
DeePMD-kit: A deep learning package for many-body potential

energy representation and molecular dynamics

Han Wang∗

Institute of Applied Physics and Computational Mathematics,

Fenghao East Road 2, Beijing 100094, P.R. China and

CAEP Software Center for High Performance Numerical Simulation,

Huayuan Road 6, Beijing 100088, P.R. China

Linfeng Zhang† and Jiequn Han

Program in Applied and Computational Mathematics,

Princeton University, Princeton, NJ 08544, USA

Weinan E

Department of Mathematics and Program in Applied and Computational Mathematics,

Princeton University, Princeton, NJ 08544, USA and

Center for Data Science, Beijing International Center for Mathematical Research,

Peking University, Beijing Institute of Big Data Research, Beijing, 100871, P.R. China

1

ar
X

iv
:1

71
2.

03
64

1v
2

 [
ph

ys
ic

s.
co

m
p-

ph
]

 3
1

D
ec

 2
01

7

Abstract

Recent developments in many-body potential energy representation via deep learning have

brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations.

Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to min-

imize the effort required to build deep learning based representation of potential energy and force

field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite

molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-

kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the

training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with

high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics

packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and

force field models can be used to perform efficient molecular simulations for different purposes. As

an example of the many potential applications of the package, we use DeePMD-kit to learn the

interatomic potential energy and forces of a water model using data obtained from density func-

tional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately

the structural information contained in the original model.

∗Electronic address: wang˙han@iapcm.ac.cn
†Electronic address: linfengz@princeton.edu

2

mailto:wang_han@iapcm.ac.cn
mailto:linfengz@princeton.edu

I. INTRODUCTION

The dilemma of accuracy versus efficiency in modeling the potential energy surface (PES)

and interatomic forces has confronted the molecular simulation communities for a long time.

On one hand, ab initio molecular dynamics (AIMD) has the accuracy of the density func-

tional theory (DFT) [1–3], but the computational cost of DFT in evaluating the PES and

forces restricts its typical applications to system size of hundreds to thousands of atoms and

time scale of ∼ 100 ps. One the other hand, a great deal of effort has been made in develop-

ing empirical force fields (FFs) [4–6], which allows for much larger and longer simulations.

However, the accuracy and transferability of FFs is often in question. Moreover, fitting the

parameters of an FF is usually a tedious and ad hoc process.

In the last few years, machine learning methods have been suggested as a tool to model

PES of molecular systems with DFT data, and has achieved some remarkable success

[7–16]. Some examples (not a comprehensive list) include the Behler-Parrinello neural

network (BPNN) [9], the Gaussian approximation potentials (GAP) [11], the Gradient-

domain machine learning (GDML) [14], and the Deep potential for molecular dynamics

(DeePMD) [17, 18]. In particular, it has been demonstrated for a wide variety of systems

that the “deep potential” and DeePMD allow us to perform molecular dynamics simula-

tion with accuracy comparable to that of DFT (or other fitted data) and the efficiency

competitive with empirical potential-based molecular dynamics [17, 18].

Machine learning, particularly deep learning has been shown to be a powerful tool in a

variety of fields [19, 20] and even has outperformed human experts in some applications like

the AlphaGo in the board game Go [21]. A number of open source deep learning platforms,

e.g. TensorFlow [22], Caffe [23], Torch [24], and MXNet [25] are available. These open

source platforms have significantly lowered the technical barrier for the application of deep

learning. Considering the potential impact that deep learning-based methods will have on

molecular simulation, it is of considerable interest to develop open source platforms that

serve as the interface between deep neural network models and molecular simulation tools

such as LAMMPS [26], Gromacs [27] and NAMD [28], and path-integral MD packages like

i-PI [29].

3

The contribution of this work is to provide an implementation of the DeePMD method,

namely DeePMD-kit, which interfaces with TensorFlow for fast training, testing, and eval-

uation of the PES and forces, and with LAMMPS and i-PI for classical and path-integral

molecular dynamics simulations, respectively. In DeePMD-kit, we implement the atomic

environment descriptors and chain rules for force/virial computations in C++ and provide

an interface to incorporate them as new operators in standard TensorFlow. This allows the

model training and MD simulations to benefit from TensorFlow’s highly optimized tensor

operations. The support of DeePMD for LAMMPS is implemented as a new “pair style”,

the standard command in LAMMPS. Therefore, only a slight modification in the standard

LAMMPS input script is required for energy, force, and virial evaluation through DeePMD-

kit. The support for i-PI is implemented as a new force client communicating through

sockets with the standard i-PI server, which handles the bead integrations. Given these fea-

tures provided by DeePMD-kit, training deep neural network model for potential energy and

running MD simulations with the model is made much easier than implementing everything

from scratch.

The manuscript is organized as follows. In section II, the theoretical framework of the

DeePMD method is provided. We show in detail how the system energy is constructed and

how to take derivatives with respect to the atomic position and box tensor to compute the

force and virial. In section III, we provide a brief introduction on how to use DeePMD-kit to

train a model and run MD simulations with the model. In section IV, we demonstrate the

performance of DeePMD-kit by training a DeePMD model from AIMD data. Results from

the MD simulation using the trained DeePMD model are compared to the original AIMD

data to validate the modeling. The paper concludes with a discussion about the future work

planed for DeePMD-kit.

II. THEORY

We consider a system consisting of N atoms and denote the coordinates of the atoms

by {R1, . . . ,RN}. The potential energy E of the system is a function with 3N variables,

i.e., E = E(R1, . . . ,RN), with each Ri ∈ R3. In the DeepMD method, E is decomposed

4

into a sum of atomic energy contributions,

E =
∑
i

Ei, (1)

with i being the indexes of the atoms. Each atomic energy is fully determined by the position

of the i-th atom and its near neighbors,

Ei = Es(i)(Ri, {Rj | j ∈ NRc(i)}), (2)

where NRc(i) denotes the index set of the neighbors of atom i within the cut-off radius Rc,

i.e. Rij = |Rij| = |Ri −Rj| ≤ Rc. s(i) is the chemical specie of atom i. The most straight-

forward idea to model the atomic energy Es(i) through DNN is to train a neural network with

the input simply being the positions of the ith atom Ri and its neighbors {Rj | j ∈ NRc(i)}.

This approach is less than optimal as it does not guarantee the translational, rotational,

and permutational symmetries lying in the PES. Thus, a proper preprocessing of the atomic

positions, which maps the positions to “descriptors” of atomic chemical environment [30] is

needed.

In the DeePMD method, to construct the descriptor for atom i, the positions of its neighbors

are firstly shifted by the position of atom i, viz. Rij = Ri−Rj. The coordinate of the relative

position Rij under lab frame {e0
x, e

0
y, e

0
z} is denoted by (x0ij, y

0
ij, z

0
ij), i.e.,

Rij = x0ije
0
x + y0ije

0
y + z0ije

0
z. (3)

Both Rij and the coordinate (x0ij, y
0
ij, z

0
ij) preserve the translational symmetry. The rota-

tional symmetry is preserved by constructing a local frame and recording the local coordinate

for each atom. First, two atoms, indexed a(i) and b(i), are picked from the neighbors NRc(i)

by certain user-specified rules. The local frame {e i1, e i2, e i3} of atom i is then constructed

by

e i1 = e(Ria(i)), (4)

e i2 = e
(
Rib(i) − (Rib(i) · e i1)e i1

)
, (5)

e i3 = e i1 × e i2, (6)

where e(R) denotes the normalized vector of R, i.e., e(R) = R/|R|. Then the local

coordinate (xij, yij, zij) (under the local frame) is transformed from the global coordinate

5

(x0ij, y
0
ij, z

0
ij) through

(xij, yij, zij) = (x0ij, y
0
ij, z

0
ij) · R(Ria(i),Rib(i)), (7)

where

R(Ria(i),Rib(i)) = [e i1, e i2, e i3] (8)

is the rotation matrix with the columns being the local frame vectors. The descriptive

information of atom i given by neighbor j is constructed by using either full information

(both radial and angular) or radial-only information:

{Dα
ij} =

{ 1

Rij

,
xij
Rij

,
yij
Rij

,
zij
Rij

}
, full information;{ 1

Rij

}
, radial-only information.

(9)

When α = 0, 1, 2, 3, full (radial plus angular) information is provided. When α = 0, only

radial information is used. It is noted that the order of the neighbor indexes j’s in {Dα
ij} is

fixed by sorting them firstly according to their chemical species and then, within each chem-

ical species, according to their inversed distances to atom i, i.e., 1/Rij. The permutational

symmetry is naturally preserved in this way. Following the aforementioned procedures, we

have constructed the mapping from atomic positions to descriptors, which is denoted by

D i = D i(Ri, {Rj | j ∈ NRc(i)}). (10)

The components Dα
ij = Dα

ij(Rij,Ria(i),Rib(i)) are given by Eqns. (3)–(9). The descriptors

D i preserve the translational, rotational, and permutational symmetries and are passed to

a DNN to evaluate the atomic energy. We refer to the Supplementary Materials of Ref. [18]

for further details in selection of axis atoms and standardization of input data.

The DNN that maps the descriptors D i to atomic energy is denoted by

Es(i) = Ns(i)(D i). (11)

It is a feedforward network in which data flows from the input layer as D i, through multiple

fully connected hidden layers, to the output layer as the atomic energy Es(i). Mathematically,

DNN with Nh hidden layers is a mapping

Ns(i)(D i) = Lout
s(i) ◦ L

Nh

s(i) ◦ L
Nh−1
s(i) ◦ · · · ◦ L

1
s(i)(D i), (12)

6

where the symbol “◦” denotes function composition. Here Lps(i) is the mapping from layer

p−1 to p, which is a composition of a linear transformation and a non-linear transformation,

the so-called activation function:

d pi = Lps(i)(d
p−1
i) = ϕ

(
W p

s(i)d
p−1
i + bps(i)

)
, (13)

where d pi ∈ RMp denotes the value of neurons in layer p and Mp the number of neurons.

The weight matrix W p
s(i) ∈ RMp×Mp−1 and bias vector bps(i) ∈ RMp are free parameters of the

linear transformation that are to be optimized. The non-linear activation function ϕ is in

general a component-wise function, and here it is taken to be the hyperbolic tangent, i.e.,

ϕ(d1, d2, . . . , dM) = (tanh(d1), tanh(d2), . . . , tanh(dM)). (14)

The output mapping Lout
s(i) is a linear transformation

Es(i) = Lout
s(i)(d

Nh
i) = W out

s(i)d
Nh + bouts(i), (15)

where weight vector W out
s(i) ∈ R1×MNh and bias bouts(i) ∈ R are free parameters to be optimized

as well.

The force on the i-th atom is computed by taking the negative gradient of the system energy

with respect to its position, which is given by

F i = −
∑

j∈N(i),α

∂Ns(i)
∂Dα

ij

∂Dα
ij

∂Ri

−
∑
j 6=i

∑
k∈N(j),α

δi,a(j)
∂Ns(j)
∂Dα

jk

∂Dα
jk

∂Ri

−
∑
j 6=i

∑
k∈N(j),α

δi,b(j)
∂Ns(j)
∂Dα

jk

∂Dα
jk

∂Ri

−
∑
j 6=i

∑
k∈Ñ(j),α

δi,k
∂Ns(j)
∂Dα

jk

∂Dα
jk

∂Ri

,

(16)

where Ñ(j) = N(j)− {a(j), b(j)}. The virial of the system is given by

Ξ =
1

2

∑
i 6=j

Rij

∑
α

∂Ns(i)
∂Dα

ij

∂Dα
ij

∂Rij

+
1

2

∑
i 6=j

δj,a(i)Rij

∑
q,α

∂Ns(i)
∂Dα

iq

∂Dα
iq

∂Rij

+
1

2

∑
i 6=j

δj,b(i)Rij

∑
q,α

∂Ns(i)
∂Dα

iq

∂Dα
iq

∂Rij

.

(17)

The derivation of the force and virial formula Eqs. (16)–(17) is given in A.

The unknown parameters {W p
s, b

p
s} in the linear transformations of the DNN are determined

by a training process that minimizes the loss function L, i.e.,

min
{W p

s ,b
p
s}
L(pε, pf , pξ). (18)

7

The L is defined as a sum of different mean square errors of the DNN predictions

L(pε, pf , pξ) =
pε
N

∆E2 +
pf
3N

∑
i

|∆F i|2 +
pξ
9N
‖∆Ξ‖2, (19)

where ∆E, ∆F i and ∆Ξ denotes root mean square (RMS) error in energy, force, and virial,

respectively. The prefactors pε, pf , and pξ are free to change even during the optimization

process. In this work, the prefactors are given by

p(t) = plimit
[
1− rl(t)

r0l

]
+ pstart

[rl(t)
r0l

]
, (20)

where rl(t) and r0l are the learning rate at training step t and the learning rate at the

beginning, respectively. The prefactor varies from pstart at the beginning and goes to plimit

as the learning ends. We adopt an exponentially decaying learning rate

rl(t) = r0l × d t/ds
r , (21)

where dr and ds are the decay rate and decay steps, respectively. The decay rate dr is

required to be less than 1.

III. SOFTWARE

The DeePMD-kit is composed of three parts: (1) a library that implements the com-

putation of descriptors, forces, and virial in C++, including interfaces to TensorFlow and

third-party MD packages; (2) training and testing programs built on TensorFlow’s Python

API; (3) supports for LAMMPS and i-PI. This section illustrates the usage of DeePMD-

kit along a typical workflow: preparing data, training the model, testing the model, and

running classical/path-integral MD simulations with the model. A schematic plot of the

DeePMD-kit architecture and the workflow is shown in Fig. 1.

A. Data preparation

The data for training/testing a DeePMD model is composed of a list of systems. Each

system contains a number of frames. Some of the frames are used as training data, while

the others are used as testing data. Each frame records the shape of simulation region (box

8

FIG. 1: Schematic plot of the DeePMD-kit architecture and the workflow. The gray arrows

present the workflow. The data, including energy, force, virial, box, and type, are passed from the

Data Generator to the DeePMD-kit Train/Test module to perform training. After training, the

DeePMD model is passed to the DeePMD-kit MD support module to perform MD. The TensorFlow

and DeePMD-kit libraries are used for supporting different calculations. See text for detailed

descriptions.

tensor) and the positions of all atoms in the system. The order of the frames in a system is

not relevant, but the number of atoms and the atom types should be the same for all frames

in the same system. Each frame is labeled with the energy, the forces, and the virial. Any

one or two of the labels can be absent. When a label is absent, its corresponding prefactor

in the loss function Eq. (19) is set to zero. The labels can be computed by any molecular

simulation package that takes in the atomic positions and the box tensor and returns the

energy, the forces, and/or the virial. The DeePMD-kit defines a data protocol called RAW

format. The labels computed by different packages should be converted to RAW format to

serve as training/testing data. The box tensor, atomic coordinates (under lab frame), and

the labels are stored in separate text files, with names box.raw, coord.raw, energy.raw,

force.raw, and virial.raw, respectively. Each line of a RAW file corresponds to one

frame of the data, with the properties of each atom presented in succession. The order

of the frames appearing in a RAW files and the order of atoms in each frame should be

consistent across all the RAW files. Taking coord.raw as an example, the first three numbers

in the first line are the coordinate of the first atom in the first frame, the next three numbers

9

are the coordinate of the second atom, and so forth. The first three numbers in the second

line are the coordinate of the first atom in the second frame. The units of length, energy,

and force in the RAW files are Å, eV, and eV/Å, respectively. The data is organized in this

way because the frames can be combined or split in a convenient way using standard text

processing tools such as cat, sed, and awk provided by Unix-like operating systems, and

the files can also be manipulated and analyzed as array text data by the NumPy module

of Python. The atom types are recorded in the file type.raw, which has only one line with

atom types as integers presented in succession. Again, it is addressed that the atom types

should be consistent in all frames of the same system.

The data is composed of several systems. The RAW files of the different systems should be

placed in different folders, and the number of atoms and the atom types are NOT required

to be the same for different systems. Frequent loading of the RAW text files from hard disk

may become the bottleneck of efficiency. Therefore, the RAW files except the type.raw are

firstly converted to NumPy binary files and then used by the training and testing programs

in DeePMD-kit. DeePMD-kit provides a Python script for this conversion.

B. Model training

The computation of atomic energy Es(i) (see Eq. (2)) consists of two successive mappings:

first, from the positions of the atom i and its neighbors to its descriptors, i.e., Eq. (10);

second, from the descriptors to the atomic energy through DNN, i.e., Eq. (11). The DNN

part is implemented by standard tensor operations provided by the TensorFlow deep learning

framework. However, the descriptor part is not a standard operation in TensorFlow, thus

it is implemented with C++ and is interfaced to TensorFlow as a new “operator”. The

force and virial computation requires derivatives of system energy with respect to atomic

position and box tensor, respectively. This is done with the chain rule in Eq. (16) and

Eq. (17), respectively. The gradient of the DNN, i.e., ∂Es(i)/∂D
α
jk, is implemented by the

tf.gradients operator provided by TensorFlow. The derivatives ∂Dα
jk/∂Rl and the chain

rules defined in Eq. (16) and Eq. (17) are implemented in C++ and then interfaced with

TensorFlow. By using the TensorFlow with the user implemented operators, we are now

able to compute the system energy, the atomic forces, and the virial, thus we are able to

10

evaluate the loss function (forward propagation). The derivatives of the loss function with

respect to the parameters {W p
s, b

p
s} (backward propagation) are automatically computed

by TensorFlow.

The optimization problem (18) is currently solved by the TensorFlow’s implementation of

the Adam stochastic gradient descent method [31]. At each step of optimization (equivalent

to training step), the value and gradients of the loss function is computed against only a

subset of the training data, which is called a batch. The number of frames in a batch is

called the batch size. Taking the RMS energy error ∆E for instance, it is evaluated by

∆E2 =
1

Sb

Sb∑
k=1

|Ek − E(Rk
1, . . . ,R

k
N)|2 (22)

where {Rk}, Ek, and Sb denote the atomic positions, system energy of the kth frame in

the batch, and the batch size, respectively. The errors |∆F i|2 and ‖∆Ξ‖2 are evaluated

analogously. It is noted that the evaluation of the loss function for different frames in the

batch is embarrassingly parallel. Therefore, ideally, the batch size Sb should be divisible by

the number of CPU cores in the computation.

We denote the systems in the training data by {Ω1, . . . ,ΩSs} with Ss being the total number

of systems and denote the number of frames in Ωi by |Ωi|. The systems {Ω1, . . . ,ΩSs} are

used in the training in a cyclic way. First, the model is trained for |Ω1|/Sb steps by using

|Ω1|/Sb batches randomly taken from Ω1 without replacement. Next, the model is trained

for |Ω2|/Sb steps by using |Ω2|/Sb batches randomly taken from Ω2 without replacement. In

such a way, the systems in the set {Ω1, . . . ,ΩSs} are used in training successively.

The training program in the DeePMD-kit is called dp_train. It reads a parameter file in

JSON format that specifies the training process. Some important settings in the parameter

file are

{

"n_neuron": [240, 120, 60, 30, 10],

"systems": ["/path/to/water", "/path/to/ice"],

"stop_batch": 1000000,

"batch_size": 4,

11

Configuration

E
n
e
rg

y

over-fitting model

well-trained model

Training data

Testing data

FIG. 2: Schematic illustration of over-fitting. The blue squares denote the training data, while

the pink filled circles denote the testing data. Only the training data is used in training models.

Both the over-fitting model and the well-trained model have small training error, however, the

over-fitting model presents a significantly larger testing error.

"start_lr": 0.001,

"decay_steps": 5000,

"decay_rate": 0.95,

}

In this file, the item n_neuron sets the number of hidden layers to 5, and the number

of neurons in each layer are set to (M1,M2,M3,M4,M5) = (240, 120, 60, 30, 10), from the

innermost to the outermost layer. The training has two systems, with Ω1 stored in the

folder /path/to/water and Ω2 in the folder /path/to/ice. The batch size is set to 4. In

total the model is optimized for 106 steps (set by stop_batch), i.e., 106 batches are used in

the training. The starting learning rate, decay steps, and decay rate (see Eq. (21)) are set

to 0.001, 5000, and 0.95, respectively.

The parameters of the DeePMD model is saved to TensorFlow checkpoints during the train-

ing process, thus one can break the training at any time and restart it from any of the

checkpoints. Once the training finishes, the model parameters and the network topology are

frozen from the checkpoint file by the tool dp_frz. The frozen model can be used in model

testing and MD simulations.

12

C. Model testing

DeePMD-kit provides two modes of model testing. (1) During the training, the RMS

energy, force and virial errors and the loss function are evaluated by both the training batch

data and the testing data and displayed on the fly. Sometimes, for the sake of efficiency,

only a subset of the testing data is used to test the model on the fly. (2) After the model is

frozen, it can be tested by the tool dp_test. Ideally the training error and the testing error

should be roughly the same. A signal of overfitting is indicated by a much lower training

error compared to the testing error, see Fig. 2 for an illustration. In this case, it is suggested

to either reduce the number of layers and/or the number of neurons of each layer, or increase

the size of the training data.

D. Molecular dynamics

Once the model parameters are frozen, MD simulations can be carried out. We provide

an interface that inputs the atom types and positions and returns energy, forces, and virial

computed by the DeePMD model. Therefore, in principle, it can be called in any MD

package during MD simulations. In the current release of DeePMD-kit, we provide supports

for the LAMMPS and i-PI packages.

The evaluation of interactions is implemented by using the TensorFlow’s C++ API. First,

the model parameters are loaded, then the network operations defined in the frozen model are

executed in exactly the same way as the evaluation in the model training stage, see Sec. III B.

The DeePMD-kit’s implementation of descriptors, derivatives of descriptors, chain rules for

force and virial computations are called as non-standard operators by the TensorFlow.

LAMMPS support The LAMMPS support for DeePMD is shipped as a third-party

package with the DeePMD-kit source code. The installation of package is similar to other

third-party packages for LAMMPS and is explained in detail in the DeePMD-kit manual.

In the current release, only serial MD simulations with DeePMD model are supported. To

enable the DeePMD model, only two lines are added in the LAMMPS input file.

13

pair_style deepmd graph.pb

pair_coeff

The command deepmd in pair_style means to use the DeePMD model to compute the

atomic interactions in the MD simulations. The parameter graph.pb is the file containing

the frozen model. The pair_coeff should be left blank.

i-PI support The i-PI is implemented based on a client-server model. The i-PI works as

a server that integrates the trajectories of the nucleus. The DeePMD-kit provides a client

called dp_ipi that gets coordinates of atoms from the i-PI server and returns the energy,

forces, and virial computed by the DeePMD model to the i-PI server. The communication

between the server and client is implemented through either the UNIX domain sockets or

the Internet sockets. It is noted that multiple instances of the client is allowed, thus the

computation of the interactions in multiple path-integral replicas is embarrassingly paral-

lelized. The parameters of running the client are provided by a JSON file. An example for

a water system is

{

"verbose": false,

"use_unix": true,

"port": 31415,

"host": "localhost",

"graph_file": "graph.pb",

"coord_file": "conf.xyz",

"atom_type" : {"OW": 0, "HW1": 1, "HW2": 1}

}

In this example, the client communicates with the server through the UNIX domain sockets

at port 31415. The forces are computed according to the frozen model stored in graph.pb.

The conf.xyz file provides the atomic names and coordinates of the system. The dp_ipi

ignores the coordinates in conf.xyz and translates the atom names to types according to

the rule provided by atom_type.

14

10
-2

10
-1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6E

n
e
rg

y
 e

rr
o
r

[e
V

],
 F

o
rc

e
 e

rr
o
r

[e
V

/A
]

Training step

Energy error

Force error

FIG. 3: The learning curves of the liquid water system. The root mean square energy and force

testing errors are presented against the training step. The energy error is given in the unit of eV,

while the force error is given in unit of eV/Å. The axes of the plot are logscaled.

IV. EXAMPLE

The performance of the DeePMD-kit package is demonstrated by a bulk liquid water

system of 64 molecules subject to periodic boundary conditions[33]. The dataset is generated

by a 20 ps, 330 K NVT AIMD simulation with PBE0+TS exchange-correlation functional.

The frames are recorded from the trajectory in each time step, i.e., 0.0005 ps. Thus in total

we have 40000 frames. The order of the frames is randomly shuffled. 38000 of them are used

as training data, while the remaining 2000 are used as testing data.

The cut-off radius of neighbor atoms is 6.0 Å. The network input contains both radial

and angular information of 16 closest neighboring oxygen atoms and 32 closest neighbor-

ing hydrogen atoms, while contains only the radial information of the rest of neighbors.

The DNN contains 5 hidden layers. The size of each layer is (M1,M2,M3,M4,M5) =

(240, 120, 60, 30, 10), from the innermost to the outermost layer. The model is trained by the

Adam stochastic gradient descent method, with the learning rate decreasing exponentially.

The decay rate and decay step are set to 0.95 and 5000, respectively. The prefactors in the

loss function are taken as pstarte = 0.02, plimit
e = 8, pstartf = 1000, and plimit

f = 1. No virial is

available in the data, so the virial prefactors are set to 0, i.e., pstartv = plimit
v = 0.

The model is trained on a desktop machine with an Intel Core i7-3770 CPU and 32GB

memory using 4 OpenMP threads. The total wall time of the training is 16 hours. The

15

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 0 1 2 3 4 5 6
R

D
F

 g
(r

)
r [Å]

DeePMD O−O
DeePMD O−H
DeePMD H−H

DFT O−O
DFT O−H
DFT H−H

FIG. 4: The radial distribution functions of the DeePMD compared with the PBE0+TS DFT

water model.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 0 0.2 0.4 0.6 0.8 1

D
is

tr
ib

u
ti
o
n

Tetrahedral packing parameter q

DeePMD
DFT

FIG. 5: The distribution of the tetrahedral packing parameter of the DeePMD compared with the

PBE0+TS DFT water model.

learning curves of the RMS energy and force errors as functions of training step are plotted

in Fig. 3. The errors are tested on the fly by 100 frames randomly picked from the testing

set. At the beginning, the model parameters {W p
s, b

p
s} are randomly initialized, and the

RMS energy and force errors are 3.7×102 eV and 8.4×10−1 eV/Å, respectively. At the end

of training, the RMS energy and force errors over the whole testing set are 2.8 × 10−2 eV

and 2.4 × 10−2 eV/Å, respectively. The standard deviation of the energy and the forces

in the data are 6.5 × 10−1 eV and 8.1 × 10−1 eV/Å, respectively. Therefore, the relative

errors of energy and force with respect to the data standard deviation are 4.3% and 2.9%,

respectively.

The trained DeePMD model is frozen and passed to LAMMPS to run NVT MD simulation

16

of 64 water molecules. The simulation cell is of size 12.4447 Å×12.4447 Å×12.4447 Å under

periodic boundary conditions. The simulation lasts for 200 ps. Snapshots in the first 50 ps

are discarded, while the rest snapshots in the trajectory is saved in every other 0.01 ps for

structural analysis. The oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen radial

distribution functions are presented in Fig. 4. The distribution of the tetrahedral packing

parameter [32] is presented in Fig. 5. These results show that the DeePMD model is in

satisfactory agreement with the DFT model in generating structure properties.

V. CONCLUSION AND FUTURE WORK

We introduced the software DeePMD-kit, which implements DeePMD, a deep neural

network representation for atomic interactions, based on the deep learning framework Ten-

sorFlow. The descriptors and chain rules for force/virial computation of DeePMD is imple-

mented in C++ and interfaced to TensorFlow as new operators for model training and PES

evaluation. Therefore, the training, testing, and MD simulations benefit from TensorFlow’s

state-of-the-art training algorithms and highly optimized tensor operations. Supports for

third-party MD packages, LAMMPS and i-PI, are provided such that these softwares can do

classical/path-integral MD simulations with the atomic interactions modeled by DeePMD.

In addition, we also provided the analytical details needed to implement the DeePMD

method, including the definition of the chemical environment descriptors, the deep neu-

ral network architecture, the formula for force and virial calculation, and the definition

of the loss function. We explained the RAW data format defined by DeePMD-kit, which

provides a protocol for utilizing simulation data generated by other molecular simulation

packages and can be easily manipulated by text processing tools in the UNIX-like systems

and Python. We provided brief instructions on the model training, testing, and how to setup

DeePMD simulation under LAMMPS and i-PI. Finally the accuracy and efficiency of the

DeePMD-kit package is illustrated by an example of bulk liquid water system.

The current version of DeePMD-kit only provides CPU implementation of the descriptor

computation. In the training stage this computation is embarrassingly parallelized by

OpenMP. However, during the evaluation of energy, force, and virial in MD simulations,

17

this computation is not parallelized. In the future we will provide support on the parallel

computation of descriptors via CPU multicore and GPU multithreading mechanisms.

VI. ACKNOWLEDGMENTS

The work of H. Wang is supported by the National Science Foundation of China under

Grants 11501039 and 91530322, the National Key Research and Development Program of

China under Grants 2016YFB0201200 and 2016YFB0201203, and the Science Challenge

Project No. JCKY2016212A502. The work of L. Zhang, J. Han and W. E is supported

in part by ONR grant N00014-13-1-0338, DOE grants de-sc0008626 and de-sc0009248, and

NSFC grant U1430237. Part of the computational resources is provided by the Special

Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund

under Grant No.U1501501.

[1] W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects,

Physical review 140 (4A) (1965) A1133.

[2] R. Car, M. Parrinello, Unified approach for molecular dynamics and density-functional theory,

Physical Review Letters 55 (22) (1985) 2471.

[3] D. Marx, J. Hutter, Ab initio molecular dynamics: basic theory and advanced methods,

Cambridge University Press, 2009.

[4] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S.and Zhong, J. Shim, E. Darian,

O. Guvench, P. Lopes, I. Vorobyov, A. Mackerell Jr., Charmm general force field: A force field

for drug-like molecules compatible with the charmm all-atom additive biological force fields,

Journal of Computational Chemistry 31 (4) (2010) 671–690.

[5] W. Jorgensen, D. Maxwell, J. Tirado-Rives, Development and testing of the opls all-atom force

field on conformational energetics and properties of organic liquids, Journal of the American

Chemical Society 118 (45) (1996) 11225–11236.

[6] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, Development and testing

of a general amber force field, Journal of Computational Chemistry 25 (9) (2004) 1157–1174.

18

http://arxiv.org/abs/de-sc/0008626
http://arxiv.org/abs/de-sc/0009248

[7] A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, G. J. Tucker, Spectral neighbor anal-

ysis method for automated generation of quantum-accurate interatomic potentials, Journal of

Computational Physics 285 (2015) 316–330.

[8] T. D. Huan, R. Batra, J. Chapman, S. Krishnan, L. Chen, R. Ramprasad, A universal strategy

for the creation of machine learning-based atomistic force fields, NPJ Computational Materials

3 (2017) 1.

[9] J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional

potential-energy surfaces, Physical review letters 98 (14) (2007) 146401.

[10] T. Morawietz, A. Singraber, C. Dellago, J. Behler, How van der waals interactions deter-

mine the unique properties of water, Proceedings of the National Academy of Sciences (2016)

201602375.

[11] A. P. Bartók, M. C. Payne, R. Kondor, G. Csányi, Gaussian approximation potentials: The

accuracy of quantum mechanics, without the electrons, Physical review letters 104 (13) (2010)

136403.

[12] M. Rupp, A. Tkatchenko, K.-R. Müller, O. A. VonLilienfeld, Fast and accurate modeling of

molecular atomization energies with machine learning, Physical Review Letters 108 (5) (2012)

058301.

[13] K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, A. Tkatchenko, Quantum-chemical

insights from deep tensor neural networks, Nature Communications 8 (2017) 13890.

[14] S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, K.-R. Müller, Machine

learning of accurate energy-conserving molecular force fields, Science Advances 3 (5) (2017)

e1603015.

[15] J. S. Smith, O. Isayev, A. E. Roitberg, Ani-1: an extensible neural network potential with dft

accuracy at force field computational cost, Chemical Science 8 (4) (2017) 3192–3203.

[16] K. Yao, J. E. Herr, D. W. Toth, R. Mcintyre, J. Parkhill, The tensormol-0.1 model chemistry:

a neural network augmented with long-range physics, arXiv preprint arXiv:1711.06385.

[17] J. Han, L. Zhang, R. Car, W. E, Deep potential: a general representation of a many-body

potential energy surface, Communications in Computational Physics 23 (3) (2018) 629–639.

doi:10.4208/cicp.OA-2017-0213.

[18] L. Zhang, J. Han, H. Wang, R. Car, W. E, Deep potential molecular dynamics: a scalable

model with the accuracy of quantum mechanics, arXiv preprint arXiv:1707.09571.

19

http://arxiv.org/abs/1711.06385
http://dx.doi.org/10.4208/cicp.OA-2017-0213
http://arxiv.org/abs/1707.09571

[19] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–444.

[20] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.

[21] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering the game of go with deep

neural networks and tree search, Nature 529 (7587) (2016) 484–489.

[22] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, et al., Tensorflow: A system for large-scale machine learning., in: OSDI, Vol. 16,

2016, pp. 265–283.

[23] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Dar-

rell, Caffe: Convolutional architecture for fast feature embedding, in: Proceedings of the 22nd

ACM international conference on Multimedia, ACM, 2014, pp. 675–678.

[24] R. Collobert, K. Kavukcuoglu, C. Farabet, Torch7: A matlab-like environment for machine

learning, in: BigLearn, NIPS Workshop, no. EPFL-CONF-192376, 2011.

[25] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z. Zhang,

Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems,

arXiv preprint arXiv:1512.01274.

[26] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of Compu-

tational Physics 117 (1) (1995) 1–19.

[27] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, Gromacs 4: Algorithms for highly efficient,

load-balanced, and scalable molecular simulation, J. Chem. Theory Comput 4 (3) (2008) 435–

447.

[28] J. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. Skeel,

L. Kale, K. Schulten, Scalable molecular dynamics with namd, Journal of computational

chemistry 26 (16) (2005) 1781–1802.

[29] M. Ceriotti, J. More, D. E. Manolopoulos, i-pi: A python interface for ab initio path integral

molecular dynamics simulations, Computer Physics Communications 185 (3) (2014) 1019–

1026.

[30] A. P. Bartók, R. Kondor, G. Csányi, On representing chemical environments, Physical Review

B 87 (18) (2013) 184115.

[31] D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint

arXiv:1412.6980.

20

http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1412.6980

[32] J. R. Errington, P. G. Debenedetti, Relationship between structural order and the anomalies

of liquid water, Nature 409 (6818) (2001) 318.

[33] For this example, the raw data and the JSON parameter files for training and MD simulation

are provided in the online package. More details on how to use them are explained in the

manual.

Appendix A: Deriviation of force and virial

By using Eq. (10) and (11), the force of the i-th atom is given by

F i = − ∂

∂Ri

∑
j

Es(j)

= −
∑
j,k,α

∂Es(j)
∂Dα

jk

∂Dα
jk(Rjk,Rja(j),Rjb(j))

∂Ri

=−
∑

k∈N(i),α

∂Es(i)
∂Dα

ik

∂Dα
ik(Rik,Ria(i),Rib(i))

∂Ri

−
∑
j 6=i

∑
k∈N(j),α

δi,a(j)
∂Es(j)
∂Dα

jk

∂Dα
jk(Rjk,Rja(j),Rjb(j))

∂Ri

−
∑
j 6=i

∑
k∈N(j),α

δi,b(j)
∂Es(j)
∂Dα

jk

∂Dα
jk(Rjk,Rja(j),Rjb(j))

∂Ri

−
∑
j 6=i

∑
k∈Ñ(j),α

δi,k
∂Es(j)
∂Dα

jk

∂Dα
jk(Rjk,Rja(j),Rjb(j))

∂Ri

.

The virial of the system is given by

Ξ = −1

2

∑
i

RiF i

=
1

2

∑
i

Ri

∑
j 6=i

∂E

∂Rij

+
1

2

∑
i

Ri

∑
j 6=i

∂E

∂Rij

=
1

2

∑
i

Ri

∑
j 6=i

∂E

∂Rij

− 1

2

∑
i

Ri

∑
j 6=i

∂E

∂Rji

=
1

2

∑
i

Ri

∑
j 6=i

∂E

∂Rij

− 1

2

∑
j

Rj

∑
i 6=j

∂E

∂Rij

=
1

2

∑
i 6=j

Rij
∂E

∂Rij

.

21

By using Eq. (10) and (11), it reads

Ξ =
1

2

∑
i 6=j

Rij
∂

∂Rij

∑
p

Es(p)

=
1

2

∑
i 6=j

Rij

∑
p,q,α

∂Es(p)
∂Dα

pq

∂Dα
pq(Rpq,Rpa(p),Rpb(p))

∂Rij

=
1

2

∑
i 6=j

Rij

∑
α

∂Es(i)
∂Dα

ij

∂Dα
ij(Rij,Ria(i),Rib(i))

∂Rij

+
1

2

∑
i 6=j

Rijδj,a(i)
∑
q,α

∂Es(i)
∂Dα

iq

∂Dα
iq(Riq,Ria(i),Rib(i))

∂Rij

+
1

2

∑
i 6=j

Rijδj,b(i)
∑
q,α

∂Es(i)
∂Dα

iq

∂Dα
iq(Riq,Rib(i),Rib(i))

∂Rij

.

22

	I Introduction
	II Theory
	III Software
	A Data preparation
	B Model training
	C Model testing
	D Molecular dynamics

	IV Example
	V Conclusion and future work
	VI acknowledgments
	 References
	A Deriviation of force and virial

