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A hint of renormalization
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An elementary introduction to perturbative renormalization and renormalization group is pre-
sented. No prior knowledge of field theory is necessary because we do not refer to a particular
physical theory. We are thus able to disentangle what is specific to field theory and what is intrinsic
to renormalization. We link the general arguments and results to real phenomena encountered in
particle physics and statistical mechanics.

I. INTRODUCTION

Hans Bethe in a seminal 1947 paper was the first to cal-
culate the energy gap, known as the Lamb shift, between
the 2s and 2p levels of the hydrogen atom.1 These levels
were found to be degenerate even in Dirac’s theory which
includes relativistic corrections. Several authors had sug-
gested that the origin of the shift could be the interac-
tion of the electron with its own radiation field (and not
only with the Coulomb field). However, to quote Bethe,
“This shift comes out infinite in all existing theories and
has therefore always been ignored.” Bethe’s calculation
was the first to lead to a finite, accurate result. Renor-
malization — in its modern perturbative sense — was
born.2 Since then it has developed into a general algo-
rithm to get rid of infinities that appear at each order of
perturbation theory in (almost) all quantum Field theo-
ries (QFT).3,4,5,6,7 In the meantime, the physical origin of
these divergences has also been explained (see Ref. 8 for
many interesting contributions on the history and philos-
ophy of renormalization and renormalization group).

In QFT, as in ordinary quantum mechanics, the per-
turbative calculation of any physical process involves,
at each order, a summation over (virtual) intermedi-
ate states. However, if the theory is Lorentz invariant,
an infinite number of supplementary states exist com-
pared with the Galilelan case and their summation, be-
ing generically divergent, produces infinities. The origin
of these “new” states is deeply rooted in quantum me-
chanics and special relativity. When these two theories
are combined, a new length scale appears, built out of
the mass m of the particles: the Compton wave length
~/mc. It vanishes in both formal limits ~ = 0 and c = ∞,
corresponding respectively to classical and Galilean the-
ories. Because of Heisenberg inequalities, probing dis-
tances smaller than this length scale requires energies
higher than mc2 and thus implies the creation of par-
ticles. This possibility to create and annihilate parti-
cles forbids the localization of the original particle bet-
ter than the Compton wave length because the particles
that have just been created are strictly identical to the
original one. Quantum mechanically, these multi-particle
states play a role even when the energy involved in the
process under study is lower than mc2, because they are
summed over as virtual states in perturbation theory.
Thus, the divergences of perturbation theory in QFT are

directly linked to its short distance structure which is
highly non-trivial because its description involves the in-
finity of multi-particle states.

Removing these divergences has been the nightmare
and the delight of many physicists working in particle
physics. It seemed hopeless to the non-specialist to un-
derstand renormalization because it required prior knowl-
edge of quantum mechanics, relativity, electrodynam-
ics, etc. This state of affairs contributed to the nobil-
ity of the subject: studying the ultimate constituents
of matter and being incomprehensible fit well together.
However, strangely (at least at first sight) the theoret-
ical breakthrough in the understanding of renormaliza-
tion beyond its algorithmic aspect came from Wilson’s
work on continuous phase transitions.9 The phenomena
that take place at these transitions are neither quantum
mechanical28 nor relativistic and are nontrivial because
of their cooperative behavior, that is, their properties
at large distances.29 Thus neither ~ nor c are necessary
for renormalization. Something else is at work that does
not require quantum mechanics, relativity, summation
over virtual states, Compton wavelengths, etc., even if in
the context of particle physics they are the ingredients
that make renormalization necessary. In fact, even di-
vergences that seemed to be the major problem of QFT
are now considered only as by-products of the way we
have interpreted quantum field theories. We know now
that the invisible hand that creates divergences in some
theories is actually the existence in these theories of a
no man’s land in the energy (or length) scales for which
cooperative phenomena can take place, more precisely,
for which fluctuations can add up coherently.10 In some
cases, they can destabilize the physical picture we were
relying on and this manifests itself as divergences. Renor-
malization, and even more renormalization group, is the
right way to deal with these fluctuations.

One of the aims of this article is to disentangle what
is specific to field theory and what is intrinsic to the
renormalization process. Therefore, we shall not look
for a physical model that shows divergences,11,12,13,14,15

but we shall rather show the general mechanism of per-
turbative renormalization and the renormalization group
without specifying a physical model.

http://arXiv.org/abs/hep-th/0212049v3
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II. A TOY MODEL FOR RENORMALIZATION

In the following, we consider an unspecified theory that
involves, by hypothesis, only one free parameter g0 in
terms of which a function F (x), representing a physi-
cal quantity, is calculated perturbatively, that is, as a
power series. An example in QFT would be quantum
electrodynamics (QED), which describes the interaction
of charged particles such as electrons with the electro-
magnetic field. For high energy processes, the mass of
the electron is negligible and the only parameter of this
theory in this energy regime is its charge, which is there-
fore the analogue of g0. F can then represent the cross
section of a scattering process as, for instance, the scat-
tering of an electron on a heavy nucleus in which case
x is the energy-momentum four-vector of the electron.
The coupling constant g0 is defined by the Hamiltonian
of the system, and F is calculated perturbatively using
the usual (à la Feynman) approach. Another important
example is continuous phase transitions. For fluids, F
could represent a density-density correlation function and
for magnetism a spin-spin correlation function.30 Yet an-
other example is the solution of a differential equation
that can arise in some physical context and that can show
divergences (see the following).

It is convenient for what follows to assume that F (x)
has the form:

F (x) = g0 + g2
0F1(x) + g3

0F2(x) + . . . (1)

Up to a redefinition of F , this form is general and corre-
sponds to what is really encountered in field theory. Let
us now assume that the perturbation expansion of F (x)
is ill-defined and that the Fi(x) are functions involving
divergent quantities. An example of such a function is:

F1(x) = α

∫

∞

0

dt

t + x
, (2)

which is logarithmically divergent at the upper limit.
This example has been chosen because it shares many
common features with divergent integrals encountered in
QFT: the integral corresponds to the summation over
virtual states and α(t + x)−1 represents the probability
amplitude associated with each of these states.31

A simple although crucial observation is that because
there is only one free parameter in the theory by hypoth-
esis, only one “measurement” of F (x), say at the point
x = µ, is necessary to fully specify the theory we are
studying. Such a measurement is used to fix the value
of g0 so as to reproduce the experimental value of F (µ).
For QED for instance, this procedure would mean that:

(i) We start by writing a general Hamiltonian compat-
ible with basic assumptions, for example, relativity,
causality, locality, and gauge invariance.

(ii) We calculate physical processes at a given order of
perturbation theory,

(iii) We fix the free parameter(s) of the initial Hamil-
tonian to reproduce at this order the experimental
data.

This last step requires as much data as there are free
parameters. Once the parameters are fixed, the the-
ory is completely determined and thus predictive. One
could then think that it does not matter whether we
parametrize the theory in terms of g0, which is only useful
in intermediate calculations, or with a “physical,” that
is, a measured quantity F (µ), because g0 will be replaced
by this quantity anyway. Having this freedom is indeed
the generic situation in physics, but the subtlety here is
that the perturbation expansion of F (x) is singular, and,
thus, so is the relationship between g0 and F (µ). Thus, it
seems crucial to reparametrize F in terms of F (µ) when
the expansion is ill-defined.

The renormalizability hypothesis is that the
reparametrization of the theory in terms of a phys-
ical quantity, instead of g0, is enough to turn the
perturbation expansion into a well-defined expansion.
The hypothesis is therefore that the problem does
not come from the perturbation expansion itself, that
is, from the functions Fi(x), but from the choice of
parameter used to perform it. This hypothesis means
that the physical quantity, F (x), initially represented
by its ill-defined expansion Eq. (1), should have a
well-defined perturbation expansion once it is calculated
in terms of the physical parameter F (µ). This is the
simplest hypothesis we can make, because it amounts
to preserving the x-dependence of the functions Fi(x)
and only modifying the coupling constant g0. Thus,
we assume that F (x) is known at one point µ, and we
define gR by:

F (µ) = gR. (3)

In the following, and by analogy with QFT, we call gR

the renormalized coupling constant and Eq. (3) a “renor-
malization prescription,” a barbarian name for such a
trivial operation.

We are now in a position to discuss the renormaliza-
tion program. It consists of reparametrizing the pertur-
bation expansion of F so that it obeys the prescription of
Eq. (3). The point here is that we cannot use Eq. (3) to-
gether with Eq. (1) because Eq. (1) is ill-defined. We first
need to give a well-defined meaning to the perturbation
expansion. This is the regularization procedure which is
the first step of any renormalization.16,17 The idea is to
define the perturbation expansion of F by a limit such
that (i) the Fi(x) are well-defined before the limit is
taken, and (ii) after the renormalization has been per-
formed, the original formal expansion is recovered when
the limit is taken.

We thus introduce a new set of (regularized) functions
FΛ and Fi,Λ, involving a new parameter Λ, which we
call the regulator, and such that for Λ finite all these
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functions are finite. We thus define:

FΛ(x) = FΛ(x, g0, Λ) = g0 + g2
0F1,Λ(x) + g3

0F2,Λ(x) + . . .
(4)

There are infinitely many ways of regularizing the Fi’s
and for the example given in Eq. (2), it can consist for
instance in introducing a cut-off in the integral:

F1,Λ(x) = α

∫ Λ

0

dt

t + x
. (5)

Different regularization schemes can lead to very differ-
ent intermediate calculations, but must all lead to iden-
tical results.32 For instance, dimensional regularization
is widely used in QFT because it preserves Lorentz and
gauge symmetries.11,12,13,18 We do not need here to spec-
ify a regularization for the function F , because our ar-
guments will be general and the few calculations elemen-
tary.

Once a regularization scheme has been chosen, it is
possible to use the renormalization prescription, Eq. (3),
together with the regularized expansion, Eq. (4), to ob-
tain a well defined perturbation series for FΛ in terms of
the physical coupling gR. If this expansion makes sense
— this is the renormalizability hypothesis — it must be
finite even in the limit Λ → ∞, because it expresses a
finite physical quantity F (x) in terms of a physical quan-
tity gR. Thus, the renormalization program consists first
in changing F (x, g0) to FΛ(x, g0, Λ), then in rewriting FΛ

in terms of gR and µ,

FΛ(x, g0, Λ) → FΛ(x, gR, µ), (6)

and only then taking the limit Λ → ∞ at fixed gR and µ.
If this limit exists, F∞(x) is by hypothesis the function
F (x):

F (x) = F (x, gR, µ) =
Λ→∞

FΛ(x, gR, µ). (7)

Of course, the divergences must still be somewhere, and
we shall see that they survive in the relationship between
g0 and gR; at fixed gR, g0 diverges when Λ → ∞. In the
traditional interpretation of renormalization, this diver-
gence is supposed to be harmless because g0 is supposed
to be a non-physical quantity. We shall come back to this
point later.

The renormalization program is performed recursively,
and we now implement it order by order to see how it
works and the constraints on the perturbation expansion
that it implies. Let us emphasize that the series expan-
sion we shall use in intermediate calculations are highly
formal because they are ill-defined in the limit Λ = ∞.
They are justified only by the result we finally obtain: a
good perturbation expansion in terms of gR.33

• Renormalization at order g0. At this order F (x) is
constant and given by:

FΛ(x) = g0 + O(g2
0). (8)

Thus the use of Eq. (3) leads to:

g0 = gR + O(g2
R). (9)

• Renormalization at order g2
0. Our only freedom to

eliminate the divergence of FΛ(x) is to redefine g0. Be-
cause we are working perturbatively, we expand g0 as a
power series in gR. Thus, we set:

g0 = gR + δ2g + δ3g + . . . , (10)

where δng ∼ O(gn
R). At order g2

R we obtain:

FΛ(x) = gR + δ2g + g2
RF1,Λ(x) + O(g3

R), (11)

where we have used g2
0 = g2

R + O(g3
R). If we impose

Eq. (3) at this order, we obtain

δ2g = −g2
RF1,Λ(µ), (12)

which diverges when Λ → ∞. In our example, Eq. (5),
we find:

δ2g = −αg2
R

∫ Λ

0

dt

t + µ
= −αg2

R log
Λ + µ

µ
. (13)

If we substitute Eq. (12) into Eq. (11), we obtain FΛ to
this order:

FΛ(x) = gR + g2
R

(

F1,Λ(x) − F1,Λ(µ)
)

+ O(g3
R). (14)

It is clear that this expression for FΛ(x) is finite for all x
at this order if and only if the “divergent” part of F1,Λ(x)
(the part that becomes divergent when Λ → ∞) is ex-
actly cancelled by that of F1,Λ(µ), that is, if and only if

F1,Λ(x) − F1,Λ(µ) is regular in x and µ for Λ → ∞.
(15)

This condition of course means that the divergent part of
F1,Λ(x) must be a constant, that is, is x-independent. If
this is so, then we define the function F (x) — now called
renormalized — as the limit of FΛ(x) when Λ → ∞. The
condition (15) is fulfilled for the example of Eq. (2), and
we trivially find that F (x) reads:

F (x) = gR+α(µ−x)g2
R

∫

∞

0

dt

(t + x)(t + µ)
+O(g3

R), (16)

which is obviously well defined and such that the pre-
scription of Eq. (3) is verified. We say that we have
renormalized the theory to this order.

Before going to the next order of perturbation theory,
let us note two important facts. First, the renormaliza-
tion procedure consists of “adding a divergent term” δ2g
to FΛ to remove its divergence. The cancellation takes
place between the second term of its expansion and the
first one of order g0. Both lead to a term of order g2

R,
the one coming from the expansion of g0 in terms of gR

being tuned so as to cancel the divergence of the other.
This mechanism of cancellation is a general phenomenon:
a divergence coming from the nth term of the perturba-
tion expansion is cancelled by the expansion in powers of
gR of the n−1 preceding terms. Second, this cancellation
is possible for all x only if the divergence of F1,Λ(x) is a
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number, that is, is x-independent. If it is not so, then
F1,Λ(x) − F1,Λ(µ) would still be divergent ∀x 6= µ. This
divergence would require the imposition of at least one
more renormalization prescription to be removed and this
second prescription would define a second, independent,
coupling constant (see Appendix A for two functions, one
renormalizable and one that is not). The necessity for a
second measurement of F (x) would contradict our as-
sumption that there is only one free parameter in the
theory. Thus we conclude that this assumption drasti-
cally constrains the x-dependence of the divergences at
order g2

0 . We actually show in the following that this
constraint propagates to any order of perturbation the-
ory in a non-trivial way. We also will show that together
with dimensional analysis and for a very wide and im-
portant class of theories, these constraints are sufficient
to determine the analytical form of the divergences.
• Renormalization at order g3

0. We suppose that F
can be renormalized at order g2

R, that is, condition (15)
is fulfilled. To understand the structure of the renormal-
ization procedure, it is necessary to go one step further.
At order g3

R we obtain:

FΛ(x) = gR+ δ2g + δ3g + (g2
R + 2gR δ2g)F1,Λ(x)+

+g3
R F2,Λ(x) + O(g4

R)
(17)

where we have used g3
0 = g3

R + O(g4
R) and g2

0 = g2
R +

2gRδ2g + O(g4
R). We again impose the prescription

Eq. (3) and obtain:

δ3g = 2g3
R

(

F1,Λ(µ)
)2

− g3
RF2,Λ(µ). (18)

If we substitute Eq. (18) in Eq. (17), we obtain:

FΛ(x) = gR + g2
R

(

F1,Λ(x) − F1,Λ(µ)
)

+ g3
R

(

F2,Λ(x)

−F2,Λ(µ) − 2F1,Λ(µ)
(

F1,Λ(x) − F1,Λ(µ)
)

)

+ O(g4
R).

(19)
Once again, we require that the divergence has been sub-
tracted for all x which imposes on the x-dependence of
the divergent part of F2,Λ(x):

F2,Λ(x) − F2,Λ(µ) − 2F1,Λ(µ)
(

F1,Λ(x) − F1,Λ(µ)
)

is
regular in x and µ when Λ → ∞ .

(20)
Notice that this constraint does not only involve F2,Λ but
also F1,Λ. It is convenient to rewrite F1,Λ(x) and F2,Λ(x)
as the sum of a regular and of singular (when Λ → ∞)
part:

Fi,Λ(x) = F s
i,Λ(x) + F r

i,Λ(x). (21)

Because ∞ + anything finite = ∞, this decomposition is
not unique: the F s

i,Λ(x) are defined up to a regular part.

It is convenient to choose F s
1,Λ(x) such that:

F s
1,Λ(x) − F s

1,Λ(µ) −→
Λ→∞

0, (22)

which, of course, implies condition (15). We show in Ap-
pendix B that, reciprocally, this choice is always possible

if (15) is fulfilled. As already stated, Eq. (22) means that
the divergent part of F1,Λ is x-independent. We can actu-
ally impose a more stringent condition on F s

1,Λ because,
by again tuning the regular part of F1,Λ, we can choose
F s

1,Λ to be completely independent of x, for any Λ. We
thus define:

F s
1,Λ(x) = f1(Λ). (23)

In our example, Eq. (5), we can choose:

f1(Λ) = α log Λ and F r
1,Λ(x) = α log(

Λ + x

Λx
). (24)

We now substitute Eq. (23) into Eq. (20) and, using the
same kind of arguments as in Appendix B, we obtain a
constraint on the singular part of F2,Λ(x) similar to the
one on F s

1,Λ(x), Eq. (22):

F s
2,Λ(x) − F s

2,Λ(µ) − 2f1(Λ)
[

F r
1,Λ(x) − F r

1,Λ(µ)
]

−→
Λ→∞

0.

(25)
Equation (25) can be rewritten as:

[F s
2,Λ(x)−2f1(Λ)F r

1,Λ(x)]−[F s
2,Λ(µ)−2f1(Λ)F r

1,Λ(µ)] −→
Λ→∞

0.

(26)
Equation (26) has the same structure as Eq. (22) up to
the replacement: F s

1,Λ → F s
2,Λ−2f1(Λ)F r

1,Λ and therefore

has the same kind of solution as Eq. (23):

F s
2,Λ(x) = 2f1(Λ)F r

1,Λ(x) + f2(Λ), (27)

where f2(Λ) is any function of Λ and is independent of
x. We see in Eq. (27) that unlike F1,Λ(x), the divergent
part of F2,Λ(x) depends on x. However, this dependence
is entirely determined by the first order of the pertur-
bation expansion. The δ2g term, necessary to remove
the O(g2

0) divergence, has produced at order g3
R an x-

dependent divergent term: 2gRδ2gF1,Λ(x). This kind of
x-dependence is also a general phenomenon of renormal-
ization: the (counter-)terms that remove divergences at
a given order produce divergences at higher orders. If
the theory is renormalizable, these divergences contribute
to the cancellation of divergences present in the pertur-
bation expansion at higher orders. Thus, perturbative
renormalizability, that is, the possibility of eliminating
order by order all divergences by the redefinition of the
coupling(s), implies a precise structure of (the divergent
parts of) the successive terms of the perturbation series.
At order n, the singular part of Fn,Λ involves x-dependent
terms entirely determined by the preceding orders plus
one new term that is x-independent. In our example of
Eq. (2) and Eq. (24) we find:

F s
2,Λ(x) = 2α2 log Λ log

x + Λ

Λx
+ f2(Λ). (28)

By expanding log Λ log(x + Λ)/Λx in powers of Λ−1 and
by again redefining the regular part of F2,Λ, we obtain a
simpler form for F s

2,Λ(x):

F s
2,Λ(x) = −2α2 log Λ logx + f2(Λ). (29)
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This relation will be important in the following when we
shall discuss the renormalization group.

Let us draw our first conclusion. Infinities occur in the
perturbation expansion of the theory because we have
assumed that it was not regularized. Actually, these di-
vergences have forced us to regularize the expansion and
thus to introduce a new scale Λ. Once regularization
has been performed, renormalization can be achieved by
eliminating g0. The limit Λ → ∞ can then be taken.
The process is recursive and can be performed only if
the divergences possess, order by order, a very precise
structure. This structure ultimately expresses that there
is only one coupling constant to be renormalized. This
means that imposing only one prescription at x = µ is
enough to subtract the divergences for all x. In general, a
theory is said to be renormalizable if all divergences can
be recursively subtracted by imposing as many prescrip-
tions as there are independent parameters in the theory.
In QFT, these are masses, coupling constants, and the
normalization of the fields. An important and non-trivial
topic is thus to know which parameters are independent,
because symmetries of the theory (like gauge symmetries)
can relate different parameters (and Green functions).

Let us once again recall that renormalization is nothing
but a reparametrization in terms of the physical quan-
tity gR.34 The price to pay for renormalizing F is that
g0 becomes infinite in the limit Λ → ∞, see Eq. (12).
We again emphasize that if g0 is believed to be no more
than a non-measurable parameter, useful only in inter-
mediate calculations, it is indeed of no consequence that
this quantity is infinite in the limit Λ → ∞. That g0

was a divergent non-physical quantity has been common
belief for decades in QFT. The physical results given by
the renormalized quantities were thought to be calculable
only in terms of unphysical quantities like g0 (called bare
quantities) that the renormalization algorithm could only
eliminate afterward. It was as if we had to make two mis-
takes that compensated each other: first introduce bare
quantities in terms of which everything was infinite, and
then eliminate them by adding other divergent quanti-
ties. Undoubtly, the procedure worked, but, to say the
least, the interpretation seemed rather obscure.

Before studying the renormalization group, let us now
specialize to a particular class of renormalizable theories.

III. RENORMALIZABLE THEORIES WITH
DIMENSIONLESS COUPLINGS

A very important class of field theories corresponds
to the situation where g0 is dimensionless, and x, which
in QFT represents coordinates or momenta, has dimen-
sions (or more generally when g0 and x have independent
dimensions). In four-dimensional space-time, quantum
electrodynamics is in this class, because the fine struc-
ture constant is dimensionless; quantum chromodynam-
ics and the Weinberg-Salam model of electro-weak inter-
actions are also in this class. In four space dimensions,

the φ4 model relevant for the Ginzburg-Landau-Wilson
approach to critical phenomena is in this class too. This
particular class of renormalizable theories is the corner-
stone of renormalization in field theories.

Our main goal in this section is to show that, in-
dependently of the underlying physical model, dimen-
sional analysis together with the renormalizability con-
straint, determine almost entirely the structure of the
divergences. This underlying simplicity of the nature of
the divergences explains that there is no combinatorial
miracle of Feynman diagrams in QFT as it might seem
at first glance. Let us now see in detail how it works.

Because FΛ(x) has the same dimension as g0, it also is
dimensionless and so are the Fi,Λ(x). The only possibil-
ity for a dimensionless quantity like F to be a function
of a dimensional variable like x is that there exists an-
other dimensional variable such that F depends on x only
through the ratio of these two variables. Apart from x,
the only other quantity on which F depends is Λ, which
must therefore have the same dimension as x. This is
indeed the case in our example, Eq. (5). Thus, the func-
tions Fi,Λ(x) depend on the ratio x/Λ only.35 Let us show
that this is enough to prove that the F s

i,Λ(x) are sums of
powers of logarithms with, for most of them, prescribed
prefactors.

Let us start with F s
1,Λ(x). On one hand, we have seen

that by redefining the regular part of F1,Λ(x), we could
take its singular part F s

1,Λ(x) independent of x, Eq. (23).

On the other hand, we know that F1,Λ(x) is a function
of x/Λ. Thus, by redefining F r

1,Λ(x), it must be possi-

ble to extract an x-dependent regular part, r(x), of this
function so as to build the x/Λ dependence of F s

1,Λ(x):

F s
1,Λ(x) = f

( x

Λ

)

= f1(Λ) + r(x). (30)

Hence, F s
1,Λ is separable into functions of x only and of

Λ only which sum up to a function of x/Λ. We show in
Appendix C the well known fact that only the logarithm
obeys this property. We obtain (see Eqs. (C3) and (C4))

F s
1,Λ(x) = −f1

( x

Λ

)

= f1(Λ) − f1(x) = α log
Λ

x
. (31)

Therefore, for renormalizable theories and for dimension-
less functions such as F , only logarithmic divergences are
allowed at order g2

0 (in QFT, this is the so-called one-loop
term). This is the reason why logarithms are encountered
everywhere in QFT. Note that because of dimensional
analysis, the finite part of F1,Λ(x) is nothing but r(x),
up to an additive constant, at least for Λ → ∞. This can
be checked for the example given in Eq. (5). Thus, by
dimensional analysis, the structure of the divergence de-
termines that of the finite part (up to a constant). Notice
that things would not be that simple if FΛ(x) depended
on another dimensional parameter, which is the case of
massive field theories where masses and momenta have
the same dimension. In this case, the finite part is only
partially determined by the singular one.
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Let us now show that the structure of F s
2,Λ also is en-

tirely determined for renormalizable theories with dimen-
sionless couplings both by the renormalizability hypoth-
esis and by dimensional analysis. We have already par-
tially studied this case with the example given in Eq. (5)
where F s

1,Λ(x) is logarithmically divergent, a character-
istic feature of these renormalizable theories. In partic-
ular, we have shown that in this case, renormalizability
imposes at order g3

0 that F s
2,Λ is of the form given in

Eq. (29). Let us now use dimensional analysis that once
again imposes that F s

2,Λ depends only on x/Λ. The only

freedom we have to reconstruct a function of x/Λ from
the form of F s

2,Λ given in Eq. (29) is to add a regular
function to it. It is not difficult to find how to proceed
because the only admissible term including log Λ log x is
log2 Λ/x:

log2 Λ

x
= log2 Λ − 2 logΛ log x + log2 x. (32)

Thus, to obtain the dimensionally correct extension of
the term −2α2 log Λ logx in Eq. (29), we extract α2 log2 Λ
from f2(Λ) and add the regular term α2 log2 x:

−2 α2 log Λ log x + f2(Λ)

→ −2α2 log Λ log x + α2 log2 Λ +
(

f2(Λ) − α2 log2 Λ
)

→ −2α2 log Λ log x + α2 log2 Λ + α2 log2 x+
+

(

f2(Λ) − α2 log2 Λ
)

→ α2 log2 Λ

x
+

(

f2(Λ) − α2 log2 Λ
)

.

(33)
Thus, we obtain for the new function F s

2,Λ(x):

F s
2,Λ(x) = α2 log2 Λ

x
+ f2(Λ) − α2 log2 Λ. (34)

Now, for f2(Λ) − α2 log2 Λ, we can repeat the same ar-
gument as the one used previously for F s

1,Λ(x) (which is

equal to f1(Λ), Eq. (23)): it is a function of Λ that must
become a function of x/Λ only by adding a function of
x. It is thus also a logarithm, see Eqs. (30) and (31) and
Appendix C. Therefore, we add a log x term to F s

2,Λ(x)
and obtain the final result:

F s
2,Λ(x) = α2 log2 Λ

x
+ β log

Λ

x
, (35)

where β is a pure number. We emphasize that although it
is x-independent, the term α2 log2 Λ involved in F s

2,Λ(x)
arises from the log Λ log x term thanks to dimensional
analysis. It is thus entirely determined by the term of
order g2

0 of perturbation theory. Only the sub-leading
logarithm β log Λ/x is new. It is not difficult now to
guess the structure of the next order of perturbation:
it involves a log3 Λ/x with a prefactor α3, a log2 Λ/x
term with a prefactor which is a function of α and β and
a log Λ/x with a prefactor independent of α and β. A

precise calculation shows that:

F s
Λ(x) = αg2

0 log
Λ

x
+α2g3

0 log2 Λ

x
+α3g4

0 log3 Λ

x
+ . . .

+βg3
0 log

Λ

x
+

5

2
αβg4

0 log2 Λ

x
+ . . .

+γg4
0 log

Λ

x
+ . . .

(36)
We have written the series so as to exhibit its “trian-
gular” nature: the first line corresponds to the leading
logarithms, the second to the sub-leading, etc., and the
nth column to the nth order of perturbation. The lead-
ing logarithms are entirely controlled by the g2

0 term, the
sub-leading logarithms by both the g2

0 and g3
0 terms, etc.

It is clear that order by order for the divergent terms,
only the log term is new, all the log2, log3, etc, terms
are determined by the preceding orders. This structure
strongly suggests that we can, at least partially, resum
the perturbation series. We notice that although the
leading logarithms form a simple geometric series, this
is no longer true for the sub-leading logarithms where,
for instance, the factor 5αβ/2 of Eq. (36) is non-trivial.
Thanks to the renormalization group, there exists a sys-
tematic way to perform these resummations19 (see the
following).

We again emphasize that for our simple toy model the
divergences together with dimensional analysis determine
almost entirely the entire function F (x) in the limit of
large Λ. To show this explicitly, we rewrite F as:

FΛ(x, g0, Λ) = g0 + F s
Λ(x, g0, Λ) + F r

Λ(x, g0, Λ) (37)

with F s
Λ(x, g0, Λ) given by Eq. (36) at O(g4

0) and
F r

Λ(x, g0, Λ) ∼ O(g2
0). From dimensional analysis,

F r
Λ(x, g0, Λ) is also a function of x/Λ only which, by def-

inition, is finite when Λ → ∞. Thus, for large Λ:

F r
Λ(x, g0, Λ) = F

( x

Λ
, g0

)

≃ F(0, g0). (38)

F r
Λ(x) is therefore almost x-independent for large Λ: it

is a (g0-dependent) number in this limit. For the sake of
simplicity, let us consider the case where it is vanishing:

FΛ(x, g0, Λ) = g0 + F s
Λ(x, g0, Λ) (39)

with F s
Λ(x, g0, Λ) a function of x/Λ only. By using the

renormalization prescription Eq. (3), we can calculate gR

as a function of g0 and Λ/µ and by formally inverting the
series, we obtain at O(g4

R):

g0 = gR − αg2
R log

Λ

µ
+ g3

r [α2 log2 Λ

µ
− β log

Λ

µ
]

+ g4
R[−γ log

Λ

µ
+

5

2
αβ log2 Λ

µ
− α3 log3 Λ

µ
].(40)

By substituting this expression in Eqs. (36) and (39), we
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obtain at O(g4
R):

FΛ(x) = gR + αg2
R log

µ

x
+α2g3

R log2 µ

x
+α3g4

R log3 µ

x

+βg3
R log

µ

x
+

5

2
αβg4

R log2 µ

x
+γg4

R log
µ

x
(41)

Thus, we find that the renormalization process leaves un-
changed the functional form of FΛ, Eq. (36), and just
consists in replacing (g0, Λ) by (gR, µ). This very im-
portant fact is related to a self-similarity property that
we study in detail from the renormalization group view-
point. Notice that of course any explicit dependence on
Λ and g0 has been eliminated in Eq. (41) and that the
limit Λ → ∞ can now be safely taken, if desired.

Note that we have obtained logarithmic divergences
because we have studied the renormalization of a dimen-
sionless coupling constant. If g0 was dimensional, we
would have obtained power law divergences. This is for
instance what happens in QFT for the mass terms (see
also in the following the expansion in Eq. (45)).

IV. RENORMALIZATION GROUP

Although the renormalization group will allow us to
partially resum the perturbation expansion, we shall not
introduce it in this way. Rather, we want to examine the
internal consistency of the renormalization procedure.

We have chosen a renormalization prescription at the
point x = µ where gR is defined. Obviously, this point is
not special, and we could have chosen any other point µ′

or µ′′ to parametrize the theory. Because there is only
one independent coupling constant, the different coupling
constants gR = gR(µ), g′R = gR(µ′), g′′R = gR(µ′′) should
all be related in such a way that F (x) = F (x, µ, gR) =
F (x, µ′, g′R) = F (x, µ′′, g′′R), etc. This means that there
should exist an equivalence class of parametrizations of
the same theory and that it should not matter in prac-
tice which element in the class is chosen. This inde-
pendence of the physical quantity with respect to the
choice of prescription point also means that the changes
of parametrizations should be a (renormalization) group
law: going from the parametrization given by (µ, gR) to
that given by (µ′, g′R) and then to that given by (µ′′, g′′R)
or going directly from the first parametrization (µ, gR)
to the last one (µ′′, g′′R) should make no difference. Put

�(gR; �) (g0R; �0) (g00R; �00)
FIG. 1: An illustration of the renormalization group: the two
equivalent ways to compose changes of parametrizations.

this way, this statement seems to be void. Actually, it

is. More precisely, it would be so if we were performing
exact calculations: we would gain no new physical infor-
mation by implementing the renormalization group law.
This is because this group law does not reflect a symme-
try of the physics, but only of the parametrization of our
solution. This situation is completely analogous to what
happens for the solution of a differential equation: we can
parametrize it at time t in terms of the initial conditions
at time t0 for instance, or we can use the equation itself to
calculate the solution at an intermediate time τ and then
use this solution as a new initial condition to parametrize
the solution at time t. The changes of initial conditions
that preserve the final solution can be composed thanks
to a group law. Let us consider for example the following
trivial, but illuminating, example:

ẏ(t) = ǫy(t), y(t0) = r0, (42)

the solution of which is:

y(t) = f(r0, t − t0) = r0e
ǫ(t−t0). (43)

The group law can be written as36:

f(r0, t − t0) = f
(

f(r0, τ − t0), t − τ
)

∀τ. (44)

which you can verify using the exact solution, Eq. (43).
The non-trivial point with these group laws is that, in
general, they are violated at any finite order of the per-
turbation expansions. In our previous example, we ob-
tain to order ǫ:

y(t) ≃ f1(r0, t − t0) = r0(1 + ǫ(t − t0)), (45)

and

f1

(

f1(r0, τ−t0), t−τ
)

= r0(1+ǫ(t−t0))+ǫ2r0(t−τ)(τ−t0).
(46)

The group law is verified to order ǫ because the pertur-
bation expansion is exact at this order. However, it is
violated by a term of order ǫ2 that can be arbitrarily
large even for small ǫ, provided t − t0 is large enough.

The interest of the group law, Eq. (44), is that it is
possible to enforce it and then to improve the perturba-
tion result. Actually, when renormalization is necessary,
the group laws lets us partially resum the perturbation
series of divergent terms.

Let us now see how this improvement of the pertur-
bation series works for the example of the differential
equation (42). In this case, the divergence occurs for
t0 → −∞. Thus, t0 plays the role of the cut-off Λ, t−t0 of
log Λ/µ, and t− τ of log µ′/µ. Once t0 is finite, no diver-
gence remains, but the relics of the divergences occurring
for t0 → −∞ are the large violations of the group law be-
cause both the divergences and these violations originate
in the fact that the perturbation expansion is performed
in powers of ǫ(t − t0) and not of ǫ. To further study
the relevance of the group law, it is interesting to forget
the higher order terms of the perturbation expansion for
a while and to look for an improved approximation that
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coincides at order ǫ with the perturbation result and that
obeys the group law at order ǫ2:

f imp
1 (r0, t − t0) = r0(1 + ǫ(t − t0) + ǫ2G(t − t0)). (47)

By imposing the group law, Eq. (44), to order ǫ2, we
obtain a functional equation for G:

G(t− t0) = G(τ − t0) + G(t− τ) + (τ − t0)(t− τ). (48)

If we differentiate Eq. (48) with respect to t0 and take
t0 = τ , we obtain, setting x = t − τ :

G′(x) = x + G′(0). (49)

Because G(0) = 0, Eq. (49) implies that:

G(x) =
x2

2
+ ax, (50)

where a is arbitrary. For a = 0, this result is actually the
perturbation result to order ǫ2 because:

y(t) ≃ r0(1 + ǫ(t − t0) +
ǫ2

2
(t − t0)

2) + O(ǫ3). (51)

Thus, the first order in the perturbation expansion, to-
gether with the group law, determines entirely the term
of highest degree in t − t0 at the next order. Of course,
to verify exactly the group law, we should pursue the ex-
pansion in ǫ to all orders. It is easy to show that to order
ǫn, the term of highest degree in t − t0 is completely de-
termined by both the first order result and the group law
and coincides with the perturbation result: ǫn(t−t0)

n/n!.
Thus, the only information given by the perturbation ex-
pansion is that all subdominant terms, ǫn(t − t0)

p with
p < n, vanish in this example. We could now show how
the implementation of the group law lets us resum the
perturbation expansion. Unfortunately, this example is
too simple and some important features of the renormal-
ization group are missed in this case. (See Appendix E
for a complete discussion of the implementation of the
renormalization group on this example.) We therefore go
back to our toy model for which we specialize to renor-
malizable theories with dimensionless couplings.

A. Renormalization group for renormalizable
theories with dimensionless couplings

We now reconsider our toy model, Eqs. (4), (36), and
(37), from the point of view of the renormalization group.
For the sake of simplicity, we keep only the dominant
terms at each order, that is, apart from g0, the divergent
ones in Eq. (39).

First, notice that in the same way gR is clearly asso-
ciated with the scale µ, Eq.(3), so is g0 with the scale Λ
because from Eq. (36), we find37:

FΛ(x = Λ) = g0. (52)

Let us define a third coupling constant associated with
the scale µ′,

FΛ(µ′) = g′R, (53)

and study the relationship between these different cou-
pling constants at order g2

0. From:

FΛ(x, g0, Λ) = g0 + αg2
0 log

(Λ

x

)

+ O(g3
0), (54)

we obtain:

gR = g0 + αg2
0 log

(Λ

µ

)

+ O(g3
0) (55)

g′R = g0 + αg2
0 log

( Λ

µ′

)

+ O(g3
0). (56)

By eliminating g0 between these two equations, we find:

g′R = gR + αg2
R log

( µ

µ′

)

+ O(g3
R), (57)

and thus, as expected, the group law controlling the
change of prescription point is verified perturbatively.
We note that the essential ingredient for this composi-
tion law is that Eq. (57) is independent of Λ. This is
what ensures that the same form can be used to change
(g0, Λ) into (gR, µ) and then (gR, µ) into (g′R, µ′). This
independence, in turn, is nothing but the signature of
perturbative renormalizability which lets us completely
eliminate at each order (g0, Λ) for (gR, µ). Perturbatively,
everything looks fine. However, the previous calculation
relies on a formal step that is not mathematically cor-
rect, at least for large Λ. Indeed, to go from Eq. (56) to
Eq. (57), the series gR = gR(g0) must be inverted to find
g0 = g0(gR) while, for Λ → ∞, the series gR = gR(g0)
is clearly not convergent and thus not invertible. Thus,
the neglected terms of order g3

R in Eq. (57) involve a term
proportional to log Λ/µ logµ′/µ — analogous to the term
(t− τ)(τ − t0) of Eqs.(46) and (48) — which is neglected
because it is of order g3

R, but which is very large for large
Λ (see Appendix D). From a practical point of view, the
existence at any order of these large terms of higher or-
ders spoil the group law so that the independence of the
physical results with respect to the choice of prescription
point is not verified.

As in the case of the differential equation (47), we can
look for an improved function: F imp,

F imp(x, g0, Λ) = g0 + αg2
0 log

(Λ

x

)

+ g3
0G

(Λ

x

)

+ O(g4
0),

(58)
for which the group law at order g3

0 is obeyed. It is shown
in Appendix D that this constraint implies that:

G(x) = α2 log2 x + β log x, (59)

where β is arbitrary. Thus:

F imp(x, g0, Λ) = g0 + αg2
0 log

(

Λ

x

)

+ α2g3
0 log2

(

Λ

x

)

+

+ βg3
0 log

(

Λ

x

)

+ O(g4
0) .

(60)
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Once again, we find that the group law together with the
order g2

0 result determines the leading behavior at the
next order, here the log2(Λ/x) term. Moreover, we find
that the group law imposes the existence of the same log2

term as the one found from the renormalizability con-
straint, Eqs.(35) and (36), and allows the existence of a
sub-leading logarithm. Although non-trivial, this should
not be too surprising because the renormalizability con-
straint means that once F is well defined at x = µ, it also
is everywhere and in particular at x = µ′. The renormal-
izability constraint is therefore certainly necessary for the
implementation of the group law. As in the example of
the differential equation, Eq. (42), we should pursue the
expansion to all orders to obtain an exactly verified group
law. It is clear that by doing so, we would find the same
expansion as the one obtained from the renormalizabil-
ity constraint. Thus, if we use perturbation theory to
calculate the coefficient in front of the first leading loga-
rithm (of order g2

0) and impose the group law, we should
be able to resum all the leading logarithms. To do the
resummation of the sub-leading and sub-sub-leading log-
arithms, a knowledge of respectively the order g3

0 and g4
0

terms is required. Clearly, we need to understand how
to systematically construct the function f giving g′R in
terms of gR and µ/µ′,19

g′R = f
(

gR,
µ

µ′

)

, (61)

such that

• its expansion at order n is given by the nth order
of perturbation theory,

• the group law is exactly verified:

f
(

gR,
µ

µ′′

)

= f
(

f
(

gR,
µ

µ′

)

,
µ′

µ′′

)

. (62)

The function f is then said to be the self-similar approx-

imation at order n of the exact relationship between gR

and g′R.20 First notice one crucial thing. Our first aim
was to study the perturbation expansion of a function F
in a power series of a coupling constant g0. Then we have
discovered that the logarithmic divergence at order g2

0

propagates to all orders so that the expansion is actually
performed in g0 log Λ/µ instead of g0. Because Λ is the
regulator, it is supposed to be very large compared with
µ, so that the large logarithmic terms invalidate the use of
the perturbation expansion. Reciprocally, it is clear that
perturbation theory is perfectly valid if it is performed
between two scales µ1 and µ2 which are very close. Thus,
instead of using perturbation theory to make a big jump
between two very distinct scales, say Λ and µ, we should
use it to perform a series of very little steps for which it
is valid at each of them. In geometrical terms, the fact
that the perturbative approach is valid only between two
very close scales means that we should not use pertur-
bation theory to approximate the equation of the curve
given by the function f , Eq. (61), that joins the points

(µ, gR) and (µ′, g′R), but we should use it to calculate the
(field of) tangent vectors to this curve, that is, its enve-
lope. The curve itself should then be reconstructed by
integration, see Appendix E. By doing so, the group law
will be automatically verified because, by construction,
the integration precisely consists in composing infinites-
imal changes of reparametrization infinitely many times.
Let us consider again Eq. (55). We want to calculate the
evolution of gR(µ) with µ for a given model specified by
(Λ, g0). Thus we define:

β(gR) = µ
∂gR

∂µ

∣

∣

∣

∣

g0,Λ

, (63)

which gives the infinitesimal evolution of the coupling
constants with the scale for the model corresponding to
(g0, Λ). We trivially find to this order from Eq. (55),

β(gR) = −αg2
0 + O(g3

0), (64)

and thus, by trivially inverting the series of Eq. (55), we
obtain:

β(gR) = −αg2
R + O(g3

R). (65)

Now, if we integrate Eq. (63) together with Eq. (65), we
obtain

g′R =
gR

1 − αgR log µ
µ′

. (66)

This relation has several interesting properties:

(i) When expanded to order g2
R, the perturbation result

to this order is recovered, Eq. (57). This is quite
normal because β(gR) has been calculated to this
order.

(ii) When expanded to all orders, the whole series of
leading logarithms is recovered. This is more in-
teresting because β(gR) has been calculated only to
order g2, but simply means that all the leading log-
arithms are determined by the first one.

(iii) The group law (62) is obeyed exactly. We have thus
found the function f of Eq. (61) to this order. It is
very instructive to check the group law directly from
Eq. (66) and to verify that the β-function found
in Eq. (65) is not modified if we add the leading
logarithmic term of order g3

0 to the relation (55):

gR = g0 + αg2
0 log

(Λ

µ

)

+ α2g3
0 log2

(Λ

µ

)

+ O(g4
0). (67)

The independence of the β-function with respect to
the addition of the successive leading logarithmic
terms means that this function is indeed the right
object to build self-similar approximations out of
the perturbation expansion.
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Let us now return to the β-function itself. First, we
have calculated the logarithmic derivative µ∂gR/∂µ in-
stead of the ordinary derivative with respect to µ because
we wanted to have a dimensionless β-function. Second,
even the dimensionless quantity, β(gR), could have de-
pended on Λ/µ. However, the evolution of gR(µ) between
µ and µ+dµ cannot depend in perturbation theory on Λ
because the theory is perturbatively renormalizable: the
perturbative relation between gR(µ) and gR(µ′) depends
only on µ and µ′ and not on Λ. Thus, being dimen-
sionless, the β-function cannot depend on µ alone and is
thus only a function of gR. This property is general for
any renormalizable theory: in the space of coupling con-
stants, the β-function is always a local function. Third,
the β-function is the function to be expanded in pertur-
bation theory because it is given by a true series in gR

and not in gR log Λ/µ. This is clear for our example,
Eq. (65), where there is no logarithm, and can be proven
formally by the following argument. If we use Eq. (61)
and Eq. (63), we find that:

β(gR) = −
∂f

∂y
(gR, y)∣

∣

y=1

. (68)

If f is a double series in g and in log(µ/µ′),

f
(

gR,
µ

µ′

)

=
∑

n,p

αn,pg
n
R logp µ

µ′
, (69)

it is clear from Eq. (68) that only terms with p = 1
contribute to β(g), with the logarithm replaced by −1.
Thus we immediately deduce from this argument and
from Eq. (36) that:

β(gR) = −αg2
R − βg3

R − γg4
R + O(g5

R). (70)

It is easy to check that the first two coefficients, −α and
−β, are universal in the sense that for two different the-
ories, parametrized by (gR, µ) and (g′R, µ), the two β-
functions have the same first two coefficients in their ex-
pansions.

This method of computing the β-function also lets us
by-pass the strange way to calculate it that we have used
in Eqs. (64) and (65) where we have first expressed gR

in terms of g0 to calculate β(gR) as a function of g0 and
then, by inversion of the series, re-obtained a function of
gR. These two steps are a priori dangerous because they
both involve large logarithms. Actually, they always can-
cel each other. This can be seen directly for the example
of Eq. (67) and the reason for this cancellation comes
from Eqs. (68) and (69), which shows that no inversion
of series is needed to calculate β(gR). There is no miracle
here, because only the behavior at y = µ/µ′ = 1, which
of course does not involve Λ, matters.

Finally, we mention that the integration of the β-
function at O(g3

R) — analogous to a two-loop result in
QFT — leads to an implicit equation for g′R that gener-
alizes Eq. (66):

1

g′R
−

1

gR

+
β

α
log

(gR

g′R

α + βg′R
α + βgR

)

= α log
µ′

µ
. (71)

There is no simple solution of this transcendental equa-
tion. It is however possible to obtain an iterative solution
that is valid if the O(g3

R) term is small compared with the
O(g2

R) one, that is, if gRβ/α ≪ 1. It is obtained by re-
placing g′R in the third term of Eq. (71) by its expression
obtained to order g2

R, Eq. (66):

g′R =
gR

1 − αgR log µ
µ′

+ β
α
gR log

(

1 − αgR log µ
µ′

) . (72)

It is easy to check that Eq. (72) resums exactly all the
leading and sub-leading logarithms of the perturbation
expansion Eq. (41). Note that contrarily to the one-
loop result, Eq. (66), which resums only the leading loga-
rithms, the exact expression in Eq. (71) contributes also
to the sub-sub-leading logarithms as well as the sub-sub-
sub-leading ones and so on and so forth.

V. SUMMARY

(1) The long way of renormalization starts with a the-
ory depending on only one parameter g0, which is the
small parameter in which perturbation series are ex-
panded. In particle physics, this parameter is in general
a coupling constant like an electric charge involved in a
Hamiltonian (more precisely the fine structure constant
for electrodynamics). This parameter is also the first
order contribution of a physical quantity F . In parti-
cle/statistical physics, F is a Green/correlation function.
The first order of perturbation theory neglects fluctua-
tions — quantum or statistical — and thus corresponds
to the classical/mean field approximation. The parame-
ter g0 also is to this order a measurable quantity because
it is given by a Green function. Thus, it is natural to
interpret it as the unique and physical coupling constant
of the problem. If, as we suppose in the following, g0 is
dimensionless, so is F . Moreover, if x is dimensional —
it represents momenta in QFT — it is natural that F
does not depend on it as is found in the classical theory,
that is, at first order of the perturbation expansion.

(2) If F does depend on x, as we suppose it does at
second order of perturbation theory, it must depend on
another dimensional parameter, Λ, through the ratio of
x and Λ. If we have not included this parameter from
the beginning in the model, the x-dependent terms are
either vanishing, which is what happens at first order, or
infinite as they are at second and higher orders. This is
the very origin of divergences (from the technical point
of view).

(3) These divergences require that we regularize F .
This requirement, in turn, requires the introduction of
the scale Λ that was missing. In the context of field
theory, the divergences occur in Feynman diagrams for
high momenta, that is, at short distances. The cut-off Λ
suppresses the fluctuations at short distances compared
with Λ−1. In statistical physics, this scale, although in-
troduced for formal reasons, has a natural interpretation
because the theories are always effective theories built at
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a given microscopic scale. It corresponds in general to
the range of interaction of the constituents of the model,
for example, a lattice spacing for spins, the average inter-
molecular distance for fluids. In particle physics, things
are less simple. At least psychologically. It was indeed
natural in the early days of quantum electrodynamics to
think that this theory was fundamental, that is, not de-
rived from a more fundamental theory. More precisely,
it was believed that QED had to be mathematically in-
ternally consistent, even if in the real world new physics
had to occur at higher energies. Thus, the regulator scale
was introduced only as a trick to perform intermediate
calculations. The limit Λ → ∞ was supposed to be the
right way to eliminate this unwanted scale, which anyway
seemed to have no interpretation. We shall see in the
following that the community now interprets the renor-
malization process differently.

(4) Once the theory is regularized, F can be a non-
trivial function of x. The price is that different values of
x now correspond to different values of the coupling con-
stant (defined as the values of F for these x). Actually,
it does no longer make sense to speak of a coupling con-
stant in itself. The only meaningful concept is the pair
(µ, gR(µ)) of coupling constants at a given scale. The rel-
evant question now is, “What are the physical reasons in
particle/statistical physics that make the coupling con-
stants depend on the scale while they are constants in
the classical/mean field approximation?” As mentioned,
for particle physics, the answer is the existence of new
quantum fluctuations corresponding to the possibility of
creating (and annihilating) particles at energies higher
than mc2. What was scale independent in the classical
theory becomes scale dependent in the quantum theory
because, as the available energy increases, more and more
particles can be created. The pairs of (virtual) particles
surrounding an electron are polarized by its presence and
thus screen its charge. As a consequence, the charge of an
electron depends on the distance (or equivalently the en-
ergy) at which it is probed, at least for distances smaller
than the Compton wavelength.

Note that the energy scale mc2 should not be confused
with the cut-off scale Λ. mc2 is the energy scale above
which quantum fluctuations start to play a significant
role while Λ is the scale where they are cut-off. Thus,
although the Compton wave length is a short distance
scale for the classical theory, it is a long distance scale
for QFT, the short one being Λ−1. There are thus three
domains of length scales in QFT: above the Compton
wave length where the theory behaves classically (up to
small quantum corrections coming from high energy vir-
tual processes), between the Compton wave length and
the cut-off scale Λ−1 where the relativistic and quantum
fluctuations play a great role, and below Λ−1 where a
new, more fundamental theory has to be invoked.10 In
statistical physics, the analogue of the Compton wave
length is the correlation length which is a measure of
the distance at which two microscopic constituents of the
system are able to influence each other through thermal

fluctuations.38 For the Ising model for instance, the cor-
relation length away from the critical point is the order of
the lattice spacing and the corrections to the mean-field
approximation due to fluctuations are small. Unlike par-
ticle physics where the masses and therefore the Compton
wavelengths are fixed, the correlation lengths in statisti-
cal mechanics can be tuned by varying the temperature.
Near the critical temperature where the phase transition
takes place, the correlation length becomes extremely
large and fluctuations on all length scales between the
microscopic scale of order Λ−1, a lattice spacing, and the
correlation length add up to modify the mean-field be-
havior (see Refs. 21, 22 and also Ref. 23 for a bibliography
on this subject). We see here a key to the relevance of
renormalization: two very different scales must exist be-
tween which a non-trivial dynamics (quantum or statisti-
cal in our examples) can develop. This situation is a pri-

ori rather unnatural as can be seen for phase transitions,
where a fine tuning of temperature must be implemented
to obtain correlation lengths much larger than the micro-
scopic scale. Most of the time, physical systems have an
intrinsic scale (of time, energy, length, etc) and all the
other relevant scales of the problem are of the same order.
All phenomena occurring at very different scales are thus
almost completely suppressed. The existence of a unique
relevant scale is one of the reasons why renormalization
is not necessary in most physical theories. In QFT it
is mandatory because the masses of the known particles
are much smaller than a hypothetical cut-off scale Λ, still
to be discovered, where new physics should take place.
This is a rather unnatural situation, because, contrary to
phase transitions, there is no analogue of a temperature
that could be fine-tuned to create a large splitting of en-
ergy, that is, mass, scales. The question of naturalness of
the models we have at present in particle physics is still
largely open, although there has been much effort in this
direction using supersymmetry.

(5) The classical theory is valid down to the Comp-
ton/correlation length, but cannot be continued naively
beyond this scale; otherwise, when mixed with the quan-
tum formalism, it produces divergences. Actually, it is
known in QFT that the fields should be considered as
distributions and not as ordinary functions. The need
for considering distributions comes from the non-trivial
structure of the theory at very short length scale where
fluctuations are very important. At short distances, func-
tions are not sufficient to describe the field state, which
is not smooth but rough, and distributions are necessary.
Renormalizing the theory consists actually in building,
order by order, the correct “distributional continuation”
of the classical theory. The fluctuations are then cor-
rectly taken into account and depend on the scale at
which the theory is probed: this non-trivial scale de-
pendence can only be taken into account theoretically
through the dependence of the (analogue of the) func-
tion F with x and thus of the coupling with the scale
µ.

(6) If the theory is perturbatively renormalizable, the
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pairs (µ, g(µ)) form an equivalence class of parametriza-
tions of the theory. The change of parametrization from
(µ, g(µ)) to (µ′, g(µ′)), called a renormalization group
transformation, is then performed by a law which is self-
similar, that is, such that it can be iterated several times
while being form-invariant.19,20 This law is obtained by
the integration of

β(gR) = µ
∂gR

∂µ

∣

∣

∣

∣

g0,Λ

. (73)

This function has a true perturbation expansion in terms
of gR unlike the perturbative relation between gR(µ)
and gR(µ′) which involves logarithms of µ/µ′ that can
be large. The integration of Eq. (73) partially resums
the perturbation series and is thus semi-non-perturbative
even if β(gR) has been calculated perturbatively. The
self-similar nature of the group law is encoded in the fact
that β(gR) is independent of Λ.5

In particle physics, the β-function gives the evolution
of the strength of the interaction as the energy at which
it is probed varies and the integration of the β-function
resums partially the perturbation expansion. First, as
the energy increases, the coupling constant can decrease
and eventually vanish. This is what happens when α > 0
in Eqs. (65) and (66). In this case, the particles almost
cease to interact at very high energies or equivalently
when they are very close to each other. The theory
is then said to be asymptotically free in the ultraviolet
domain.3,5 Reciprocally, at low energies the coupling in-
creases and perturbation theory can no longer be trusted.
A possible scenario is that bound states are created at a
sufficiently low energy scale so that the perturbation ap-
proach has to be reconsidered in this domain to take into
account these new elementary excitations. Non-abelian
gauge theories are the only known theories in four space-
time dimensions that are ultraviolet free, and it is widely
believed that quantum chromodynamics — which is such
a theory — explains quark confinement. The other im-
portant behavior of the scale dependence of the coupling
constant is obtained for α < 0 in which case it increases at
high energies. This corresponds for instance to quantum
electrodynamics. For this kind of theory, the dramatic
increase of the coupling at high energies is supposed to
be a signal that the theory ceases to be valid beyond a
certain energy range and that new physics, governed by
an asymptotically free theory (like the standard model
of electro-weak interactions) has to take place at short
distances.

(7) Renormalizability, or its non-perturbative equiv-
alent, self-similarity, ensures that although the theory
is initially formulated at the scale Λ, this scale together
with g0 can be entirely eliminated for another scale better
adapted to the physics we study. If the theory was solved
exactly, it would make no difference which parametriza-
tion we used. However, in perturbation theory, this
renormalization lets us avoid calculating small numbers
as differences of very large ones. It would indeed be very
unpleasant, and actually meaningless, to calculate ener-

gies of order 100GeV, for instance — the scale µ of our
analysis — in terms of energies of order of the Planck
scale ≃ 1019 GeV, the analogue of the scale Λ. In a renor-
malizable theory, the possibility to perturbatively elim-
inate the large scale has a very deep meaning: it is the
signature that the physics is short distance insensitive or
equivalently that there is a decoupling of the physics at
different scales. The only memory of the short distance
scale lies in the initial conditions of the renormalization
group flow, not in the flow itself: the β-function does not
depend on Λ.We again emphasize that, usually, the de-
coupling of the physics at very different scales is trivially
related to the existence of a typical scale such that the
influence of all phenomena occurring at different scales
is almost completely suppressed. Here, the decoupling
is much more subtle because there is no typical length
in the whole domain of length scales that are very small
compared with the Compton wave length and very large
compared with Λ−1. Because interactions among parti-
cles correspond to non-linearities in the theories, we could
naively believe that all scales interact with each others
— which is true — so that calculating, for instance, the
low energy behavior of the theory would require the de-
tailed calculation of all interactions occurring at higher
energies. Needless to say that in a field theory, involving
infinitely many degrees of freedom — the value of the
field at each point — such a calculation would be hope-
less, apart from exactly solvable models. Fortunately,
such a calculation is not necessary for physical quanti-
ties that can be calculated from renormalizable couplings
only. Starting at very high energies, typically Λ, where
all coupling constants are naturally of order 1, the renor-
malization group flow drives almost all of them to zero,
leaving only, at low energies, the renormalizable cou-
plings. This is the interpretation of non-renormalizable
couplings. They are not terrible monsters that should be
forgotten as was believed in the early days of QFT. They
are simply couplings that the RG flow eliminates at low
energies. If we are lucky, the renormalizable couplings
become rather small after their RG evolution between
Λ and the scale µ at which we work, and perturbation
theory is valid at this scale.

We see here the phenomenon of universality: among
the infinitely many coupling constants that are a priori

necessary to encode the dynamics of the infinitely many
degrees of freedom of the theory, only a few ones are fi-
nally relevant.25 All the others are washed out at large
distances. This is the reason why, perturbatively, it is
not possible to keep these couplings finite at large dis-
tance, and it is necessary to set them to zero.39 The sim-
plest non-trivial example of universality is given by the
law of large numbers (the central limit theorem) which
is crucial in statistical mechanics.21 In systems where it
can be applied, all the details of the underlying proba-
bility distribution of the constituents of the system are
irrelevant for the cooperative phenomena which are gov-
erned by a gaussian probability distribution.24 This dras-
tic reduction of complexity is precisely what is necessary
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for physics because it lets us build effective theories in
which only a few couplings are kept.10 Renormalizability
in statistical field theory is one of the non-trivial gener-
alizations of the central limit theorem.

(8) The cut-off Λ, first introduced as a mathematical
trick to regularize integrals, has actually a deep physical
meaning: it is the scale beyond which new physics occur
and below which the model we study is a good effective
description of the physics. In general, it involves only the
renormalizable couplings and thus cannot pretend to be
an exact description of the physics at all scales. How-
ever, if Λ is very large compared with the energy scale in
which we are interested, all non-renormalizable couplings
are highly suppressed and the effective model, retaining
only renormalizable couplings, is valid and accurate (the
Wilson RG formalism is well suited to this study, see
Refs. 25 and 26). In some models — the asymptoti-
cally free ones — it is possible to formally take the limit
Λ → ∞ both perturbatively and non-perturbatively, and
there is therefore no reason to invoke a more fundamen-
tal theory taking over at a finite (but large) Λ. Let us
emphasize here several interesting points.

(i) For a theory corresponding to the pair (µ, gR(µ)),
the limit Λ → ∞ must be taken within the equiva-
lence class of parametrizations to which (µ, gR(µ))
belongs.40 A divergent non-regularized perturbation
expansion consists in taking Λ = ∞ while keeping g0

finite. From this viewpoint, the origin of the diver-
gences is that the pair (Λ = ∞, g0) does not belong
to any equivalence class of a sensible theory. Per-
turbative renormalization consists in computing g0

as a formal powers series in gR (at finite Λ), so that
(Λ, g0) corresponds to a mathematically consistent
theory; we then take the limit Λ → ∞.

(ii) Because of universality, it is physically impossible
to know from low energy data if Λ is very large or
truly infinite.

(iii) Although mathematically consistent, it seems un-
natural to reverse the RG process while keeping only
the renormalizable couplings and thus to imagine
that even at asymptotically high energies, Nature
has used only the couplings that we are able to de-
tect at low energies. It seems more natural that
a fundamental theory does not suffer from renor-
malization problems. String theory is a possible
candidate.27

To conclude, we see that although the renormaliza-
tion procedure has not evolved much these last thirty
years, our interpretation of renormalization has drasti-
cally changed10: the renormalized theory was assumed
to be fundamental, while it is now believed to be only an
effective one; Λ was interpreted as an artificial parameter
that was only useful in intermediate calculations, while
we now believe that it corresponds to a fundamental scale
where new physics occurs; non-renormalizable couplings

were thought to be forbidden, while they are now inter-
preted as the remnants of interaction terms in a more
fundamental theory. Renormalization group is now seen
as an efficient tool to build effective low energy theories
when large fluctuations occur between two very different
scales that change qualitatively and quantitatively the
physics.

Acknowledgments

The author thanks S. Dusuel and B. Douçot for many
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APPENDIX A: TOY MODELS FOR
RENORMALIZABLE AND

NON-RENORMALIZABLE PERTURBATION
EXPANSIONS

We give an example of a non-renormalizable theory and
of a theory which needs two couplings to be renormalized.
Let us suppose that

F1,Λ(x) = α

∫ Λ

1

dt
t

t + x
(A1)

which, unlike the example of Eq. (5), is linearly diver-
gent. To renormalize this function, we have to impose a
prescription at one point, and we choose:

FΛ(0) = gR. (A2)

Note that it was not possible in the example of Eq. (5)
to take µ = 0, because this choice would have lead to a
divergence of the integral at the lower bound. In Eq. (A1)
taking µ = 0 is possible because the lower bound of the
integral is non-vanishing and actually plays somewhat
the role of a non-vanishing µ. We have,

δ2g = −αg2
R

∫ Λ

1

dt, (A3)

so that:

FΛ(x) = gR − αg2
R x

∫ Λ

1

dt

t + x
, (A4)

which is still (logarithmically) divergent for all x 6= 0.
The difference between the two examples given in Eqs.(5)
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and (A1) is that in the last one, once the linear divergence
has been subtracted, the logarithmic sub-divergence re-
mains. Subtracting it would require us to impose a sec-
ond prescription that would define a new coupling con-
stant. In the absence of this second coupling constant,
the logarithmic divergence cannot be subtracted and the
model is non-renormalizable.

Let us examine how a second coupling constant could
solve the problem. Generically, this second coupling,
which we call λ0, already contributes at first order. We
take as an example:

FΛ(x) = g0 + λ0x + αg2
0

∫ Λ

1

dt
t

t + x
+ O(g3

0). (A5)

Let us take as renormalization prescriptions,

∂FΛ

∂x
(x = 0) = λR, (A6)

in addition to Eq. (A2). We obtain at first order that
g0 = gR + O(g2

R) and λ0 = λR + O(g2
R) and at second

order:

δ2g = −αg2
R

∫ Λ

1

dt (A7)

δ2λ = αg2
R

∫ Λ

1

dt

t
. (A8)

If we substitute these expressions in Eq. (A5), we find:

FΛ(x) = gR + λRx + αg2
Rx2

∫ Λ

1

dt

t(t + x)
+ O(g3

R). (A9)

Obviously, this expression converges when Λ → ∞. The
two renormalization prescriptions let us subtract the lin-
ear divergence as well as the logarithmic sub-divergence.
We emphasize that in the previous example we only elim-
inated the second divergence at order g2

0 . At higher or-
ders, there are two ways a theory can behave, character-
ized by two different renormalizability properties. The
first one is that all divergences can be removed to all or-
ders by renormalizing only the two couplings g0 and λ0.
A variant of this possibility is that a third coupling — or
a finite number of new couplings — turns out to be nec-
essary and sufficient to remove the divergences. In this
case, the model is renormalizable at the price of introduc-
ing all the necessary couplings. The second possibility is
that the new interaction term, which has induced the ex-
istence of the λ0 term in F , generates new divergences at
higher orders. In this case, new interaction terms (and
coupling constants) are required to remove the new di-
vergences. These new terms can themselves generate new
divergences at even higher orders, which require new cou-
plings to be removed and so on and so forth. In this
case, infinitely many interaction terms are necessary to
remove the divergences and the model is perturbatively
non-renormalizable.

APPENDIX B: DERIVATION OF EQ.(22)

Let us show that it is always possible to make the
choice used in Eq. (22). Due to condition (15), we have
generally:

F s
1,Λ(x) − F s

1,Λ(µ) → g′1(x, µ), Λ → ∞ (B1)

where the limit g′1 is a well defined function satisfying
g′1(x, µ) = −g′1(µ, x). If we first evaluate F s

1,Λ(x) in

Eq. (B1) at x = 1 for instance and at µ = 1 and subtract
them, we obtain that g′1 has the form:

g′1(x, µ) = g1(x) − g1(µ), (B2)

namely, a combination of the same function of x and µ.
Then, by redefining F s

1,Λ: F s
1,Λ → F s

1,Λ − g1 we satisfy

Eq. (22). Note that the previous choice of singular part
is not necessary and is only convenient.

APPENDIX C: LOGARITHMIC DIVERGENCES
IN RENORMALIZABLE THEORIES WITH

DIMENSIONLESS COUPLINGS

We prove for renormalizable theories with dimension-
less couplings that F s

1,Λ(x) must be a logarithm. If we

use Eq. (23), dimensional analysis, and the freedom to
choose the regular part of F1,Λ, we have,

F s
1,Λ(x) = f

( x

Λ

)

= f1(Λ) + r(x). (C1)

Note that in full generality, the regular part we add to
f1(Λ) could depend on Λ: rΛ(x). However, because it
is regular, we can choose to add only the Λ-independent
function corresponding to the Λ → ∞ limit of rΛ: r(x) =
r∞(x). If we differentiate Eq.(C1) with respect to x and
then take x = 1 and Λ = 1/y, we obtain,

f ′(y) =
r′(1)

y
, (C2)

and thus

f(y) = −α log y, (C3)

where the minus sign has been written for convenience.
From (C1) and (C3) we conclude that f(x) = r(x) =
−f1(x) and that

F s
1,Λ(x) = f

( x

Λ

)

= f(x) − f(Λ) = α log
Λ

x
. (C4)

APPENDIX D: RENORMALIZATION GROUP
IMPROVED EXPANSION

We show how to derive Eq. (59). Consider the defini-
tion of F imp:

F imp(x, g0, Λ) = g0 + αg2
0 log

(Λ

x

)

+ g3
0G

(Λ

x

)

+ O(g4
0)

(D1)
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We can calculate gR and g′R from their definitions (where
F imp is used instead of F ) and from Eq. (D1):

gR = g0 + αg2
0 log

(Λ

µ

)

+ g3
0G

(Λ

µ

)

+ O(g4
0) (D2)

g′R = g0 + αg2
0 log

( Λ

µ′

)

+ g3
0G

( Λ

µ′

)

+ O(g4
0). (D3)

If we invert the series gR = gR(g0) of Eq. (D3), we obtain:

g0 = gR−αg2
R log

(Λ

µ

)

+2α2g3
R log2

(Λ

µ

)

−g3
RG

(Λ

µ

)

+O(g4
R).

(D4)
Thus, substituting this expression for g0 in g′R = g′R(g0),
Eq. (D3), we obtain:

g′R = gR+ αg2
R log

(

µ

µ′

)

+ g3
R

(

2α2

(

log2

(

Λ

µ

)

−

− log

(

Λ

µ

)

log

(

Λ

µ′

))

+ G

(

Λ

µ′

)

− G

(

Λ

µ

))

.

(D5)
The group law is obeyed at this order if the relation be-
tween g′R and gR is of the same form as the one between
gR and g0, Eq. (D3). This condition requires:

g′R = gR + αg2
R log

( µ

µ′

)

+ g3
RG

( µ

µ′

)

+ O(g4
R), (D6)

and thus:

2α2 log
Λ

µ
log

µ′

µ
+ G

( Λ

µ′

)

− G
(Λ

µ

)

= G
( µ

µ′

)

. (D7)

By differentiating this relation with respect to Λ and by
taking Λ = µ, we find, setting x = µ/µ′:

G′(x) = 2α2 log x

x
+

G′(1)

x
. (D8)

If we take into account that G(1) = 0, we find by inte-
gration:

G(x) = α2 log2 x + β log x, (D9)

where β is arbitrary.

APPENDIX E: THE RENORMALIZATION
GROUP APPLIED TO A DIFFERENTIAL

EQUATION

We show how the renormalization program can be im-
plemented for the example of the differential equation
Eq. (42) whose exact solution is

y(t) = f(r0, t − t0) = r0e
ǫ(t−t0). (E1)

In perturbation theory, we find:

y(t) = r0(1 + ǫ(t − t0) +
ǫ2

2
(t − t0)

2 + . . . ). (E2)
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FIG. 2: The curve y(t) as a function of t. The (thick) lower
line is the approximation of order ǫ, see Eq.(E2). The other
lines represent the (field of) tangent vectors to the curve —
the envelope — given by the β-function, Eq.(E7).

At order ǫ0, y(t) is constant and finite, whereas, at any
higher order in ǫ, a divergence occurs for t0 → −∞. This
divergence arises of course from the fact that the expan-
sion turns out to be in powers of ǫ(t − t0) and not in
powers of ǫ alone (the secular problem). Thus, as shown
in Fig.2, the approximation of order O(ǫ) becomes worse
and worse as t increases. A renormalization prescription
consists here in imposing that for a finite τ :

y(τ) = rτ . (E3)

If we perform the calculation to order ǫ, we find to first
order:

rτ = r0

(

1 + ǫ(τ − t0)
)

+ O(ǫ2), (E4)

and thus, as expected:

y(t) = rτ

(

1 + ǫ(t − τ)
)

+ O(ǫ2). (E5)

The theory is perturbatively renormalizable at this order
because by imposing a single renormalization prescrip-
tion, it is possible to completely eliminate t0 and r0. Let
us define the β-function for rτ by:

β(rτ ) =
∂rτ

∂τ

∣

∣

∣

∣

r0,t0

=
∂f

∂ζ
(rτ , ζ)

∣

∣

∣

∣

ζ=0

. (E6)

We find:

β(rτ ) = ǫrτ + O(ǫ2). (E7)

It is very instructive to perform this calculation at
higher orders because we then find that the O(ǫ) result
of Eq. (E7) is exact (this result is trivially shown using
the second equality of Eq. (E6)). Thus, there is no O(ǫ2)
corrections to β(rτ ). This result means that, in this ex-
ample, there is no subleading terms such as ǫn(t − t0)

p

with p < n in the perturbation expansion.
Clearly, the β-function gives the tangent to the curve

y(t). Equation (E7) shows that contrarily to y(t), the
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β-function has a true ǫ-expansion (involving only one
term in this example). This result is reminiscent of what
we have already observed in our general discussion, see
Eqs. (36) and (70). Of course, this example is too simple
because using the β-function leads to the same differen-
tial equation for rτ as the one for y(t) that we started
with, Eq. (42): the RG does not help us to solve or-
dinary differential equations. However, although math-
ematically trivial, our analysis shows that perturbation
theory should not be used for large t − t0, but that it is
perfectly valid for infinitesimal time steps, see Fig. 2. It
also shows that the higher order terms of the perturba-

tion expansion are completely analogous to the series of
the leading logarithms we have previously encountered:
they are entirely determined by the O(ǫ) term together
with self-similarity (encoded in the β-function). Note fi-
nally that for partial differential equations (PDE) that
describe the dynamics of infinitely many degrees of free-
dom (as in field theory), the RG techniques do not let us
reconstruct the PDE from the first orders of perturba-
tion theory. The β-functions lead to ordinary differential
equations, the integration of which let us improve the per-
turbation computation of several quantities thanks to a
partial resummation of the perturbation expansion.19,20
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28 Some phase transitions are triggered by quantum fluctua-
tions. This subtlety plays no role in what follows.

29 The short distance physics in statistical systems is given by
Hamiltonians describing, for instance, interactions among
magnetic ions or molecules of a fluid.

30 Actually, the analogue of the function in Eq. (1) would be
a correlation function of four density or spin fields taken at
four different points. These functions are not easily mea-
surable and thus g0 does not have in general an intuitive
meaning in this case. Because this subtlety plays no role
in our discussion, we ignore this difficulty in the following.

31 Actually for QED it is a four-dimensional integral over
four-momenta and the integrand is a product of propaga-
tors.

32 It is nontrivial to prove in full generality that the results
obtained after renormalization are independent of the reg-
ularization scheme. However, it is easy to grasp the idea
behind it. Because renormalization consists in eliminating
parameters like g0 and in replacing them by measurable
couplings like gR, the renormalized quantities like F (x)
are finally expressed only in terms of physical quantities
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that are independent of the regularization scheme.13
33 Note that the (renormalized) series in gR can themselves be

non-convergent. Most of the time they are at best asymp-
totic. In some cases they can be resummed using Borel
transform and Padé approximants.

34 In QFT, it is in general also necessary to change the nor-
malization of the analogue of the function F — the Green
functions — by a factor that diverges in the limit Λ → ∞.
This procedure is known as field renormalization.

35 Let us emphasize that there is a subtlety if dimensional
regularization is used. Actually, this regularization also
introduces a dimensional parameter λ, which is not di-
rectly a regulator as is the cut-off Λ in the integral of
Eq. (5). The analogue of Λ in this regularization is given
by Λ = λ exp(1/ǫ), where ǫ = 4−D and D is the spatial di-
mension. It often is convenient to take λ ∼ µ. We mention
that dimensional regularization kills all non-logarithmic
divergences.12

36 The elements of the group are the functions: gt = f(· , t) for
t ∈ IR. They transform an initial condition r0 into the solu-
tion at a later time interval t of the differential equation we
consider (see Eq. (43) in our example): gt(r0) = f(r0, t).
The composition law is thus gt′ .gt = f (f(· , t), t′). It obeys

trivially the identity: gt′ .gt = gt+t′ which is nothing but
Eq.(44). The identity is gt=0 and the inverse is g−t. The
law is associative as it should for a group.

37 If we had not omitted in Eq. (52) the finite parts, we would
have found F (x = Λ) = g0 + ag2

0 + bg3
0 + . . . Thus g0 is in

general not associated exactly with the scale Λ, but with
Λ up to a factor of order unity.

38 It is quite similar to the Compton wavelength of the pion
which is the typical range of the nuclear force between
hadrons like protons and nucleons.

39 More precisely, working with non-renormalizable couplings
would require us to fine-tune infinitely many of them at
scale Λ−1 to unnatural values. Most of the time, such a
finely-tuned model is no longer predictive.

40 Non-perturbatively, the existence of the limit Λ → ∞

is more subtle than perturbatively. The renormalization
group flow must be controlled in this limit and this is
achieved if non-perturbatively g0 has a finite limit, that
is, if there exists an ultraviolet fixed point of the RG flow.
The case g0 → 0 when Λ → ∞, corresponds to asymptot-
ically free theories, that is, in four space-time dimensions,
to non-abelian gauge theories.


