7076580

2 s
7.4029400 –0.4044530
1.5762000 1.2215600

1 s
0.3736840 1.0000000

2 p
7.4029400 0.2445860
1.5762000 0.8539550

1 p
0.3736840 1.0000000

*
$end

The first line starting with # is ignored (comment). The first column is a list of
exponents for the primitive GTOs, while the numbers in the second column are the
corresponding coefficients. The contracted basis functions are marked with a heading
of type 3 s, 2 s, etc., which are indicating the number of primitives in the contracted
basis function. In the 3-21G basis set the core orbitals consist of three primitive GTOs,
while the valence orbitals are split into two CGTOs with two and one primitive GTOs,
respectively. In oxygen there is only one core orbital (1s), and the contraction param-
eters (exponents and coefficients) of this orbital is under the heading 3 s. The values
below the next two headings, 2 s and 1 s, are the contraction parameters correspond-
ing to the 2s valence orbital. The last two groups of parameters with headings 2 p and
1 p are the parameters for the valence p-orbitals (2px, 2py and 2pz).
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Note that the coefficients read from the file should be rescaled by the normalization
factor of the individual primitive GTOs, before they are used in calculations. For a
general Gaussian function

Gijk(x, y, x) = Gi(x)Gj(y)Gk(z) (7.34)

with

Gi(x) = xi exp(−αx2) (7.35)

and similar for the components in the y- and z-direction, the normalization factor is
given by

(
2α

π

)(3/4)
√

(4α)i+j+k

(2i− 1)!!(2j − 1)!!(2k − 1)!!
. (7.36)

7.7 Verification

The implementation of the Hartree-Fock method consists of many different elements
that are designed to be individually tested before they are incorporated in SCF calcu-
lations. The integrator forms a large part of the code, but is very separable making it
possible to carefully test and verify each element separately. In the following sections
we show how the different parts of the integrator are verified through unit tests.

7.7.1 Overlap Integral

The overlap integral is the integral over all space of the product of two primitive GTO:

Sab =

∫
Gikm(r, a,A)Gjln(r, b,B) dr. (7.37)

To verify the calculations of the overlap integral we have used Python to generate unit
tests by calculating the overlap integral for different primitive GTOs. The integrals
have been calculated in Python by using the library SymPy. Here is an example:
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from numpy import array, dot
from sympy import symbols, exp, integrate, oo

x, y, z = symbols('x, y, z')

a = 0.2; b = 0.3
Ax = 1.2; Ay = 2.3; Az = 3.4
Bx = –1.3; By = 1.4; Bz = –2.4
i, k, m = 1, 0, 0
j, l, n = 0, 0, 2

rA = array([x – Ax, y – Ay, z – Az])
rB = array([x – Bx, y – By, z – Bz])

Ga = rA[0]**i * rA[1]**k * rA[2]**m * exp(–a*dot(rA,rA))
Gb = rB[0]**j * rB[1]**l * rB[2]**n * exp(–b*dot(rB,rB))

Sab = integrate(Ga * Gb, (x, –oo, oo), (y, –oo, oo), (z, –oo, oo))

The obtained values are used as a benchmark to verify the calculated integrals in
the Hartree-Fock code, by using the CHECK_CLOSE macro found in the UnitTest++library:

CHECK_CLOSE(1.191723635809e–01, integrator.overlapIntegral(), 1e–5);

The last number (1e–5) is a threshold for how close the two numbers should be.
Unit tests for the geometric derivatives of the overlap integral are generated simi-

larly. In the example below the coordinates of B are first defined as symbols, so the
derivatives of the Gaussian product with respect to Bx, By and Bz can be calculated,
using SymPy’s diff function, and thereafter the symbols Bx, By and Bz are substituted
with actual numbers in the differentiated product. In the final step, the integrals in
each of the Cartesian directions are evaluated.

Bx_sym, By_sym, Bz_sym = symbols('B_x, B_y, B_z')
Ax = 1.2; Ay = 2.3; Az = 3.4
Bx = –1.3; By = 1.4; Bz = –2.4

rA = array([x – Ax, y – Ay, z – Az])
rB = array([x – Bx_sym, y – By_sym, z – Bz_sym])
Ga = rA[0]**i * rA[1]**k * rA[2]**m * exp(–a*dot(rA,rA))
Gb = rB[0]**j * rB[1]**l * rB[2]**n * exp(–b*dot(rB,rB))

O = Ga * Gb

dOBx = diff(O,Bx_sym)
...

dOBx =dOBx.subs(Bx_sym, Bx).subs(By_sym, By).subs(Bz_sym, Bz)
...

dSBx = integrate(dOBx, (x, –oo, oo), (y, –oo, oo), (z, –oo, oo)).evalf()
...
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7.7.2 Kinetic Integral

The kinetic integral of two primitive GTOs is given by

Tab =

∫
Gikm(r, a,A)∇2Gjln(r, b,B) dr. (7.38)

This integral can be evaluated exactly like the overlap integral above. The only differ-
ence is that Gjln(r, b,B) is first differentiated twice in each Cartesian direction before
the integral is evaluated:

Gbxx = diff(Gb, x, x)
Gbyy = diff(Gb, y, y)
Gbzz = diff(Gb, z, z)
Tab = –0.5*integrate(Ga*(Gbxx + Gbyy + Gbzz), (x,–oo,oo), (y,–oo,oo), (z,–oo,oo))

The geometric derivatives of the kinetic integral can be evaluated in the same way as
for the overlap integral.

7.7.3 Nuclear Attraction Integral

The nuclear-attraction integral of two primitive GTOs is given by

V NA
ab =

∫
Gikm(r, a,A)Gjln(r, b,B)

|r − C|
dr (7.39)

In order to generate unit tests for this integral, we have used Python’s tplquad func-
tion. This function is able to compute triple (definite) integrals. An example of the
calculation of this integral using Python is shown below:
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from scipy.integrate import tplquad
from numpy import array, exp, sqrt

class gaussian():
def __init__(self,R,alpha):

self.R = R
self.alpha = alpha
self.i, self.j, self.k = 0, 0, 0

def __call__(self,x,y,z):
i, j, k = self.i, self.j, self.k
R = self.R
alpha = self.alpha

coef = (x–R[0])**i * (y–R[1])**j * (z–R[2])**k
R = (x–R[0])**2 + (y–R[1])**2 + (z–R[2])**2

return coef * exp(–alpha*R)

upLim = 10.
lowLim = –10.
a = 0.2; b = 0.3

A = array(( 1.2, 2.3, 3.4))
B = array((–1.3, 1.4, –2.4))
C = array(( 2.3, 0.9, 3.2))

Ga = gaussian(A,a)
Gb = gaussian(B,b)
Ga.i, Ga.j, Ga.k = 0, 1, 0
Gb.i, Gb.j, Gb.k = 2, 0, 0

I = tplquad(lambda x,y,z:
Ga(x,y,z)*Gb(x,y,z)/sqrt((x–C[0])**2 + (y–C[1])**2 + (z–C[2])**2),
upLim, lowLim, lambda y: upLim, lambda y: lowLim, lambda x,y: upLim,

lambda x,y: lowLim)

Note that the integration limits are given explicitly (upLim and lowLim), in this example
-10 and 10, although the integral is supposed to be evaluated over all space. However,
since the integrand falls quick to zero, the contributions at large distances from the
origin can be neglected.

7.7.4 Electron Repulsion Integral

Evaluation of the electron repulsion integral with Python is very time-consuming using
the same functions that have been used to evaluate the other integrals. These tests
have therefore been skipped for the electron repulsion integral. However, this integral is
calculated in the Hartree-Fock code by using Hermite coefficients and Hermite integrals
which have been throughly tested. It is therefore easier to debug this part of the code
since the elements used to calculate this integral have been already tested thoroughly.
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7.7.5 Verification of the Solver
The Hartree-Fock solver has been tested by calculating the ground state energy of a
few simple systems with different basis sets, and checking against the expected values
found in the literature. Here is an example, where the calculated ground state energy
of H2 is checked against the value given in Ref. [40]:

TEST(H2_431G)
{

/*
* test case: H2
* basis: 4–31G
* bondlength: 1.380
* energy: –1.127
*
* source:
* Molecular Quantum Mechanics
* Peter Atkins
* */

vector<Atom *> atoms;
atoms.push_back(new Atom("infiles/turbomole/atom_1_basis_4–31G.tm",{–0.69,

0.0, 0.0}));
atoms.push_back(new Atom("infiles/turbomole/atom_1_basis_4–31G.tm",{ 0.69,

0.0, 0.0}));

ElectronicSystem *system = new ElectronicSystem ();
system–>addAtoms(atoms);

RHF *solver = new RHF(system);
solver–>runSolver();

CHECK_CLOSE(–1.127, solver–>energy(), 1e–3);
}
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Chapter 8

Ab initio Molecular Dynamics
Implementation

In this chapter, the numerical implementation of the molecular dynamics (MD) code
is discussed. The velocity Verlet algorithm, used to integrate the equations of motions,
is presented, followed by a disscusion on various boundary conditions used in MD
simulations. In the final part of this chapter, the structure of the Born-Oppenheimer
MD (BOMD) code is described.

The code is written in C++ programming language and the development is done
using Qt Creator. The data-analysis is performed using several small Python scripts,
written in IPython Notebook. The BOMD code developed for this thesis is publicly
available at https://github.com/miladh/BOMD under a GPL license.

8.1 Velocity-Verlet Discretization
In ab initio MD, the electronic and nuclear degrees of freedom are separated (see
Chapter 5). At this level of theory the electrons are treated quantum mechanically,
while the nuclei are considered as classical point particles. Within the Hartree-Fock
theory, the nuclear equations of motion in BOMD is given by (see Section 5.2.2)

Fn =MnR̈n = −∇nE
HF, (8.1)

where Rn is the position vector of nucleus n with mass Mn and EHF is the Hartree-
Fock energy. This equation is time discretized in the BOMD code by using the Velocity
Verlet algorithm. The basic formula for this algorithm can be derived from the Taylor
expansions of the positions Rn [15]. The resulting formula for position and velocity is
given by:

Rn(t+∆t) = Rn(t) + ∆t Vn(t) +
∆t2

2Mn
Fn(t), (8.2)

Vn(t+∆t) = Vn(t) +
∆t

2Mn

(
Fn(t) + Fn(t+∆t)

)
, (8.3)
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where Vn = Ṙn. This algorithm is very common in MD simulations, due to its stability
with respect to rounding errors and long-term energy conservation. Furthermore, the
positions and velocities are available at the same time without additional computations,
in contrast to methods such as leapfrog [15].

The Velocity Verlet algorithm is implemented in the code as follows:

1. Half kick in velocity:

Vn

(
t+

∆t

2

)
= Vn(t+∆t) +

∆t

2Mn
Fn(t).

2. New position:

Rn(t+∆t) = Rn(t) + ∆t Vn

(
t+

∆t

2

)
.

3. Force calculation at the new position: Fn(t+∆t).

4. New half kick in velocity:

Vn (t+∆t) = Vn

(
t+

∆t

2

)
+

∆t

2Mn
Fn(t+∆t).

8.2 Boundary Condition
In MD simulations, atoms move around in a simulation box with certain conditions
imposed on the boundaries depending on the problem at hand. The simplest case is
free boundaries or no boundaries, which is appropriate for processes where the effect
of boundaries is not important due to the short time-scale of the involved processes.
Alternatively one can have reflecting boundaries where atoms hitting the boundary of
the box are reflected (see Figure 8.1a). This type of boundary condition is however in
most cases unphysical and can introduce artifacts into the simulation results.

A widely used condition in MD simulations is periodic boundary conditions, wherein
atoms that leave the simulation box at one side reenter the box at the opposite side.
This condition has the advantages of removing surface effects and is a compensation
for the limited size of a numerical simulation box [15]. When using periodic boundary
conditions, one assumes that the simulation box is surrounded by an infinite number
of identical copies forming an infinite lattice. Thus, as an atom leaves the central box,
one of its images will enter the box on the other side (see Figure 8.1b).

When using periodic boundary conditions, the interactions between the atoms are
usually described by applying the so-called minimum image convention. In this tech-
nique each atom only interacts with the nearest image of all the other atoms. This
means in practice that the interaction range is limited to half the box size. As an
example consider a one-dimensional domain of length L with two atoms placed at xi
and xj with ∆x = xj − xi. The convention dictates that atom i interacts only with
the nearest image of atom j, and therefore the shortest separation between atom i and
atom j (including its images) has to be found. This can be expressed as



Section 8.3 Code Structure 135

(a) Reflecting: atoms hitting the bound-
aries are reflected.

(b) Periodic: as an atom leaves the central
box (gray), one of its images will enter the
box on the other side.

Figure 8.1: Examples of boundary conditions in MD simulations.

∆xmin = ∆x− L Round
(
∆x

L

)
, (8.4)

where Round(y) returns to nearest integer value to y. Thus, the nearest image of atom
j relative to atom i is placed at xi +∆xmin.

Periodic boundary conditions are introduced in BOMD code as follows.
• For each atom:

– find the nearest image of all the other atoms by using the rule in Eq. (8.4).
– Perform electronic structure calculations for this atomic configuration and

determine the forces acting on the central atom.

• Integrate one-step forward in time.

• Repeat from top.
As it should be clear from the steps described above, at each time step one needs to
perform Nn electronic structure calculations, where Nn is the number of nuclei.

In Figure 8.2, a snapshot from a simulation of hydrogen atoms with periodic bound-
ary conditions is shown. In this simulation all the atoms are part of a bound pair,
forming hydrogen molecules. At each time step twelve electronic structure calculations
has been performed, making such simulations quite expensive.

8.3 Code Structure
The structure of the BOMD code is very much like the Hartree-Fock code developed
for this thesis (see Section 7.6), and is implemented such that it can be used as a library
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Figure 8.2: Snapshot from a simulation of twelve hydrogen atoms, with periodic
boundary conditions.

in other softwares. The BOMD code itself uses the Hartree-Fock code as a library for
electronic structure and force calculations. The structure of the BOMD project in Qt
Creator is shown below:

BOMD
HF/

...
bomd.pro
defaults.pri
include/

bomd.h
apps/

apps.pro
default/

default.pro
defaultmain.cpp

tests/
tests.pro
testsmain.cpp

src/
src.pro/
molecularSystem/

...
...

The main project file is bomd.pro and defaults.pri is a helper project file [1]. All header
includes are in bomd.h. The apps directory consist of the app (.cpp file that uses the
functions in the source code) itself (default/defaultmain.cpp) and unit tests. The source
code including all classes is found in the src directory, which consists of the following
classes generator, molecularSystem, modifier and fileManager. Here is a short description
of the classes in the BOMD code:

• generator: generates initial structure and velocities of the atoms.
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• molecularSystem: consists of an integrator to evolve the system forward in time,
and computes different system properties.

• modifier: a class for system modifiers such as thermostats [15] and velocity rescal-
ing operations.

• fileManager: responsible for witting the results to file. The outputs are written
both in Hierarchical Data Format 5 (HDF5) and lammps format.

8.4 Parallel Computing
The most time-consuming part in BOMD calculations is by far the force calculations,
and specially the evaluation of the geometric derivatives of the two-particle integral.
This part of the computations is therefore coded to run in parallel. This is done by
using the same procedure used to parallelize the two-particle integral. For details see
Section 7.5.
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Computational Results and
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Chapter 9

Hartree-Fock Results

In this chapter, the numerical results from the Hartree-Fock calculations, are repre-
sented, analyzed and discussed. The first part of this chapter provides some illustrative
results for a few simple molecules that are used for benchmarking of the Hartree-Fock
code. These results involve ground state energies, ionization potentials, population
analysis, and dipole moments. Thereafter, we will discuss graphical models applied on
a few selected molecules.

9.1 Illustrative Restricted Calculations

For benchmarking the code and illustrating some of the applications of the Hartree-
Fock method, we will in the following sections present some results for the following
molecules: H2, CO, N2, CH4, NH3, H2O, and FH. The molecular geometries used in
the calculations are given in Table 9.1.

Basis set Bond length (a.u.) Bond angle
H2 1.400
CO 2.132
N2 2.074
CH4 2.050 109.47°
NH3 1.913 106.67°
H2O 1.809 104.52°
FH 1.733

Table 9.1: Standard geometries used in calculations.

The calculations carried out for each of these molecules, are based on some of
the model calculations given in Ref. [6]. The results in the upcoming sections have
been, unless otherwise indicated, successfully benchmarked against the values given in
Chapter 3.7 in Ref. [6].
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9.1.1 Total Energy

The total energy of a system, defined as the electronic energy plus the nuclear repulsion
energy, is one of the most central quantities in quantum chemistry calculations. Within
the Hartree-Fock approximation, the electronic energy is variational and becomes lower
as the quality of the basis improves. In the limit of an infinite basis, the energy
approaches the Hartree-Fock limit, which is, however, still above the exact energy due
to the variational principle.

Tables 9.2 and 9.3 show the total energies for the molecules of Table 9.1, using the
following Gaussian basis sets: STO-3G, 4-31G, 6-31G∗, and 6-31G∗∗. Note that the
4-31G basis and 6-31G∗ basis for H2 are equivalent since this molecule neither have
inner shells or p-orbitals to be polarized with d-type orbitals. For N2 and CO, the
6-31G∗ and 6-31G∗∗ basis sets are equivalent since they don’t have hydrogen atoms to
add p-type polarizations to.

Table 9.2: SCF total energies (a.u.) of H2, N2 and CO with the standard basis sets.

Basis set H2 N2 CO
STO-3G -1.117 -107.496 -111.225
4-31G -1.127 -108.754 -112.552
6-31G∗∗ -1.131 -108.942 -112.737
HF limita -1.134 -108.997 -112.791

aEstimated HF limit limits are from Ref. [41].

Table 9.3: SCF total energies (a.u.) of for then ten-electron series with the standard
basis sets.

Basis set CH4 NH3 H2O FH
STO-3G -39.727 -55.454 -74.963 -98.571
4-31G -40.140 -56.102 -75.907 -99.887
6-31G∗ -40.195 -56.184 -76.011 -100.003
6-31G∗∗ -40.202 -56.195 -76.023 -100.011
HF limita -40.225 -56.225 -76.065 -100.071

aEstimated Hartree-Fock limits are from Ref. [41].

For all molecules, we see that even for the crudest basis set, the obtained energy is
quite near the Hartree-Fock limit (HF limit) energy, and becomes lower as the basis size
is increased. In all cases, the obtained energy with the STO-3G basis is approximately
98% of the HF limit energy. This estimate is good enough for a first approximation of
the energy.
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9.1.2 Ionization Potential

In Section 2.4.2, we saw that solving the Hartree-Fock equation

Fψk = ϵkψk, (9.1)

yields an infinite set {ψk} of orthonormal spin orbitals with orbital energies {ϵk}. For
a system consisting of Ne electrons, the ground state is approximated by using the
Ne lowest eigenstates to construct the Slater determinant |NeΨ0⟩. The corresponding
orbital energies are given physical significance through Koopmans’ theorem. This the-
orem states that when using the same set of spin orbitals as the one used to construct
|NeΨ0⟩, the ionization potential to produce an (Ne−1)-electron determinant |Ne−1Ψn⟩,
obtained by removing an electron from spin orbital ψn, is just the negative of the
corresponding eigenvalue ϵn [6]. Mathematically, we can write the ionization potential
EIP as

EIP = NeE0 − Ne−1En = −ϵn, (9.2)

where NeE0 and Ne−1En are the expectation values of the energy of the two relevant de-
terminants. The ionization potential of removing an electron from the highest occupied
spin orbital, is commonly called the first ionization potential.

In restricted Hartree-Fock, all (spatial) orbitals are doubly occupied. This means
that for H2 there is only one occupied orbital. The negative of the corresponding
eigenvalue of this orbital is the ionization potential of H2. In Table 9.1b, the ionization
energy for H2 is shown for various basis sets, and in Figure 9.1a all orbitals in H2 are
shown. From the table we see that beyond the minimal basis STO-3G, the ionization
energy remains fixed at −0.595 a.u., which is only in error by ∼2% from the experi-
mental value. This remarkable agreement in ionization potential, is, however, due to
a fortuitous cancellation of errors introduced by the Hartree-Fock approximation and
the approximation in Koopmans’ theorem. First, we note that the exact energy of H2
is lower than the Hartree-Fock energy due to correlations which are not fully described
by the Hartree-Fock method. The H+

2 system is, on the other hand, unaffected by cor-
relations. Second, the orbitals in |NeΨ0⟩ that minimize the energy of the Ne-electron
system, do not necessarily minimize the energy of the (Ne − 1)-electron system. To
”relax” the orbitals for the ionized system, a separate Hartree-Fock calculation must
be performed. The effect of these two approximations nearly cancel each other, leading
to an ionization potential close to the experimental value [6].

A case where we don’t have the same fortunate cancellation of errors, is the nitrogen
molecule. To study the problems arising in using the Koopmans’ theorem to interpret
the ionization spectra of N2, we consider Figure 9.2, which shows all the occupied
orbitals of N2, in addition to the lowest unoccupied orbitals. Furthermore, Table 9.2b
shows the ionization potential for two different ion symmetries (Σ and Π) of N2 for
various basis sets. The values near the HF limit and the experimental values are also
included. The lowest experimental ionization potential corresponds to the production
of an ion with Σ symmetry, and the second lowest corresponds to the production of an
ion with Π symmetry.
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Figure 9.1: Orbital energies and ionization potential of H2 for various basis sets.
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(a) Orbital energies

Basis set Ionization potential
STO-3G 0.578
4-31G 0.596
6-31G∗∗ 0.595
Near-HF limita 0.595
Experimentb 0.584

(b) Ionization potential (a.u.)

Estimated HF limits from aRef. [42]. Experimental values from bRef. [6].

The first thing we notice is that the minimal basis calculations are in disagreement
with calculations using better basis sets. More specifically, we see that the STO-3G
basis has a different highest occupied orbital, than the other basis sets. Furthermore,
we notice that the highest occupied orbital in STO-3G calculations, is the second
highest orbital for the other basis sets, and vice versa. Since the Hartree-Fock results
should improve as the quality of the basis sets is improved, we conclude that the
highest occupied orbital is the one suggested by the basis sets beyond the minimal
basis set, leading to Π ion symmetry when an electron is removed from this orbital. By
comparing the ”correct” Hartree-Fock results with the experimental values, however,
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we realize that the former are in qualitative disagreement with the experimental values.
The experimental values indicate that the lowest ionization potential corresponds to
the production of an ion with Σ symmetry.

Figure 9.2: Orbital energies and ionization potential of N2 for various basis sets.
Note that the two lowest orbitals are very close in energy, and therefore indistinguish-
able in the energy ladder plot.
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(a) Orbital energies

Ion symmetry
Basis set Σ Π

STO-3G 0.540 0.573
4-31G 0.629 0.621
6-31G∗ 0.630 0.612
Near-HF limita 0.635 0.616
Experimentb 0.573 0.624

(b) Ionization potential (a.u.)

Estimated HF limits from aRef. [43]. Experimental values from bRef. [6].
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This is an example of breakdown of the simple orbital picture of ionization. The
Hartree-Fock approximation is simply not sufficiently accurate enough for even quali-
tative studies of the ionization spectra of N2. By using more sophisticated many-body
theories the theoretical calculations and experimental values ultimately agree on the
ionization spectra of N2 [44].

For the sake of illustrating the code’s ability to reproduce typical Hartree-Fock re-
sults, we also include the first ionization potential of CH4, NH3, H2O, and FH, and
their ionization spectra, shown in Figure 9.3. The orbital energies given in Figure 9.3a,
include all the occupied orbitals in addition to the first virtual orbital (lowest unoccu-
pied orbital) of the relevant molecules.

Figure 9.3: Orbital energies and ionization potential of the ten-electron series
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(a) 6-31G∗∗ orbital energies

Basis set CH4 NH3 H2O FH
STO-3G 0.518 0.353 0.391 0.464
4-31G 0.543 0.414 0.500 0.628
6-31G∗ 0.545 0.421 0.498 0.628
6-31G∗∗ 0.543 0.421 0.497 0.627
Near-HF limit 0.546a 0.428b 0.507c 0.650d

Experimente 0.529 0.400 0.463 0.581
(b) Ionization potential (a.u.)

Estimated HF limits from aRef. [45], bRef. [46], cRef. [47], and dRef. [48]. eExperimental values are
from Ref. [6].
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The experimental values indicate the following ordering of the ionization potentials;
FH > CH4 > H2O > NH3. This ordering is reproduced for all basis sets beyond the
minimal basis. For all molecules, the largest basis set gives an ionization potential
slightly over the experimental value. This is expected since Koopmans’ theorem tends
to produce too positive ionization potential, because of the neglect of relaxation. Fur-
thermore, we observe that the average energy of the three highest occupied orbitals
decreases as one moves to the right in the periodic table, when considering the heavy
atom (C, N, O and F). The individual energies are determined by the symmetry of the
system [6].

9.1.3 Population Analysis
In a closed-shell molecule described by a single determinant wave function with doubly
occupied molecular orbitals (MOs), the electron density is given by

ρ(r) = 2

Ne/2∑
k=1

|ϕk(r)|2, (9.3)

where Ne is the number of electrons and ϕk is MO k. The electron density is defined
such that ρ(r)dr is the probability of finding an electron in a small volume dr. The
integral of the electron density is just the number of electrons Ne;

∫
ρ(r)dr = 2

Ne/2∑
k=1

∫
dr|ϕk(r)|2 = 2

Ne/2∑
k=1

1 = Ne. (9.4)

Taking the linear combination of atomic orbitals (LCAO) approach (see Section 2.2.2),
we expand the molecular orbitals in some known basis {φp}:

ϕk(r) =
M∑
p=1

Cpkφp(r), (9.5)

where M is the number of basis functions in the new basis. Inserting this to the
definition of the electron density we obtain

ρ(r) = 2

Ne/2∑
k=1

M∑
q=1

C∗
qkφ

∗
q(r)

M∑
p=1

Cpkφp(r)

=

M∑
p,q=1

2Ne/2∑
k=1

CpkC
∗
qk

φp(r)φ∗
q(r)

=

M∑
p,q=1

Ppqφp(r)φ∗
q(r), (9.6)
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where we have used the definition of the density matrix. Now, using this new form of
ρ(r) we can express the number of electrons as

Ne =

M∑
p,q=1

PpqSpq =

M∑
p=1

(PS)pp, (9.7)

where P and S are the density and overlap matrix, respectively. It is common to
interpret (PS)pp as the number of electrons associated with φp. This is the idea
behind Mulliken population analysis. As an attempt to get an estimate on the number
of electrons to be associated with a given atom in a molecule, we use the sum of all
basis functions centered on that atom. That is, the number of electrons associated
with atom A is given by

NA =

M∑
p∈A

(PS)pp, (9.8)

where the sum goes only over functions which are centered at atom A. The net charge
associated with a given atom in a molecule is then given by

qA = ZA −
M∑
p∈A

(PS)pp, (9.9)

where ZA is the nuclear charge of that atom.
The Mulliken population analysis may sometimes be useful for interpretative pur-

poses, and gives chemically intuitive charge sign on atoms in a molecule. However, it
is important not to over interpret the results, since partial charges are artificial and do
not represent an observable property of atoms and molecules. As an illustration of the
population analysis, Table 9.4 contain the net positive charge on each of the hydrogen
atoms in the ten-electron series.

Basis set CH4 NH3 H2O FH
STO-3G 0.06 0.16 0.18 0.21
4-31G 0.15 0.30 0.39 0.48
6-31G∗ 0.16 0.33 0.43 0.52
6-31G∗∗ 0.12 0.26 0.34 0.40

Table 9.4: Mulliken SCF population analysis for the ten-electrons series. The entries
are the net charges on the hydrogens.

For all basis sets, the net positive charge increases as one goes to the right in the
periodic table. This is due to the increasing electronegativity of the heavy atom. In
all cases the partial charge decreases as one goes from the 6-31G∗ basis to the 6-31G∗∗

basis. This is due to the addition of orbitals to the hydrogen atoms, leading to a less
positive charge. In general, the 6-31G∗∗ basis set always assign more electrons to the
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hydrogen atoms, than the 6-31G∗ basis set does since the only difference between these
two sets is the addition of orbitals to the hydrogen atoms.

The partial charge varies significantly with respect to the basis sets, and it is dif-
ficult to say much about the absolute magnitude of these charges. In fact one of the
disadvantages of Mulliken population analysis is that the results vary significantly for
the same system when different basis sets are used, making the comparison of the
results from different basis sets impossible [10].

9.1.4 Dipole Moments

The classical definition of the dipole moment of a collection of charges qi with position
vectors ri is

µ =
∑
i

qiri. (9.10)

The corresponding quantum mechanical definition, within the single determinant ap-
proximation and using LCAO, is given by

µ = −
M∑

p,q=1

Ppq

∫
φ∗
q(r)rφp(r)dr +

∑
n

ZnRn, (9.11)

where the first term is the quantum mechanical contribution of the electrons of charge
-1, and the second term is the classical contribution of the nuclei of charge Zn, to the
dipole moment.

An interesting case for dipole moment calculations is the CO molecule. In Table 9.5,
the calculated dipole moment using different basis sets is shown, in addition to the
value near the HF limit and the experimental value. Since dipole moment is a vector,
pointing from the positive end of the molecule to the negative end of the molecule, the
values in table are given with sign, where positive sign corresponds to C−O+, that is
when carbon is the negative end of the molecule, which is also the correct experimental
result.

Table 9.5: SCF dipole moments (a.u.) of CO with the standard basis sets. A positive
dipole moment corresponds to C−O+.

Basis set Dipole moment
STO-3G 0.066
4-31G -0.237
6-31G∗ -0.131
Near-HF limita -0.110
Experimentb 0.044

Estimated HF limit from aRef. [49]. Experimental values from bRef. [6].
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The minimal basis set is the only set that gives the right sign, while all the other sets
and the ”correct” Hartree-Fock result (near-HF limit) predict wrong sign. The reason
for this disagreement is due to cancellation of two large and opposite contributions to
the dipole moment. On one hand the electronegativity arguments suggest oxygen to be
the negative end, since it is the most electronegative atom in CO. On the other hand,
the lone pair of electrons on carbon, directed away from the bond, has a contribution
to the dipole moment, which is opposite to the contribution of net charge. The sum of
these two contributions leads to a small dipole moment, with carbon as the negative
end. Because of the small magnitude of this dipole moment, SCF calculations are
simply not accurate enough to reproduce the right sign. The disagreement in sign,
as mentioned in Ref. [6], disappears when more sophisticated many-body theories are
used.

Table 9.6 contains the calculated dipole moments for NH3, H2O and FH, using our
standard basis sets. Comparing the values from various basis sets with the experimen-
tal values, we see that the correct trend H2O > FH > NH3, is reproduced only for
the 6-31G∗ basis set and beyond, reflecting the importance of polarization for correct
qualitative results.

Table 9.6: SCF dipole moments (a.u.) for then ten-electron series with the standard
basis sets.

Basis set NH3 H2O FH
STO-3G 0.703 0.679 0.507
4-31G 0.905 1.026 0.897
6-31G∗ 0.768 0.876 0.780
6-31G∗∗ 0.744 0.860 0.776
Near-HF limit 0.653a 0.785b 0.764c

Experimentd 0.579 0.728 0.716

Estimated HF limits from aRef. [50], bRef. [47] and cRef. [51]. Experimental values from
dRef. [6].

9.2 Illustrative Unrestricted Calculations
In the next two subsections we will discuss the application of unrestricted Hartree-Fock
(UHF) on two well-known systems; H2 and O2. These two cases illustrate very clearly
the shortcomings of restricted Hartree-Fock (RHF) and the advantage of using UHF.

9.2.1 Unrestricted Hartree-Fock Description of the Ground State of
O2

It is well-known that the oxygen molecule is paramagnetic. This means that it must
have unpaired electrons. This is the case even though the number of electrons is even
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and we might expect complete pairing of electrons. As it turns out, the ground state
of an oxygen molecule consist of two unpaired electrons, each occupying their own
orbital, meaning that the unrestricted formulation should be used instead of RHF. In
Figure 9.4, the unrestricted occupied MOs of O2 is shown for the 6-31G∗ basis set,
where nine of total sixteen electrons have spin α, while the rest have spin β.
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Figure 9.4: Unrestricted occupied MOs of O2 with nine spin α-electrons and seven
spin β-electrons, using the 6-31G∗ basis set. Note that the two lowest orbitals are
very close in energy, and therefore indistinguishable in the energy ladder plot.

The ground state configuration of O2 is the one shown in Figure 9.4, where two of
the electrons goes into the degenerate highest occupied molecular orbital. According
to Hund’s rule (see Griffiths [12]) these two electrons will go into separate orbitals with
their spin parallel, resulting in negative exchange interaction, which lowers the total
energy. As it is clear in the energy ladder plot given in Figure 9.4, the orbital energies
of α-electrons are pushed down relative to β-electrons due to the exchange interactions
that are present only between electrons of the same spin. In a restricted description
all the electrons would be constrained to be paired, leading to a higher energy.

9.2.2 Dissociation Problem

The ground state of a molecule like H2 is normally described by the restricted for-
malism, where both electrons are described by the same spatial wave function. This
restricted formulation of the system usually works fine, but under certain circumstances
this description becomes problematic. In particular, at large bond lengths the restricted
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formalism tends to overestimate the energy of the system, which is now a system of
more or less two individual hydrogen atoms. In Figure 9.5, the potential curve of
H2 is shown, together with the corresponding curve from high accurate calculations.
This figure clearly shows the energy overestimation of RHF. For large R we expect
the energy of the system to go towards twice the energy of a single hydrogen atom,
since the atoms ”feel” each other less. At large bond lengths, a proper description of
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Figure 9.5: Potential energy curve for H2 with the 6-31G∗∗ basis set. The hydrogen
atom energy used is E(H) = −0.498 a.u., obtained from Hartree-Fock calculation on
a single hydrogen atom with the 6-31G∗∗ basis set, and Ee(H) = −0.5 a.u. for the
exact solution. The exact data are from Ref.[52].

the system have one electron on each of the hydrogen atoms with not necessarily the
same spatial distributions. Therefore, the restricted formulation is unfortunate since
the spatial distributions are confined to be identical for the two electrons. An unre-
stricted formulation, on the other hand, seems much more appropriate for the system
at large bond lengths. Figure 9.5 shows the potential curve obtained from unrestricted
calculations, which is much more promising than the restricted potential curve. At
distance near the ground state bond length the restricted and unrestricted curves fully
overlap, but at large distances they differ significantly. The unrestricted energy goes
towards twice the energy of a single hydrogen atom, which is the correct behavior.

This model presented in this subsection, is an example of applications of the un-
restricted formalism on a closed-shell system. Note that the effects shown for H2 also
occur for other closed-shell systems when a bond is stretched [6].
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9.3 Graphical Models
Physical properties and the chemical reactivity of atoms and molecules are closely
linked to their structure, which are usually represented by graphical models showing
the atomic geometry and the electronic distribution. These models are used to assist in
interpreting the results from quantum chemistry calculations, and in most cases give,
at least, a qualitative description of the chemical structure of the system.

In the following the graphical models for some selected molecules are represented
and used to study molecular size, shape and molecular charge distributions1. The
central quantity in the graphical models represented here is the isosurface, which is
a three-dimensional surface of constant value. The graphics are created by cubeViz
(see Appendix B.1), using the results from Hartree-Fock calculations. The molecular
configuration used in the calculations are given in Appendix B.2.

It should be mentioned that the results we are going to present on graphical models
are obtained from minimal basis calculations and are only illustrative, without any
attempt to give a very detail description of the systems studied. Our main objective
is to give an overview of the most common graphical models and how they can give us
valuable knowledge about the system of interest, by relatively low-cost calculations.

9.3.1 Electron Density
Visualization of the total electron density is perhaps the most common one among the
graphical models. The electron density in the RHF is defined as

ρ(r) =
M∑

p,q=1

Ppqφp(r)φ∗
q(r), (9.12)

or if we are dealing with the unrestricted case, the same quantity is defined as

ρ(r) = ρα(r) + ρβ(r) =
M∑

p,q=1

(Pαpq + P βpq)φp(r)φ∗
q(r). (9.13)

In these expressions the sums goes over the basis functions φ and P, Pα and Pβ are
density matrices. The two last ones are the density matrices for spin α and spin β
electrons, respectively.

The electron density may be represented by an isosurface (isodensity surface). De-
pending on the value of the isosurface, the electron density may either serve to locate
atoms, delineate chemical bonds, or to indicate overall molecular size and shape. In
Figure 9.6, the isodensity of benzene is shown for two different values. An isodensity
surface of value 0.002 electrons/a.u.3, as shown in Figure 9.6a, indicates the overall
size and shape of the molecule, while an isosurface of value 0.1 electrons/a.u.3 (Fig-
ure 9.6b) depicts the locations of bonds2. The lower density surface is often referred

1The studied systems are inspired from some of the models given in Ref. [53].
2The density values for the isosurfaces are the same as the one used in Ref. [53].
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to as a size surface, while the higher density surface is known as the bond surface. It
should be emphasized that there are no definite ways to choose the value for these two
surfaces. The electron density decays rapidly with distance from the nuclei, but it is
difficult to determine where exactly the electron density has fallen to zero—if it does
reach zero at all. The best we can do is to pick some value as a limit for the minimum
density and connect together all the points that have this value, enclosing a certain
amount of space, indicating the size of the molecule. It is similarly difficult to know
how large the electron density should be to indicate a bonding. In general, it is often
most useful to study the isodensities for a range of values. In our discussion, the values
0.002 electrons/a.u.3 and 0.1 electrons/a.u.3 for the size density and the bond density,
respectively, give a good illustration of the quantities of interest, and we will use these
values in the following discussions, regardless of the system.

(a) Size surface (b) Bond surface

Figure 9.6: Isodensity surface of benzene for two different values. The size surface
has value 0.002 electrons/a.u.3, while the bond surface has value 0.1 electrons/a.u.3.
Black spheres are carbon atoms and gray spheres are hydrogen atoms.

The size surface density (Figure 9.6a) shows the expected planar six-sided structure
of benzene. For lower electron densities the size surface becomes more ”cylindrical”
with rounded edges and the ”bumps” slightly visible. The bond density surface in
Figure 9.6b clearly shows the ring structure of benzene where each carbon atom is
bonded to two other carbon atoms in addition to a hydrogen atom. There is no
electron density concentrated in the middle of the ring, indicating that there are no
bonds between the carbon atoms across the ring. Higher values of electron density lead
to almost spherical regions of electron density around the carbon atoms. This serves
to locate the positions of theses atoms.

As a second example we consider the dibroane molecule, consisting of two boron
atoms and six hydrogen atoms. Figure 9.7 shows the bond density surface of this
molecule, indicating low electron density between the two boron atoms and therefore
lack of bonding between these two atoms.

The boron atom has three valence electrons and needs five more to obtain octet,
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Figure 9.7: Bond density surface of dibroane. The value of the isodensity surface is
0.1 electrons/a.u.3. The green spheres are boron atoms and the gray ones are hydrogen
atoms. The correct Lewis structure of this molecule is also shown, in addition to a
wrong Lewis model of the structure.

while each hydrogen atom has one valence electron and needs one more to fill their
valence shell. There are therefore in total twelve valence electrons in B2H6 for chemical
bonding. By having three hydrogen atoms bonded to each boron atom, we will get two
BH3 molecules, which are, however, not stable since the boron atoms are surrounded
by only six valence electrons. Instead, the two boron atoms share two hydrogen atoms
with each other, forming a 3-center-2-electron bond. In this way will the boron atoms
combine to form a stable electron configuration closer to octet. The Lewis structure3 of
this molecule is shown on the upper right hand side in Figure 9.7. The location of the
bonds agrees with the bond density surface. This example clearly shows the usefulness
of the bond density surface, in cases where the bondings are perhaps not so obvious.

Electron density surfaces can also be used to qualitative describe trends that may
exist among molecules. As an example the size surfaces of methyl anion, ammonia and
hydronium cation are shown in Figure 9.8.

(a) Methyl anion (b) Ammonia (c) Hydronium cation

Figure 9.8: Electron density surfaces for three different molecules. The black sphere
is carbon, the blue sphere is nitrogen, the red sphere is oxygen and the gray spheres
are hydrogen. The value of the isodensity surface is 0.002 electrons/a.u.3.

3Lewis structures are diagrams that show the bonding between atoms of a molecule.
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These molecules have a very similar structure with ten electrons each and a heavy
atom in middle surrounded by three hydrogen atoms. It is clear from the figure that
there is a marked decrease in overall size from the methyl anion to the hydronium
cation. This trend can simply be explained by the increasing electronegativity of the
heavy atom as one moves to the right in the periodic table, resulting in more tightly
bonded electrons and reduction in the overall size.

9.3.2 Electrostatic Potential
Another common quantity in graphical models is the visualization of the electrostatic
potential, defined as the energy of interaction of a positive point charge located at some
point C, with the nuclei and electrons of a molecule [53]. Mathematically, it can be
written as (in the restricted formulation)

Ep =

Nn∑
n=1

Zn
|Rn − C|

−
M∑

p,q=1

Ppq

∫
φp(r)φ∗

q(r)
|r − C|

dr, (9.14)

where the first summation is over the nuclei, located at Rn with charge Zn, while the
second summation is over basis functions φ, and reflects the Coulombic interactions
between the electrons and the point charge. The density matrix is as always P. The
electrostatic potential is a function of the location of the point charge, which will have a
positive value if it is placed in electron poor regions, leading to repulsive interaction, and
negative value if it is placed at electron rich regions, leading to attractive interaction
between the point charge and the molecule. The electrostatic potential can as electron
density be represented by isosurfaces; points in space with the same value for the
electrostatic potential.

In Figure 9.9, the negative and positive electrostatic potential surface (isosurface
where the electrostatic potential is negative/positive) of benzene shown. There are
two isosurfaces with negative electrostatic potential, one above the face of the ring and
one below. This is reasonable because of the symmetry of benzene. A negative charge
will therefore be repelled in these regions, while positive charges are attracted. The
positive isosurface, on the other hand, has a completely different shape and is similar
to the bond density surface; disk-shaped and wrapped fairly tightly around the nuclei.
Negative charges will be attached in these regions.

The electrostatic potential surfaces suggest that a positive charge will be attracted
by the top and bottom face of a benzene molecule. From this observation we may
therefore conclude that a dimer—a chemical component consisting of structurally sim-
ilar molecules—consisting of benzene molecules, will probably not prefer a geometry
where the rings are ”stacked” upon each other, due to the repulsive interaction which
will occur between the benzene rings. In fact, it turns out that the benzene rings are
perpendicular to each other (T-shaped geometry), as it is shown in figure 9.10 [53].
The reason for this is because in a T-shaped geometry the negative regions of the
electrostatic potential meet positive regions of electrostatic potential, leading to at-
tractive interaction between the molecules and lower energy for the system, making it
the favorable geometry.
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(a) Negative (b) Positive

Figure 9.9: Negative and positive electrostatic potential surfaces for benzene. The
black spheres are carbon atoms and the gray spheres are hydrogen atoms.

Figure 9.10: Two different geometries for the benzene dimer. The geometry on the
right hand side is the favorable geometry because of the attractive interaction which
occurs between the rings.

As a final example we consider the pyridine molecule, where one of the carbon
atoms and one of the hydrogen atoms in benzene are replaced with a nitrogen atom.
The positive electrostatic potential surface of pyridine, as shown in Figure 9.11b, is very
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similar to the corresponding surface in benzene, but a marked cut is observed around
the nitrogen atom compared to benzene. The symmetry in the isosurface is therefore
lost. Beside this, the surface is quite similar to the one seen in benzene. The negative
electrostatic potential surface (Figure 9.11a), on the other hand, has a completely
different shape compared to benzene. In this case the negative isosurface is in the
ring plane above the nitrogen atom, which is due to the higher electronegativity of the
nitrogen atom relative to carbon and the electron lone-pair in nitrogen which makes
the region around the nitrogen atom electron rich, leading to a negative electrostatic
potential in these regions.

(a) Benzene (b) Pyridine

Figure 9.11: Negative and positive electrostatic potential surfaces for pyridine. The
blue sphere is nitrogen, the black spheres are carbon atoms and the gray spheres are
hydrogen atoms.



Chapter 10

Molecular Dynamics Results

In this chapter, the numerical results from the molecular dynamics (MD) simulations
are presented, analyzed and discussed. These results include equilibrium bond length
and vibration frequencies of selected diatomic molecules (H2, N2, F2, FH, and CO).

10.1 Bond lengths
The optimized bond lengths of H2, N2, F2, FH, and CO, obtained from the Born-
Oppenheimer MD (BOMD) calculations, for various basis sets are given in Table 10.1.
These bond lengths are found by letting the diatomic system evolve in time from an
initial configuration and by rescaling the velocities of the nuclei by a factor of 0.95 at
each time step. This slows down the motion of the nuclei and eventually makes them
end up with zero velocity at their equilibrium spacing (see Figure 10.1). The equi-
librium bond lengths obtained from Car-Parrinello MD (CPMD) simulations are also
included in Table 10.1, in addition to the Hartree-Fock results from the minimization
of the energy with respect to the atomic spacing [54].

The BOMD calculations were done using a time step ∆t = 0.1 a.u. and the proton
mass was set equal to one. The restricted Hartree-Fock (RHF) method was used for
the electronic structure calculations at each time step.

The obtained bond lengths from the BOMD calculations are in very good agreement
with the Hartree-Fock results, with a maximum discrepancy less than ∼0.1%. The
correct ordering of the bond lengths with respect to the experimental values (H2 < FH
< N2 < CO < F2) is reproduced for all basis sets. The calculated bond length for the
hydrogen molecule becomes closer to the experimental value as the size of the basis set
is increased, with the largest improvement when going from the STO-3G to the 6-31G
basis set. For all the other molecules the 6-31G basis set gives bond lengths closest
to the experimental values, while the more ”correct” 6-31G∗∗ basis set underestimate
the equilibrium spacing between the atoms. This underestimation is very common i
Hartree-Fock calculation and is due to the neglect of electron correlations [10]. The
magnitude of the error relative to the experimental value for the largest basis set
increases as the elements involved in the bond move from left to right in the periodic
table. The largest error is in F2, followed by N2, FH, CO, and H2. The only molecule
that seems to deviate from this trend is the CO molecule, which has a smaller error

159
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Table 10.1: Bond length values of the diatomic molecules in atomic units.

Bond length (a.u.)
Method Basis set H2 N2 F2 FH CO

BOMD
STO-3G 1.346 2.143 2.484 1.806 2.165
6-31G 1.379 2.058 2.668 1.740 2.137
6-31G∗∗ 1.384 2.038 2.541 1.702 2.105

Hartree-Focka
STO-3G 1.345 2.143 2.485 1.805 2.164
6-31G 1.379 2.058 2.670 1.740 2.137
6-31G∗∗ 1.385 2.037 2.542 1.701 2.105

CPMDa Plane wave 1.453 2.084 2.627 1.759 2.152

Experimentb 1.402 2.075 2.668 1.733 2.132

Hartree-Fock and Car-Parrinello values from aRef. [54]. Experimental data from bRef. [55].

than FH even though it consist of two heavy elements (atoms on the right side of the
periodic table), in contrast to FH with only one heavy element.

The equilibrium bond lengths, obtained by the BOMD method with the largest
basis set, are shorter than the corresponding values obtained by the CPMD method,
except for the hydrogen molecule. However, since the CPMD results are found by
using a plane wave basis set (see Ref. [54]), a direct comparison of the CPMD results
and the BOMD results, without considering the basis sets used in these calculations, is
not simple. This is because both methods are very sensitive to the choice of the basis
set. More importantly, the underlying many body theory in the CPMD calculations
is Density functional theory [11], in contrast to the BOMD calculations where the
Hartree-Fock method has been used to calculate the nuclear forces. The difference
between the CPMD and BOMD results are therefore not only due to the differences
between these two methods, but also the underlying many-body theory and the basis
set used in calculations.

10.2 Vibrational frequencies
Molecular vibrations occur when atoms in a molecule are in periodic motion while the
molecule as a whole experiences constant translational and rotational motion. The
frequency of the periodic motion is known as a vibration frequency, with typical values
within the IR range of the frequency spectrum. Knowledge about the vibrational fre-
quencies of a molecule provides useful information about the structure of the molecule,
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Figure 10.1: Damped bond length oscillations obtained from the BOMD simula-
tions. The velocity of each atom is rescaled by 0.95 at every time step. The thick
straight lines indicate the experimental bond lengths (see Table 10.1). The x-axis is
the number of time steps. A time step ∆t = 0.1 a.u. is used and the proton mass is
set equal to 1.

and methods such as IR spectroscopy and Raman spectroscopy have a long history of
use in structure determination [10]. To a first approximation, the vibrational motion
for small perturbations from the equilibrium configuration can be described as a simple
harmonic motion. Within this approximation, the vibrational frequency of a diatomic
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molecule is proportional to the square root of the force constant k (the second deriva-
tive of the energy with respect to the interatomic distance) divided by the reduced
mass µ of the system:

frequency ∝
√

force constant
reduced mass . (10.1)

This assumes that the first derivative of the energy with respect to the intermolecular
distance is zero, i.e. the molecule is at a stationary point. Another way to determine the
vibrational frequency of a diatomic system is to perform molecular dynamics simula-
tions where the atoms are allowed to oscillate freely around their equilibrium spacing.
From the Fourier spectrum or the period of bond oscillations, it is then possible to
estimate the vibrational frequency of the diatomic system.

In Table 10.2, the obtained vibrational frequencies of H2, N2, F2, FH, and CO from
the BOMD calculations for various basis sets are shown. The results from Ref. [54],
obtained by the CPMD method and the Hartree-Fock method are also included. The
Hartree-Fock results are found using the harmonic oscillator approximation. In the
BOMD calculations the proton mass was set equal to 1836.15 a.u., and a time step
∆t = 10 a.u. was used. With this time step, the energy of the systems was conserved
better than 10−5 a.u. throughout the dynamical simulations. The atoms were slightly
displaced from their equilibrium spacing in the initial step of the simulations, and for
the electronic structure calculations at each time step, the RHF method was used. The
Fourier spectrum of the bond oscillations for various basis sets are also included and
are shown in Figure 10.2. Due to the finite duration of the simulations, a smoothing
procedure like the one described in Appendix A.3 is used. Also the obtained frequencies
from the least squares (LS) trigonometric fitting of the bond oscillations is included1.

The obtained frequencies from the Fourier transform of bond oscillations are in some
cases the same for two different basis sets. This is however only due to the resolution
we have in the frequency spectrum. In cases where the frequencies for two different
basis sets are close to each other, we simply don’t have good enough resolution in the
frequency spectrum to distinguish these from each other. To obtain better resolution
in the frequency spectrum, the dynamical simulation has to be performed over a longer
period of time.

The vibrational frequencies obtained from LS fitting of bond oscillations are slightly
lower than the corresponding Hartree-Fock results. This is the case even though the
electronic structure calculations in the BOMD simulations and thereby the forces acting
on the nuclei were based on the Hartree-Fock method. This disagreement can be
explained by the fact that the Hartree-Fock results are based on the harmonic oscillator
approximation, while the molecular vibrations are not entirely harmonic. The harmonic
oscillator approximation assumes a parabolic form for the potential energy surface, and
therefore do not allow the molecule to dissociate into its component atoms. Thus, this
description breaks down at large intermolecular distances. However, even at very short
distances beyond the equilibrium bond length, the true potential energy surface differs
from the parabolic potential of the harmonic approximation (see Ref. [10]). This leads
to a systematic error in the Hartree-Fock results, and is most likely responsible for the

1The least squares fitting of the bond oscillations has been done using the
scipy.optimize.curve_fit function in Python [56].
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Table 10.2: Vibrational frequencies of the diatomic molecules in cm−1. The BOMD
results are obtained from Fourier analysis and trigonometric fitting (least squares
(LS)) of the bond oscillations. A time step ∆t = 10 a.u. was used and 800 time steps
were simulated. This gives a resolution ∆f = 172.3 cm−1 in the frequency spectrum.
The standard deviations in the trigonometric fits are of order 10−8.

Vibrational frequency (cm−1)
Method Basis set H2 N2 F2 FH CO

BOMD

STO-3G Fourier 5512 2584 1723 4479 2412
LS fitting 5472 2660 1671 4463 2453

6-31G Fourier 4651 2584 1206 4134 2239
LS fitting 4635 2651 1137 4124 2277

6-31G∗∗ Fourier 4651 2756 1206 4479 2412
LS fitting 4624 2748 1240 4481 2429

Hartree-Focka
STO-3G 5481 2670 1677 4474 2463
6-31G 4644 2661 1141 4135 2286
6-31G∗∗ 4635 2758 1245 4493 2439

CPMDa Plane wave 4118 2282 1106 3999 2040

Experimentb 4160 2331 891 3962 2143

Hartree-Fock and Car-Parrinello values from aRef. [54]. Experimental data from bRef. [57].

deviation from the BOMD frequencies.
It is not only the Hartree-Fock frequencies that suffer from systematic errors. The

calculated frequencies from the BOMD simulations also suffer from a systematic error
due to the non-self-consistency that exists in the electronic structure calculations. This
gives raise to a correction term in the force expression that is not included in our calcu-
lations. Within a given incomplete basis set, this correction term vanishes only when
self-consistency has been reached [16]. In practice, by requiring very high accuracy, we
can make this term arbitrarily small but it can never be suppressed completely.
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Figure 10.2: Vibrational frequency distribution spectrum obtained from BOMD
simulations. The dashed lines indicate the experimental vibration frequencies.
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All basis sets overestimate the vibrational frequencies relative to the experimental
values. This is common in calculations based on the Hartree-Fock method [10]. The
reason for this overestimation is due to the neglect of electron correlations and basis
set truncation effects. However the overestimation of the vibrational frequencies turns
out to be systematic within Hartree-Fock theory. A lot of work has been done to
estimate an empirical, constant scaling factor for the different basis sets to improve the
Hartree-Fock frequencies [58]. For example, the frequencies obtained by the 6-31G∗∗

basis set are usually scaled by a factor of 0.8992 [58], giving frequencies in much more
agreement with experiments. Multiplying the BOMD results with this factor brings
the frequencies from the range of 11-18% of the experimental values to a range of
0.5-1.9% of the experimental values, except for the F2 molecule where the frequency
is still overestimated by 25% (initially overestimated by 39%). It should be noted
that the scaling factor we have scaled the BOMD frequencies with is optimized for the
Hartree-Fock frequencies within the harmonic oscillator approximation, while no such
approximation is assumed in the BOMD simulations. We see however that this factor
improves our results significantly.

The frequencies obtained by the CPMD method are for all molecules closer to the
experimental values compared to the BOMD frequencies with the largest basis set.
The CPMD calculations are however based on density functional theory within the
local density approximation where plane wave basis functions have been used [54]. It
is therefore difficult to make a fair comparison of the obtained frequencies from the
BOMD and the CPMD method, since their underlying many-body method is different.

10.3 The Nucleophilic Substitution Reaction H− + CH4

→ CH4 + H−

Nucleophilic substitution reactions are a class of reactions that involve the interaction
of electron-rich species (nucleophile) with electron-poor species (electrophile). In these
reactions the electron-rich nucleophile attacks the electron-poor electrophile forming a
new bond, leading to detachment of an atom or group (leaving group) in the electrophile
species [59]. An example of this type of reaction is the SN22 reaction H– + CH4 −−→
CH4+H–, where the nucleophilic hydrogen anion attacks the electrophilic carbon atom
in the methane molecule at 180° to the leaving negatively charged hydrogen atom. The
SN2 mechanism of this reaction is shown in Figure 10.3. The breaking of the C–H bond
and the formation of the new bond occur simultaneously through a transition state [53]
in which the carbon atom is partially attached to both the incoming and the leaving
atom. As the leaving atom is pushed off, the initial tetrahedron is inverted, much like
an umbrella turning inside out in the wind.

2In the term SN2, S stands for substitution, N for nucleophilic and the number 2 refers to the fact
that two species are involved in the initial stage of the reaction.
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Figure 10.3: SN2 nucleophile substitution reaction of methane with hydrogen anion.
The structure in the middle corresponds to the transition state [53] structure.

To investigate the dynamics of this reaction, BOMD calculations has been carried
out, where the classical trajectories of the atoms, starting from two separate reactants
(H– + CH4), has been computed. A time step ∆t = 10 a.u. was used, and a total
of 200 time steps were simulated. For the electronic structure and force calculations,
the unrestricted Hartree-Fock (UHF) method has been used with the STO-3G basis
set. The initial configuration corresponds to the one where the methane molecule is
in rest in its equilibrium geometry with bond length 2.047 a.u. and bond angle 104°3.
The hydrogen anion is initially at a distance 8.66 a.u. from the carbon atom with start
velocity 0.017 a.u., directed towards the carbon atom and the leaving group.

In Figure 10.4, a sequence of structures observed during the dynamical simulation
is shown, illustrating the formation of the carbon-nucleophile bond and the breaking of
the carbon-leaving group bond. Note that some of the kinetic energy of the nucleophilic
hydrogen anion after the collision is transformed into vibrational energy in the methane
molecule. In Figure 10.5a, the negative electrostatic potential isosurface corresponding
to −0.25 a.u. for four different instances in time is shown, illustrating how the electron-
rich regions are relocated during the dynamical simulation. The configurations at
400 a.u. and 500 a.u. are near the transition state configuration and clearly show the
relocation of the electron-rich regions from the attacked side to the opposite side. The
relocation of charges becomes more clear by considering the change in the net charge of
the atoms, as shown in Figure 10.5b. The net charge of the incoming hydrogen anion
goes from being negative to slightly positive while the leaving atom undergoes a nearly
opposite transformation. The net charge of the three non-reacting hydrogen atoms
exhibits very little change in the first 30 integration steps when the interaction with the
incoming hydrogen anion is small, but starts to oscillate weakly afterwards due to the
vibration in the methane molecule. The incoming atom follows these oscillations fairly
closely, after the departure of the leaving atom. The net charge of the carbon atom
exhibits also very little change before the non-reacting hydrogen atoms are inverted,
but it increases and becomes slightly positive as the distances to the incoming and
leaving atom are close to each other. As the leaving atom is pushed off and the initial
tetrahedron is inverted, the net charge of the carbon atom oscillates around its initial
value before the collision with the hydrogen anion.

3The equilibrium structure of methane was found by the same method used to find the equilibrium
bond lengths of the diatomic systems in Section 10.1 and successfully benchmarked against the values
given in [6].
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t = 0 a.u. t = 400 a.u.

t = 800 a.u. t = 1100 a.u.

t = 1300 a.u. t = 1750 a.u.

a) b)

c) d)

e) f)

Figure 10.4: Sequence of structures observed during the dynamical simulation. The
black sphere is the carbon atom, while the gray spheres are hydrogen atoms. The
arrows indicates the direction of the velocity of the atom at that instance of time.
The bonds between the carbon atom and the hydrogen atoms are only shown when
the distance C-H is equal or less than the equilibrium bond length in methane (2.047
a.u.).
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Figure 10.5
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c) d)

(a) Sequence of structures with negative electrostatic potential isosurface ob-
served during the dynamical simulation. The electrostatic potential surface cor-
responds to a value of -0.25 a.u. in all figures. The black sphere is the carbon
atom, while the gray spheres are hydrogen atoms.
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(b) Variation of the net charge of the atoms. The charges are calculated using
the Mulliken SCF population analysis (see Section 9.1.3).
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10.3.1 The Effect of Different Basis Sets
The calculations presented in the last section were done using the minimal basis set
STO-3G. This basis set has no flexibility to allow for weakly bound electrons (as we
have in the hydrogen anion) and can lead to serious errors in energy and other molecular
properties. As it turns out, the same calculations as the ones we have done so far, but
with larger basis sets such as the 6-31++G∗∗ basis set, show that the reaction does not
occur. The incoming hydrogen anion is pushed back and no inversion of the tetrahedron
occurs. Simulations with higher initial translational energy led to even faster repulsion
of the incoming hydrogen anion.

To investigate the effect of basis set on the dynamics of the reaction, the trajectories
of the atoms has been, starting from the transition state configuration, computed for
the minimal basis set and the 6-31++G∗∗ basis set4. The geometry of the transition
state is shown in Figure 10.6b with the distances R1 and R2 equal to each other and
θ = 90°. The calculations has been performed with a time step ∆t = 10 a.u. and
the UHF method is used for electronic structure and force calculations. The initial
translational energy of the hydrogen anion was set to 0.05 kcal/mol.

To illustrate the effect of basis set on the atomic trajectories, the energy bar-
rier Ebarrier, the collision energy Ecollision and the vibrational energy Evibration of the
methane molecule are computed for both basis sets. The energy barrier corresponds
to the difference in (potential) energies between reactants (CH4 + H–) in equilibrium
configuration and transition state. The collision energy is the sum of the translational
energy of the leaving atom and the methane molecule. The calculated values are shown
in Table 10.6a, where also the ratio τ = Evibration/Ecollision is shown. The change in
various energy forms and the atomic distance changes between the carbon atom and
the incoming and leaving hydrogen atom during the dynamical simulation, are shown
in Figure 10.7.

The first thing to notice is the significant underestimation of the energy barrier
with the STO-3G basis set compared to the 6-31++G∗∗ basis set and other high quality
calculations [61]. This underestimation is a consequence of a poor description of the
weakly bound electron in the hydrogen anion, and can be improved with the addition
of diffuse functions in the basis set. This improvement is apparent in the obtained
ground state energy of the hydrogen anion with the 6-31++G∗∗ basis set, with a value
of -0.487 a.u., close to the Hartree-Fock limit (HF limit) of -0.488 a.u. [60]. The ratio
Evibration/Ecollision is also significantly underestimated by the minimal basis set and is
less than a half of the ratio found with the largest basis set. The smaller amount of
collision energy with the largest basis set is a consequence of a higher energy barrier,
pushing the leaving atom faster out of the interaction region between H– and CH4 while
the geometry of the methane molecule still corresponds to a high potential energy [60].
As a result, after the departure of the leaving atom, the methane molecule will have
a larger amount of vibrational energy, mainly concentrated in the stretching (R1) and
bending (θ) modes5. With a lower energy barrier the detachment of the hydrogen

4The calculations and analysis represented in this section are similar to the ones done in Ref. [60],
but with a larger basis set.

5The R0 parameter which represent the bond length of the three non-reacting hydrogen atoms
exhibits very little change during the dynamical simulation for both basis sets.
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Figure 10.6

Distancesa (a.u.) Energy (kcal/mol)
System Basis set R0 R1 R2 Ebarrier Ecollision Evibration τ

CH4H− STO-3G 2.06 2.80 2.80 46.859 30.896 16.011 0.52
6-31++G∗∗ 2.02b 3.21b 3.21b 62.987 28.216 34.839 1.24

CH4D− 6-31++G∗∗ 2.02b 3.21b 3.21b 62.987 30.442 30.937 1.02

CD4H− 6-31++G∗∗ 2.02b 3.21b 3.21b 62.987 21.761 41.283 1.89

(a) Geometry of the transition state and the calculated energy barrier, collision energy and
vibrational energy for the reactions H– +CH4, D– +CH4 and H– +CD4. τ corresponds to the
ratio Evibration/Ecollision.

(b) Transition state geometry. R1 is initially equal to R2 and θ is equal to 90°.

aThe transition state geometries are from Ref. [54].
bThese values are the optimal values for the largest basis used in Ref. [54] and are assumed
to be near the optimal values for the 6-31++G∗∗ basis set.

atom occurs more slowly, allowing the methane molecule to more efficiently release its
potential energy to translational energy. The faster departure of the leaving atom with
the largest basis set is clear in Figure 10.7b, where we see the R2 parameter starting
to increase earlier with the largest basis set. The higher vibrational energy with this
basis is also indicated by the higher oscillations in R1.

Similar effect in the ratio of vibrational and kinetic energy can also be observed
in calculations of two similar systems D– + CH4 and H– + CD4, using the 6-31++G∗∗

basis set. The only difference between these systems and the original system we have
been discussing so far (H– + CH4) is the higher mass of the deuterium atoms. In
Figure 10.8, the results from these calculations are shown and the calculated energies
after the detachment of the leaving group is shown in Table 10.6a. In these results
we saw the same effect as obtained in the calculations with different basis sets. The
CH4D– system has a lower ratio Evibration/Ecollision compared to the CD4H– system,
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Figure 10.7: Simulation of the reaction H–+CH4, starting from the transition state,
with the minimal basis set and the 6-31++G∗∗ basis set.
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(a) The change in different energy forms during the dynamical simulation. The sum of the
vibrational and collision energy is equal to the energy barrier minus the initial translational
energy.
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(b) The atomic distance changes between C and the incoming and leaving hydrogen atom.

due to the slower departure of the deuterium atom in the former system because of
the higher mass of deuterium atom compared to the hydrogen atom. In the former
system the methane molecule is in a more stable configuration when the deuterium
atom is out of the interaction range, leading to less vibrational motion. In the CD4H–

system, on the other hand, the motion of the hydrogen atom is faster than the heavier
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deuterium atoms, resulting in faster departure of the hydrogen atom and higher amount
of vibrational energy in the methane molecule.

Figure 10.8: Simulations of the reactions D– + CH4 and H– + CD4, starting from
the transition state, with the 6-31++G∗∗ basis set.
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(a) The change in different energy forms during the dynamical simulation. The sum of the
vibrational and collision energy is equal to the energy barrier minus the initial translational
energy.
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(b) The atomic distance changes between C and the incoming and leaving hydrogen atom.
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10.3.2 Final comments
The importance of diffuse functions in systems with weakly bonded electrons is evident
in our simulations. Calculations with the minimal basis set underestimates the energy
barrier in the reaction H– + CH4 −−→ CH4 + H– significantly, and the importance
of the initial vibrational energy of the methane molecule is not apparent. The latter
turns out to be essential for the reaction to occur. Simulations with initially separated
reactants using the 6-31++G∗∗ basis set, show that the incoming atom is not able to
invert the tetrahedron, due to the larger inertia of the umbrella relative to the motion
of the incoming atom. Therefore, for the reaction to occur there must be a sufficient
amount of vibrational motion in the methane molecule. Furthermore, the vibrations
should be in phase with the arrival of the incoming nucleophile [60].
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Chapter 11

Conclusion

The aim of this thesis has been to investigate the gap between quantum mechanical
calculations and molecular dynamics (MD) simulations. This has been done by link-
ing first principle calculations on molecules to atomic simulations in MD. The main
objective of this thesis has been to develop an efficient and modular many-body quan-
tum mechanics code, with the intent to be used in ab initio MD calculations and/or
parameterization of predefined potentials. In particular, the focus has been on the
Hartree-Fock method because of its ability to handle large molecular systems com-
pared to other more sophisticated many-body methods. The implementation of the
Hartree-Fock method has been based on molecular integral evaluation techniques, pro-
vided by the McMurchie-Davidson scheme [7].

The Hartree-Fock code has been thoroughly tested by running numerous verifi-
cation tests on the different parts of the code. These tests include unit testing of
the integrator and ground state energy benchmarking of a few simple systems. Fur-
thermore, the results from calculations on the ground state energy, dipole moment,
ionization potential, and population analysis of H2, N2, FH, CO, NH3, H2O, and CH4
have been checked and verified against the literature. The size of the basis set has an
obvious influence in these calculations. The best results are obtained with the largest
basis sets. However, for some quantities, such as the ionization potential of N2 and the
dipole moment of O2 molecule, the minimal basis set was closest to the experimental
values. These results can, however, not be trusted because of the small size of the
minimal basis set. All in all, the ”correct” Hartree-Fock results are obtained with the
largest basis sets. The disagreement of these results with experiments or high quality
calculations is due to the breakdown of the simple orbital picture in the Hartree-Fock
method. In these cases the Hartree-Fock method is simply not accurate enough, and
one needs to take correlations into account [6].

As a next step, we aimed at incorporating the first principle calculations into MD
simulations. An MD code was therefore implemented. This code uses the Hartree-
Fock implementation as a library, making it possible to compute the forces acting
on the nuclei on-the-fly based on electronic structure calculations. The MD code has
been used to study the vibrational frequency of the diatomic systems H2, N2, F2, FH,
and CO. The obtained frequencies are slightly better than the ones obtained by the
harmonic oscillator approximation, but there are still overestimated frequency values,
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compared to experimental data. This is common in calculations based on the Hartree-
Fock method, and is caused by the neglect of electron correlations. The overestimations
are, however, very systematic. The calculated frequencies can be brought closer to
experimental data by multiplying them by a constant factor that only depends on the
basis set [10]. This brought the frequencies from the range of 11-18% of the experimental
values to a range of 0.5-1.9% of the experimental values, except for the F2 molecule,
where the frequency was still overestimated by 25% (initially overestimated by 39%).

Ab initio MD calculations, on the reaction dynamics of H– + CH4 −−→ CH4 + H–,
similar those of Ref. [60], have also been performed. These results show the importance
of diffuse basis functions in studies of systems with weakly bound electrons. The
minimal basis set underestimates the energy barrier of this reaction significantly, and
neglects the importance of the initial vibrational energy of the methane molecule.
Calculations with the 6-31++G∗∗ basis set, however, show that the initial vibrational
motion of the methane molecule is crucial for the reaction to occur.

Future Prospects
Although the focus in this thesis has been on the transition from quantum mechanics to
MD, the Hartree-Fock code is written in a general way such that it can easily be used for
pre-calculations in pure quantum mechanical studies. For example, in quantum Monte-
Carlo calculations it is necessary to have optimized single-particle wave functions in
order to maintain a reasonable precision for larger atomic and molecular systems [8].
These optimized single-particle wave functions can be found by performing Hartree-
Fock calculations. One of the future goals is to combine Hartree-Fock calculations with
quantum Monte-Carlo calculations.

Another extension of this thesis project would be to use the integration scheme with
other solver methods, such as density functional theory. This is possible because of the
similarities between the Hartree-Fock equations and the Kohn-Sham equations [11].
The first principle calculations based on density functional theory can then be linked
to MD simulations, which would be of great interest.

The integration scheme implemented in the Hartree-Fock code can also be used as
basis in Car-Parrinello MD (CPMD) simulations. A general implementation of this
method will allow us to study large systems, since no energy minimization is required
at each nuclear time step, in contrast to Born-Oppenheimer MD (BOMD) [16]. This
reduces the gap between quantum mechanics and molecular dynamics.
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Appendix A

Mathematics

A.1 Atomic units
Atomic units are designed to simplify the appearance of fundamental equations in quan-
tum mechanics, which in their original form consist of many small valued constants.
Beside the aesthetic aspect, use of atomic units is important from a programming point
of view as well, to avoid the effects of round off errors.

We define atomic units by setting the following fundamental constants to one,
namely

• Electron mass: me = 1.

• Elementary charge : e = 1.

• Reduced Planck’s constant: h̄ = 1 .

• Coulomb’s constant: 1
4πϵ0

= 1.

By using these constraints, we can derive the atomic units of some of the most
important physical quantities [62]:

• Unit of lenght: a0 ≡ 4πϵ0h̄
2

mee2
= 0.529 177 219 2(17)Å.

• Unit of energy: Eh ≡ mee4

(4πϵ0h̄)2
= 27.211 eV.

• Unit of time: τ0 ≡ h̄
Eh

= 2.418 884 326 505(16)× 10−17 s.

• Unit of velocity: v0 ≡ a0Eh

h̄ = 2.187 691 263 3(73)× 106 m/s.

These quantities are the conversion factors for their respective physical quantity, such
that the SI value, Q, of each of them is related to the their value in atomic units Q′ by

Q = XQ′, (A.1)

where X is the conversion factor.
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The electronic Hamiltonian is in its original form (in SI units) given as

H = −
Ne∑
i=1

h̄2

2me
∇2
i +

1

4πϵ0

Ne∑
i<j

e2

|ri − rj |
− 1

4πϵ0

Nn∑
n=1

Ne∑
i=1

Zne
2

|ri − Rn|
. (A.2)

This expression can be brought to dimensionless form, by introducing the following
relations;

H′ = H/Eh, ∇′ = ∇/a0, r′ = r/a0, R′ = R/a0. (A.3)

By using these relations in Eq. (A.2), we obtain

H = − h̄2

2mea20

Ne∑
i

(∇′
i)
2 − e2

4πϵ0a0

[
Nn∑
n=1

Ne∑
i=1

Zn
|r′i − R′

n|
+

1

2

Ne∑
i,j=1
i ̸=j

1

|r′i − r′j |

]

= Eh

−1

2

Ne∑
i

(∇′
i)
2 −

Nn∑
n=1

Ne∑
i=1

Zn
|r′i − R′

n|
+

1

2

Ne∑
i,j=1
i̸=j

1

|ri − rj |


= EhH′. (A.4)

The electronic Schrödinger equation can therefor be written as

H′Ψ
(
{r′i}; {R′

n}
)
= E′Ψ

(
{r′i}; {R′

n}
)
, where E′ =

E

Eh
. (A.5)

In this dimensionless form of Schrödinger equation, the energy will be measured in the
units of Hartree (or a.u.), where 1Eh = 2 · 13.6 eV is twice the ground state energy of
the hydrogen atom.

A.2 Antisymmetrizer
The antisymmetrizer operator A is a linear operator, defined as

A ≡ 1

N !

∑
P

(−1)PnP, (A.6)

where P is the permutation operator and Pn is the parity of the permutation. By
applying this operator on a wave function on the form

ΨH = ψ1(q1)ψ2(q2) . . . ψN (qN ), (A.7)

the wave function will be antisymmetric with respect to exchange of coordinates of any
pair of electrons, i.e.
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PijΨ
(
q1, . . . ,qi, . . . ,qj , . . . ,qN

)
= Pij

[√
N ! AΨH

(
q1, . . . ,qi, . . . ,qj , . . . ,qN

)]
= −

√
N ! AΨH

(
q1, . . . ,qi, . . . ,qj , . . . ,qN

)
= −Ψ

(
q1, . . . ,qi, . . . ,qj , . . . ,qN

)
. (A.8)

where
√
N ! is included to ensure normalization of the wave function. The antisym-

metrizer operator has several interesting properties1:

• Idempotent:
The square of the operator is itself, i.e. A2 = A.
Proof:

AA =

(
1

N !

)2∑
P

∑
Q

(−1)Pn+QnPQ (A.9)

For a given P, the product R = PQ runs over all N ! permutations, so that

AA =

(
1

N !

)2∑
P

∑
R

(−1)RnR


︸ ︷︷ ︸

N !A

=

(
1

N !

)2

N !2A = A (A.10)

• Hermitian:
Antisymmetrizer is self-adjoint, i.e. A† = A.
Proof:
Permutations of identical particles are unitary, i.e. P† = P−1. By taking the
adjoint of A, we obtain

A† =
1

N !

∑
P †

(−1)PnP† =
1

N !

∑
P−1

(−1)PnP−1 (A.11)

Now, P and P−1 perform the same operations, only in inverse order, and therefore
will their parity be the same. This means that A and A† have the same action,
so A = A†.

• Commutation relation with H:
The antisymmetrizer commutes with the Hamiltonian, i.e. [A,H] = 0

Proof: Since H is symmetric in the system coordinates, it will commute with
each individual permutation, and therefore also with sums of such permutations.
So [A,H] = 0.

1The proofs are based on the discussion in Chapter 7 in Ref. [63].
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A.3 Discrete Fourier Transform
The discrete Fourier transform y of a signal x of length N is defined as [64]:

yk =

N−1∑
n=0

xne
−i2π k n/N , k = 0, 1, 2, . . . , N − 1. (A.12)

By assuming that the data in vector x are separated by a constant interval ∆t in time,
we can define the sampling frequency as fs = 1/∆t. The discrete Fourier transform y
is complex-valued, and the absolute value of it at index k measures the amount of the
frequency f = k(fs/N) present in the data. The resolution of the frequencies in the
spectrum is given by

∆f =
fs
N

=
1

N∆t
, (A.13)

indicating that better frequency resolutions can be obtained either by more sample
data (higher N) or larger time step.

A.3.1 Leakage
The computation of the discrete Fourier transform assumes that a signal x is periodic
in the sampling period. If this assumption is violated, the frequency spectrum will
suffer from leakage [65]. This effect will result in the signal energy smearing out over
a wide range of frequency range in cases where it should be a narrow frequency range.
To illustrate this effect we consider the frequency spectrum of a cosine signal:

x(t) = cos(2π · 2t), (A.14)
which has an integer number of periods within the time window [0, 6s]. The frequency
spectrum of this signal (Figure A.1), has only one spike at f = 2 Hz, which is the
frequency of the cosine signal. However, if the signal instead is

x(t) = cos(2π · 2.2t), (A.15)
which is not periodic within the time window, we see from the upper part of Figure A.2
that the frequency spectrum contains more than one spike, with the highest one at
f = 2.33 Hz. This is the case even though the signal is a single cosine function with
frequency f = 2.2 Hz. This effect is called leaking, and makes it difficult to identify
the frequency content of the measured signal.

The leakage in the frequency spectrum is usually reduced by applying window-
ing [65]. That is, by multiplying the original signal with a window function before
taking the Fourier transform of the signal. The window functions are typically chosen
so that the resulting signal starts at zero at the beginning of the time window and then
rises to some maximum and decays again to zero before the end of the time window.
The resulting signal will then satisfy the periodicity requirement. There are a lot of
different window functions available for spectral analysis, suitability for different ap-
plications (see Ref. [66]). We will focus on one of the most common window functions,
namely the Hanning window function, defined as [64]:
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Figure A.1: Periodic cosine signal and its frequency spectrum. The signal is sampled
at N = 512 points. Within the sampling period t = [0, 6s], the signal has an integer
number of periods, giving raise to only one spike in the frequency spectrum. This
spike overlaps completely with the correct frequency (red line) of the signal.

w(t) = 0.5

(
1− cos

(
2πt

N − 1

))
. (A.16)

By multiplying the signal in Eq. (A.15) with this function, the resulting signal will have
the same character as the one described above; zero at the beginning and the end of
the time window, with a maximum in the middle (see Figure A.2). Taking the discrete
Fourier transform of this new signal will result in a much more narrow frequency range.
This makes it easier to identify the frequency content of the measured signal.
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(a) Non periodic signal
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Figure A.2: Comparison of the non periodic (within the time window) cosine signal
and frequency spectrum with leakage (a) to the windowed cosine signal and frequency
spectrum showing much less leakage (b). The red lines indicate the correct frequency
of the cosine function. The signal is sampled at N = 512 points.
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Visualization

B.1 cubeViz

By solving the Hartree-Fock equation for an atomic or molecular system we find an
ansatz for the total wave function. From the wave function we can compute the electron
density, which gives the probability of finding an electron at a specific location. This
quantity is a key concept for structure and reactivity studies. It is also the fundamental
variable of density functional theory.

In order to visualize the electron density obtained from the Hartree-Fock calcula-
tions, a script named cubeViz1 is written in the programming language Python. This
script provides different opportunities for visualization of volumetric data such as iso-
surface representation with surfaces, wireframes or points, plane view of cut planes
on volumetric data, and representation based on volume rendering (see Figures B.1
and B.2). cubeViz is also capable of making animations of a set of dataset for different
configurations of atoms, including the movement of the nuclei.

cubeViz is based on the Python library Mayavi [67], which is a data visualizer
for interactive scientific data visualization and 3D plotting in Python. For plotting
nuclei, the function points3d() is used, which plots glyphs at the position of supplied
data. The contour plots are created using the function contour3d(), which takes a
three-dimensional array as input and plots iso-surfaces based on the supplied data.
The volume plots are created using volume rendering, based on the example in [68].
The slicer plots are created by inspiration from the example in [69].

The input files read by cubeViz are binary files with the extension .cube and
consist of a header followed by the volumetric data. The header consists of the number
of atoms, their type, charge and position, the position of the origin of the volumetric
data, number of points in x, y and z direction and finally the limits in each Cartesian
direction. The volumetric data is represented with a floating point number (value of
the density function) for each volumetric element, that is for each grid point.

We will now show how the .cube files can be generated in C++ . The first step is
to create an ofstream object for the output file:

1The source code can be found at https://github.com/miladh/cubeViz.
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(a) Surface (b) Wireframe

(c) Volume

Figure B.1: Different representations of the electron density for CH4. The largest
sphere (black) is the carbon nucleus, while the small spheres (gray) are the hydrogen
nuclei.

stringstream filename << "output.cube";
ofstream cubefile(filename.str(), ios::out | ios::binary);

where the second line specifies that the file is open for writing and the operations
are performed in binary mode. In order to write to this file one can use

double numCores = 2;
cubefile.write(reinterpret_cast<const char*>(&numCores), sizeof(double));

where the number of cores is written to file. Note that the variable numCores is a double.
The other header parameters can be written to file in the same manner, in the following
order:

• Origin of the data in x-, y-, and z-direction.
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Figure B.2: Representation of electron density for H2 with moveable slicer in each
direction.

• Number of grid points in x-, y-, and z-direction.

• Value of the first and the last grid point in x-direction.

• Number of grid points in x-direction.

• Value of the first and the last grid point in y-direction.

• Number of grid points in y-direction.

• Value of the first and the last grid point in z-direction.

• Number of grid points in z-direction.

• For each atom: atom type, atom charge, and their position coordinates in x, y,
and z-direction.

When the density data are stored in an Armadillo cube object, the data can be written
to file in the following way:

for(uint k = 0; k < numZpoints; k++){
for(uint i = 0; i < numXpoints; i++){
for(uint j = 0; j < numYpoints; j++){

cubeFile.write(reinterpret_cast<const char*>(&densitydata(i,j,k)),
sizeof(double));

}
}

}

Note the order in which the data is written to the file on.
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B.2 Supplementary Data for Graphical Models
The atomic configurations and basis sets used in graphical model calculations are listed
in the tables below. Most of these atomic configurations are taken from Refs. [70] and [71].

Table B.1: Atomic configuration and basis set used in graphical model calculations
of methyl anion. The atomic coordinates are given in atomic units.

Atom Basis set x y z

C STO-3G 0.0 0.0 0.0
H STO-3G -1.74 0.85 0.66
H STO-3G 1.55 1.18 -0.62
H STO-3G 0.19 -2.04 -0.04

Table B.2: Atomic configuration and basis set used in graphical model calculations
of ammonia. The atomic coordinates are given in atomic units.

Atom Basis set x y z

N STO-3G 0.0 0.0 0.0
H STO-3G -1.77 0.0 0.72
H STO-3G 0.89 1.53 0.72
H STO-3G 0.89 -1.53 0.72

Table B.3: Atomic configuration and basis set used in graphical model calculations
of Hydronium cation. The atomic coordinates are given in atomic units.

Atom Basis set x y z

O STO-3G 0.0 0.0 0.12
H STO-3G 0.0 1.76 -0.32
H STO-3G 1.52 -0.88 -0.32
H STO-3G -1.52 -0.88 -0.32
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Table B.4: Atomic configuration and basis set used in graphical model calculations
of dibroane molecule. The atomic coordinates are given in atomic units.

Atom Basis set x y z

B STO-3G -3.17 0.0 0.0
B STO-3G 3.17 0.0 0.0
H STO-3G -5.22 3.70 0.0
H STO-3G -5.22 -3.70 0.0
H STO-3G 0.0 0.0 3.46
H STO-3G 0.0 0.0 3.46
H STO-3G 5.22 3.703 0.0
H STO-3G 5.22 -3.703 0.0

Table B.5: Atomic configuration and basis set used in graphical model calculations
of benzene. The atomic coordinates are given in atomic units.

Atom Basis set x y z

C STO-3G 0.0 2.64 0.0
C STO-3G 2.28 1.32 0.0
C STO-3G 2.28 -1.32 0.0
C STO-3G 0.0 -2.64 0.0
C STO-3G -2.28 -1.32 0.0
C STO-3G -2.28 1.32 0.0
H STO-3G 0.0 4.68 0.0
H STO-3G 4.06 2.34 0.0
H STO-3G 4.06 -2.34 0.0
H STO-3G 0.0 -4.68 0.06
H STO-3G -4.06 -2.34 0.0
H STO-3G -4.06 2.34 0.0
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Table B.6: Atomic configuration and basis set used in graphical model calculations
of pyridine. The atomic coordinates are given in atomic units.

Atom Basis set x y z

C STO-3G 0.00 2.16 1.36
C STO-3G 0.00 2.26 -1.27
C STO-3G 0.00 0.00 -2.61
C STO-3G 0.00 -2.26 -1.27
C STO-3G 0.00 -2.16 1.36
N STO-3G 0.00 0.00 2.68
H STO-3G 0.00 0.00 -4.66
H STO-3G 0.00 3.89 2.47
H STO-3G 0.00 4.07 -2.23
H STO-3G 0.00 -4.07 -2.23
H STO-3G 0.00 -3.89 2.47
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3-21G
A split-valence Gaussian basis set. 54, 55, 58

4-31G
A split-valence Gaussian basis set. 142, 144–146, 148–150

6-31G
A split-valence Gaussian basis set. 159, 160, 163

6-31G∗

A split-valence Gaussian basis set with polarization functions. 56, 142, 145, 146,
148–150

6-31G∗∗

A split-valence Gaussian basis set with polarization functions. 56, 142, 144, 146,
148, 150, 152, 159, 160, 163, 165

ab initio MD
Molecular dynamics simulations where the forces acting on the nuclei are com-
puted on-the-fly as the molecular dynamics trajectory is generated. 3, 4, 9, 81,
86, 91, 96, 124, 133, 177, 178

AO
Atomic orbital. A mathematical function describing the wave-like behavior of
either one or pair of electrons in an atom. 14–16, 18, 44–47, 52–55, 57, 58

Armadillo
An open source C++ linear algebra library. 106, 107, 116, 120, 122, 123, 189

atomic units
A system of natural units, suitable in atomic physics calculations. 49, 181, 190–
192

BOMD
Born-Oppenheimer molecular dynamics. An ab initio molecular dynamics method.
87–92, 133, 135–137, 159–166, 178
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Boost
A set of libraries for the C++ programming language. 122, 123

Born-Oppenheimer approximation
Born-Oppenheimer approximation. An approximation in quantum many-body
calculations, where the electronic motion and the nuclear motion in molecules
are separated. 3, 13, 14, 44, 88

Boys function
Also known as the Incomplete Gamma Function. Used in calculations of Coulomb
integrals. 59, 67–75, 111, 119, 122

C++
An object-oriented programming language. 4, 93, 103, 106–108, 111, 133, 187

CGTO
Contracted Gaussian-type orbital. Linear combination of primitive Gaussian-
type orbitals. 52–55, 57, 58, 77, 112, 124, 125

class
A collection of variables and functions. 103–105

classical MD
Molecular dynamics simulations based on a predefined interaction potential. 3,
4, 81, 84, 86, 96

ClayFF
A force field for molecular dynamics simulations. 96–99

CPMD
Car-Parrinello molecular dynamics. An ab initio molecular dynamics method.
87, 91–93, 159, 160, 162, 163, 165, 178

density functional theory
A quantum many-body method where the main idea is to describe an interacting
system via its electron density, instead of the wave function of the system. 160,
165, 178, 187

Ehrenfest MD
An ab initio molecular dynamics method. 86–91

Git
An open source version control software. 105
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GTO
Gaussian-type orbital. Mathematical functions used as atomic orbitals in the
linear combination of atomic orbitals method. 50–53

Hartree-Fock
Hartree-Fock. A quantum many-body method where the wave function of an
N -body system is approximated by a single Slater determinant. 3–5, 7, 9, 10, 15,
24, 29–32, 35, 37, 39, 40, 43, 52, 90, 92, 94, 111, 113, 122–124, 126, 127, 129–131,
133, 135, 136, 141–144, 146, 150, 152, 153, 159, 160, 162, 163, 165, 177, 178, 187

HDF5
A library and file format for storing and organizing large amounts of numerical
data. 108, 137

Hermite coefficient
Expansion coefficients of Hermite polynomials. These are used in calculations of
molecular integrals. 64–67, 76, 111, 115, 116, 118, 129

Hermite integral
Set of integrals used in calculations of Coulomb integrals. 65, 73, 111, 118–120,
129

HF limit
Hartree-Fock limit. The limit of the Hartree–Fock energy as the basis set ap-
proaches completeness. 43, 44, 142–146, 149, 150, 169

IDE
Integrated development environment. Programming environment, packaged as
an application program. 106

inheritance
When an class (subclass) is based on another class (superclass). 104

IPython Notebook
A web-based interactive computational environment where code execution, text,
mathematics, plots and rich media can be combined into a single document [30].
107, 111, 133

IPython Notebook Viewer
A webservice that makes it possible to share static HTML versions of publicly
available notebook files. 107

LCAO
Linear combination of atomic orbitals. A technique for calculating molecular
orbitals. 15, 35, 45, 93, 147, 149
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library
A collection of precompiled routines, exposed for use by other programs. 123,
124, 135, 177

MD
Molecular dynamics. A computer simulation technique of complex systems, mod-
eled at atomic level, in which the time evolution of the system is followed using
numerical integration of the equations of motion. 3–5, 9, 81, 84, 86–91, 96, 124,
133–135, 159, 177, 178, 193, 194

MO
Molecular orbital. A mathematical function describing the wave-like behavior of
either one or pair of electrons in a molecule. 14–18, 21, 35–37, 45, 46, 54, 55, 59,
112, 113, 147, 151

object
An instance of a class. 104, 105

PES
Potential energy surface. A multidimensional surface that gives the energy of a
molecule as a function of its geometry. 13, 97, 98

Pople-Nesbet equation
Representation of unrestricted Hartree-Fock equations in a non-orthonormal ba-
sis. 41, 113

primitive GTO
Primitive Gaussian-type orbital. Single Gaussian function used in Contracted
Gaussian-type orbitals. 52–54, 77, 78, 103, 122, 124–126, 128

Python
A widely used object-oriented, high-level programming language. 4, 103, 107,
108, 126, 128, 129, 187

Qt Creator
A cross-platform integrated development environment. 106, 111, 124, 133, 136

RHF
Restricted Hartree-Fock. A variant of Hartree-Fock method where the molecular
orbitals are doubly occupied. 9, 32, 105, 114, 150–153, 159, 162

Roothaan equation
Representation of restricted Hartree-Fock equation in a non-orthonormal basis.
36, 40, 111
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SCF
Self-Consistent Field. See Hartree-Fock. 20, 24, 29, 37, 44, 46, 50–53, 66, 111,
112, 114, 115, 122, 126

Slater determinant
An antisymmetric wave function. 21–24, 27, 29, 30, 43, 90, 143

STO
Slater-type orbital. Mathematical functions used as atomic orbitals in the linear
combination of atomic orbitals method. 48–55, 57, 112

STO-3G
A minimal Gaussian basis set. 53, 55, 57, 142–146, 148–150, 159, 160, 163, 166,
169, 170, 190–192

SymPy
A Python library for symbolic math. 107, 126, 127

UHF
Unrestricted Hartree-Fock. A variant of Hartree-Fock method where different
molecular orbitals are used for different spins. 9, 32, 114, 150, 166, 169

unit testing
The practice of testing the smallest testable parts of an application individually
and independently to determine if they behave exactly as expected. 108, 109,
177

UnitTest++
A unit testing framework for C++. 109, 110, 127

variational principle
States that the ground state energy is always less than or equal to the expectation
value of the Hamiltonian calculated with some trail wave function. 11, 12

Velocity Verlet
A numerical method used to integrate Newton’s equations of motion. 133, 134

virtual function
A function that can be redefined in derived class. 105, 115
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