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Abstract

My aim in this paper is twofold: (i) to distinguish two notions of natu-
ralness employed in Beyond the Standard Model (BSM) physics and (ii) to
argue that recognizing this distinction has methodological consequences.
One notion of naturalness is an “autonomy of scales” requirement: it
prohibits sensitive dependence of an effective field theory’s low-energy ob-
servables on precise specification of the theory’s description of cutoff-scale
physics. I will argue that considerations from the general structure of
effective field theory provide justification for the role this notion of natu-
ralness has played in BSM model construction. A second, distinct notion
construes naturalness as a statistical principle requiring that the values
of the parameters in an effective field theory be “likely” given some ap-
propriately chosen measure on some appropriately circumscribed space of
models. I argue that these two notions are historically and conceptually
related but are motivated by distinct theoretical considerations and admit
of distinct kinds of solution.

1 Introduction

Since the late 1970s, attempting to satisfy a principle of “naturalness” has been
an influential guide for particle physicists engaged in constructing speculative
models of Beyond the Standard Model (BSM) physics. This principle has both
been used as a constraint on the properties that models of BSM physics must
possess and shaped expectations about the energy scales at which BSM physics
will be detected by experiments. The most pressing problem of naturalness
in the Standard Model is the Hierarchy Problem: the problem of maintaining
a scale of electroweak symmetry breaking (EWSB) many orders of magnitude
lower than the scale at which physics not included in the Standard Model be-
comes important.1 Models that provided natural solutions to the Hierarchy
Problem predicted BSM physics at energy scales that would be probed by the
LHC, and many particle physicists expected BSM physics to be detected. These
expectations have been dashed by the first two runs of the LHC. The LHC is

∗Department of Philosophy, University of Southern California, Los Angeles, CA 90089
1One sometimes calls this problem the “little Hierarchy problem,” reserving the title “Hi-

erarchy problem” for the problem of the hierarchy between the EWSB scale and the Planck
scale. Nothing hinges on this distinction in this paper.
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now probing energy scales above those at which many natural BSM models pre-
dicted new physics, but no new physics has been detected. This has led many
in the particle physics community to reflect on what, precisely, the conceptual
content of the naturalness principle is and what continuing role, if any, it ought
to play in guiding current and future theorizing about BSM physics. One can
usefully group the prevalent positions on the topic into three categories.2

1. The Standard Model is unnatural and naturalness should play no role in
the future of high-energy physics theorizing.

Advocates of this position argue that not only have the recent LHC results
demonstrated that there is no natural explanation of the stability of the
EWSB scale, we were mistaken to have thought there was any property of
the EWSB scale crying out for explanation in the first place: the natural-
ness principle was ill-motivated from its inception. There have long been
pockets of skepticism about the motivation for and influence of the natu-
ralness principle; particularly trenchant expressions of such skepticism can
be found in [53] and, for post-LHC perspectives, [45] and especially [54]. It
is also the case that even though many in the particle physics community
have adopted naturalness as an important guide to model construction,
many of the very same members of that community have also long been
willing to seriously entertain certain unnatural models of BSM physics.
This is illustrated by the influence of models with a high scale of su-
persymmetry breaking, such as models with “split supersymmetry”, and
related models [66, 39, 67, 6].

2. The Standard Model is unnatural but future BSM models should explain
the EWSB scale in a way that also explains why no natural explanation
was forthcoming.

Advocates often accept that the naturalness principle was well-motivated
within the context of effective field theory and that we were justified in
seeking a natural explanation of the EWSB. However, they also accept
that recent LHC results demonstrate that no natural explanation of the
EWSB is likely and that a different, “unnatural” explanation should be
sought. For some, this is a role that a multiverse can play in particle
physics. For example, Giudice states that “It is conceivable that the LHC
will find that the Higgs mass does not respect the naturalness criterion,
just like (probably) the case of the cosmological constant. Accepting this
possibility, however, does not imply that we can simply ignore the is-
sue. . . if we accept Unnaturalness, we have to address the question of why
the Higgs is unnatural. At the moment, the multiverse offers the most

2I neglect here the position that advocates simply staying the course, preserving the em-
phasis that has been placed on naturalness at the expense of focusing on more complicated
natural extensions of the Standard Model.
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plausible answer at our disposal” [37, p. 4]. According to this position,
turning to some version of a multiverse to explain the EWSB amounts to
giving up on finding a natural explanation of the stability of the EWSB.3

3. A multiverse provides a novel setting in which we can provide a natural
solution to the Hierarchy Problem and other problems of naturalness.

While the second position argues that pursuing a statistical explanation of
the EWSB scale in a multiverse amounts to giving up on naturalness, this
third position sees the multiverse as offering the possibility of what particle
physicists have sought for decades: a natural solution to the Hierarchy
problem and other problems of naturalness. This position relies on a
particular, statistical notion of naturalness. According to this notion a
property of a theory is considered natural if and only if it is “likely” or
“not improbable” according to some chosen probability distribution.

It is this third stance that receives extended critical scrutiny in this paper.
The plan of the paper is as follows. In section 2, after a selective review of

two episodes from the “pre-history” of naturalness, I present a condensed version
of an argument I have made elsewhere [69] that the best way to understand the
content of the naturalness principle is as a prohibition of sensitive dependence
of low-energy measurable quantities on comparatively high-energy physics. I
argue this understanding renders naturalness arguments well-motivated within
an effective field theory context and provides a single notion on which one can
ground several apparently distinct formulations of naturalness in the physics
literature. In section 3, I briefly review the development of an alternative,
statistical notion of naturalness that began in the 1990s. This development has
made possible the recent proposal that naturalness problems could be embedded
and given natural solutions within a multiverse. In section 4, I examine this
proposal in greater detail and argue that the statistical notion of naturalness
that it employs has little to do with the notion of naturalness that can actually
be motivated by considerations drawn from effective field theory. I conclude
with some brief remarks further distinguishing these two notions of naturalness
and suggest that recognizing this distinction undermines one recently suggested
source of evidential support for a multiverse.

2 Naturalness and the autonomy of scales

I want to begin by briefly describing two important episodes from 20th century
physics in which different problematic aspects of elementary scalar particles were
highlighted. These are the discovery by Weisskopf that the self-energy contri-
bution to the mass of elementary scalar particles is quadratically divergent, and
the much later recognition by Wilson that particle masses do not receive large

3This position is also described in [64, 11, 7], among others.
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radiative corrections if their mass terms are “protected” by a symmetry. My in-
terest in these two episodes is decidedly Whiggish: I describe them here because
both of these aspects were later incorporated into the notion of naturalness as
distinct ways of describing what it is that makes elementary scalars “unnatural”.

2.1 A brief pre-history

The recognition that there is something uniquely problematic about quantum
field theories that contain elementary scalar particles goes back at least to Weis-
skopf [65]. Weisskopf was investigating the self-energy contribution to the mass
of the electron and found that while the self-energy of the electron was logarith-
mically divergent, the self-energy for a charged scalar particle diverged quadrat-
ically.4 With these results in hand, Weisskopf ventured “A few remarks. . . about
the possible significance of the logarithmic divergence of the self-energy for the
theory of the electron” [p. 75]. He begins his remarks by expanding the self-

energy term, denoted W , in powers of e2

hc , yielding the series expansion

W =
∑
n

Wn =
∑
n

cnmc
2

(
e2

hc

)n [
ln

(
h

mca

)k]
k ≤ n

with cn unspecified constants and a a length scale introduced to keep the loga-
rithm finite. Weisskopf expresses the hope that this sum will converge if

δ =

(
e2

hc

)[
ln

(
h

mca

)]
< 1

in which case the self-energy contribution to the electron mass would be simply
W = mc2O(δ): the electron mass multiplied by a term of order δ.

On the assumption that the self-energy contribution is in fact given by W =
mc2O(δ), Weisskopf then aims to define an analogue of the classical electron
radius by setting the self-energy W = mc2. This is satisfied if the analogue of
the classical electron radius, the “critical length”, is

a ∼ h

mc
· exp

(
−hc
e2

)
The significance of the critical length, according to Weisskopf, is that it indicates
the length scale at which a theory becomes inconsistent and new physics must
be present.5

Turning his attention to a quantum field theory of elementary charged scalar
particles, Weisskopf notes that “the situation is entirely different” than the case
of the electron: the self-energy contribution to the mass of the scalar particle
diverges quadratically. Using the same method as above to establish a critical
length for a theory containing elementary charged scalar particles, Weisskopf

4Like many such calculations in the 1930s, Weisskopf made use of the hole-theoretic for-
malism of Dirac; see [56, ch. 2] for calculational methods in the 1930s.

5Weisskopf is here considering a theory to be inconsistent if the series expansion of the
self-energy contribution W does not converge.
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determines that the critical length must be much larger than for the theory
containing only electrons and positrons:

a ∼
(
hc

e2

)− 1
2
(
h

mc

)
Weisskopf concludes his remarks as follows:

This may indicate that a theory of particles obeying Bose statis-
tics must involve new features at this critical length, or at energies
corresponding to this length; whereas a theory of particles obeying
the exclusion principle is probably consistent down to much smaller
lengths or up to much higher energies [65, p. 75].

It is interesting that in addition to being the first to recognize that the
self-energy contribution to the mass of an elementary scalar particle is quadrat-
ically divergent, Weisskopf also drew upon those calculations to extract from
the breakdown of the scalar theory at a given length scale a prediction about
the length scale at which new physics could be expected to exist: the scale a
such that for lengths shorter than a, Weisskopf conjectured that the series ex-
pansion of the self-energy was divergent.6 It is also worth noting that although
the more modern understanding of quantum field theory in which the concept
of naturalness developed was quite different from Weisskopf’s own, it is still
extremely common to find elementary scalar particles described as unnatural
precisely because their mass terms are quadratically divergent.7 Indeed, Zee
refers to the quadratic divergence of elementary scalar particle masses, which
he equates with the Hierarchy problem, as the “Weisskopf phenomenon” [72, p.
419].

The second pre-historical episode is Wilson’s recognition in [70] that ele-
mentary scalar particle mass terms diverge more severely than mass terms of
fermions or gauge bosons because the scalar mass terms do not break any inter-
nal symmetries of a quantum field theory. This recognition comes in a paper in
which Wilson was interested in applying the renormalization group (RG) meth-
ods of Gell-Mann and Low [35] to the strong interactions; it is worth providing
a brief review of the paper in order to offer some context for Wilson’s remark.

Wilson analyzes the behavior of the RG equation

d

d ln(λ)
g(λ) = β(g(λ))

for the case of a hypothetical theory containing a single scale-dependent coupling
g(λ). He approaches the RG equation as the equation of motion for a general
dynamical system and focuses on its possible asymptotic behavior in the infrared
(IR) (λ → 0) and the ultraviolet (UV) (λ → ∞) regions. He allows that the

6This is not to suggest that Weisskopf’s treatment of the scalar theory is unique in this
regard; as shown above, he makes a similar argument in the case of the purely fermionic
theory.

7For example, see [52, 50, 9, 62, 10, 72].
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asymptotic behavior of the RG may be (i) a fixed point, i.e. the coupling g(λ)
hits a fixed point g∗ at which β(g∗) = 0, or (ii) a limit cycle, in which case
the beta function approaches a periodic function with the period given by a
function of the scale λ and the values of the couplings oscillate perpetually (this
situation requires extending the RG analysis to theories with more than one
coupling). Only situation (i) is relevant for our purposes and I will not discuss
situation (ii).

In examining the possible asymptotic fixed point solutions of the RG, Wil-
son further distinguishes between two physical possibilities: (a) it may be the
case that weak and electromagnetic corrections to strong interaction processes
remain small up to arbitrarily high energies (i.e. the weak and electromagnetic
couplings remain small relative to the strong interaction coupling), in which
case there is a theory that treats only the strong interactions that remains at
least approximately valid for arbitrarily high momentum processes; or (b) there
is an energy scale Λ at which the weak and electromagnetic corrections become
too large to be treated perturbatively (i.e. the weak and electromagnetic cou-
plings become comparable in size to the strong coupling), which means that any
theory that treats the strong interactions in isolation is valid only for momenta
λ� Λ.

Wilson begins by assuming that possibility (a) obtains and gives a more de-
tailed, largely qualitative analysis of the possible fixed points of the RG equation
for the coupling g(λ).8 He asks the reader to imagine that the beta function
has multiple asymptotic fixed points in the IR and the UV; the allowed IR fixed
points are g(0) = 0 and g(0) = x2, while the allowed UV fixed points are labeled
g(∞) = x1 and g(∞) = x3. Wilson then partitions the possible values of g(λ)
into basins of attraction. He considers first the basins of attraction for the UV
fixed points: initial values of the coupling g(λ) in the range 0 < g(λ) < x2 all
flow to the value x1 as λ → ∞, while values in the range x2 < g(λ) < x3 will
flow to x3 as λ→∞.

Turning to the IR fixed points, initial values of g(λ) that lie in the range 0 <
g(λ) < x1 flow to 0 as λ → 0, while initial values x1 < g(λ) < x3 flow to x2 as
λ→ 0.

However, Wilson takes his analysis of the asymptotic UV behavior of the
RG equation to suggest that the more plausible physical situation is possibility
(b): there exists a UV cutoff scale Λ� 1 GeV at which any theory that treats
the strong interactions in isolation necessarily breaks down. To make this ar-
gument, Wilson turns from a hypothetical theory of the strong interactions to
quantum electrodynamics, while imagining that the analysis of the asymptotic
UV behavior of the RG equations represented by Fig. 1 above holds for both

8See [70, pp. 1825-6] for the assumptions about the behavior of the β-function underlying
his analysis. He notes that “there is no way of knowing whether these assumptions are true
for quantum electrodynamics or any other given field theory.”
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Figure 1: Reproduced from [70].

cases.9

Wilson first points out that the validity of perturbation theory in familiar
applications of quantum electrodynamics justifies the assumption that the the
initial value of the scale-dependent coupling g(λ) is small for λ � Λ, i.e. suffi-
ciently close to 0 that it lies in the range 0 < g(λ) < x2. He then argues that
his analysis illustrates that the coupling in quantum electrodynamics g(λ) flows
to the fixed-point value x1 as λ → ∞, and that this fixed-point value is inde-
pendent of the value of g(λ) at low energies.10 He concludes that “this suggests
that all particles will couple strongly to photons at sufficiently high momenta;
but this would mean that electrodynamics and strong interactions would mix
strongly, suggesting that pure electrodynamics is valid only below a cutoff mo-
mentum Λ” [70, p. 1832]. Referring back this analysis, Wilson reiterates this
at the outset of the discussion in which he makes his remark about the mass
terms of elementary scalar particles:11

Analysis of the renormalization group for electrodynamics shows
that the λ-dependent charge eλ increases with λ, eventually becom-
ing of order 1. By this is meant that no matter how small the
renormalized charge e is, eλ becomes of order some fixed number

9Of course, we now recognize this was a mistake. Quantum chromodynamics, the theory
of the strong interaction, is asymptotically free, while quantum electrodynamics is not.

10In terminology that is now familiar, but which Wilson introduces immediately prior to
this discussion, this is just to say that x1 is an ultraviolet stable fixed point.

11Wilson also cites [35] and [14] in support of the quotation below.
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independent of e if λ is large enough.12 This suggests that there is
a cutoff Λ beyond which radiative corrections to strong interactions
are too large to be treated as a perturbation. So it will be assumed
here that the theory of strong interactions in isolation is valid only
below the cutoff Λ [70, p. 1838].

Wilson thus treats possiblity (b) as the more physically likely one and explores
what an RG analysis can teach us about the behavior of the strong interaction
at energies E� Λ.

Wilson also recognizes that the existence of such a UV cutoff would invalidate
his above analysis of the UV fixed point structure. The reason is that his analysis
was based on the assumption that the strong interactions could be treated in
isolation up to arbitrarily high energy – i.e. on the assumption of possiblity (a) –
and if possibility (b) obtains that is no longer the case. Instead, Wilson assumes
that physical processes at energies higher than the cutoff are governed by a more
complicated theory in which the strong, electromagnetic, and weak interactions
become unified; it is this theory that determines the value of the strong coupling
at the cutoff scale g(λ = Λ). This means that on the one hand, the RG equation
for g(λ) will receive large weak and electromagnetic corrections as λ approaches
the cutoff Λ, since the weak and electromagnetic couplings become comparable
in size to the strong coupling for λ ∼ Λ. On the other hand, there is no reason
to assume that as λ→∞ the asymptotic RG behavior of the more complicated
Grand Unified Theory (GUT) that takes over above the cutoff scale Λ will be
similar to the asymptotic RG behavior of the theory that treated the strong
interactions in isolation. Accordingly, Wilson turns his focus to the asymptotic
IR behavior of the RG equation for g(λ).

It is at this point that Wilson makes a remark about a property that is
unique to the mass terms of elementary scalar particles. He begins by noting
that RG transformations leave the internal symmetries of a quantum field theory
unbroken: if the set of couplings hnλ that would break the symmetry are zero
at any value of λ then these couplings remain zero at all values of λ. This
requires that any radiative corrections to a symmetry-breaking coupling hnλ
must be proportional to the parameter hnλ itself. This ensures that when hnλ =
0, any possible radiative corrections are also zero and thus that changing the
scale at which the coupling is defined from λ → λ′ will not break any internal
symmetries of the theory. This is what it means for a coupling to be “protected”
by a symmetry: it is “protected” from having its value altered significantly by
radiative corrections. In particular, it is “protected” from acquiring a non-zero
value purely from radiative corrections.

Wilson then notes that to account for symmetries that are very weakly bro-
ken at high energies λ ∼ Λ but strongly broken at lower energies λ ∼ 1 GeV,
it must be the case that some symmetry-breaking couplings are very small at
λ ∼ Λ but grow to O(1) as λ→ 1 GeV. This is only possible if those couplings
do not receive large radiative corrections when λ ∼ Λ, and that requires that

12Wilson has elsewhere defined the “renormalized charge” as the charge renormalized at
λ = 0.
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those couplings be “protected” by a symmetry. In particular, Wilson says that
if a quantum field theory describes light elementary particles, their mass terms
must be “protected” by some symmetry:

. . . all generalized mass terms must break an internal symmetry. A
generalized mass term is any coupling which causes particles to have
finite mass rather than zero mass. It is interesting to note that there
are no weakly coupled scalar particles in nature; scalar particles are
the only kind of free particles whose mass term does not break either
an internal or a gauge symmetry.

This discussion can be summarized by saying that mass or symmetry-
breaking terms must be “protected” from large corrections at large
momenta due to various interactions (electromagnetic, weak, or strong). . . The
mass terms for the electron and muon and the weak boson, if any,
must also be protected. This requirement means that weak interac-
tions cannot be mediated by scalar particles [70, p. 1840, emphasis
added].

After stating that the weak interactions cannot be mediated by scalar particles,
Wilson states that “this rules out” two such models: the models of [47] and [18].

Following ’t Hooft [60], it is now common to hear that the fact that mass
terms of elementary scalar particles are not “protected” by any symmetry makes
those masses unnatural; it is noteworthy that Wilson recognized that this “re-
quirement” was not met by elementary scalar masses already in 1971. More
interesting is that he put this requirement to use as a criterion of theory se-
lection, declaring that it rendered unviable quantum field theories in which the
weak interactions were mediated by elementary scalar particles. This, too, is a
familiar feature of the role that naturalness has played in more modern discus-
sions.

Let me conclude this pre-historical discussion with a few remarks. First,
I have not meant to suggest that these were the only pre-historical episodes
important for shaping the modern understanding of naturalness. In particular,
aesthetic arguments were absent from my discussion. Famously, Dirac believed
that any large numbers must be explicable in terms of simple mathematical
relations between parameters of O(1), a requirement that he motivated on aes-
thetic grounds [28]. I have omitted discussion of this for two reasons. The first is
because Dirac’s concern was about large numbers in general, and made no men-
tion of uniquely problematic features of elementary scalars; in this sense, there
is a more direct connection between the observations of Weisskopf and Wilson
and the later conception of naturalness. The second is because the core of my
argument focuses on the construction and evolution of quantitative measures of
naturalness, and in that process the aesthetic motivation for naturalness played
a less central role than the physical arguments described above.

Second, my aim has not been to suggest that Weisskopf, Wilson, or oth-
ers who noted that elementary scalar particle masses had uniquely problematic
properties, prior to the work of Susskind [58] and ’t Hooft [60], were operating
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with the later, fully developed conception of naturalness that came to be associ-
ated with those properties. My aim has rather been to present evidence that the
later conception of naturalness, and subsequent quantifications of that notion,
emerged from a proximate pre-history of discussions in which elementary scalars
were recognized to be uniquely problematic on primarily physical grounds and
not, for example, solely or even primarily based on aesthetics. In particular, my
aim has been to demonstrate the following:

1. The mass terms of elementary scalar particles have been recognized as
uniquely problematic on the basis of physical arguments since at least the
late 1930s.

2. Two of the problematic features now commonly invoked to explain what
is unnatural about elementary scalar mass terms – quadratic sensitivity
to the cutoff scale and failure to be protected by any symmetry – were
identified long prior to any explicit concept of naturalness.

3. The identification of these features was immediately put to use in predict-
ing new physics and motivating theory selection, roles similar to those that
the concept of naturalness has played in more contemporary discussions.
Weisskopf argued that the quadratic sensitivity of an elementary scalar
mass could be turned into an argument for a “critical length” at which
new physics needed to appear to ensure that the self-energy contribution
to the scalar mass did not become unacceptably large, and Wilson drew
upon the fact that elementary scalar mass terms are not protected by any
symmetry to rule out models that contained elementary scalars.

2.2 Naturalness and effective field theory

It was not until the end of the 1970s that an explicit concept of naturalness was
first introduced, albeit in two different guises, in papers by Susskind [58] and
’t Hooft [60]. By this time it was widely presumed in the physics community
that there existed an energy scale Λ – a UV cutoff – near which the Standard
Model becomes inapplicable, and that physical processes at energies above Λ are
governed by a new quantum field theory; put otherwise, the physics community
had come to believe that what I labeled Wilson’s possibility (b) was likely
realized in nature.

Susskind introduces the concept as follows:

Aside from the subjective esthetic argument, there exists a real dif-
ficulty connected with the quadratic mass divergences which always
accompany scalar fields. These divergences violate a concept of nat-
uralness which requires the observable properties of a theory to be
stable against minute variations of the fundamental parameters [58,
p. 2619].
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By “fundamental parameters” Susskind means the couplings defined at the scale
of the UV cutoff Λ. Elementary scalar particles are unnatural because their
measurable, physical masses (which, for illustration, Susskind imagines to be
∼ 1 GeV) depend very sensitively on the value of the effective, running mass
at the cutoff scale (which Susskind imagines to be the Planck scale Λ = 1019

GeV).
Let me pause here for one last historical aside. Susskind attributes this

particular concept of naturalness to Wilson. In light of that, it is perhaps worth
noting another remark Wilson makes in [70, pp. 1829-30]. Wilson is describing
a scenario in which a coupling g(λ) approaches an ultraviolet stable fixed point
x1 as λ → ∞. Imagine two possible values of the coupling at low energy,
g1(λ = m) and g2(λ = m), such that the difference between g1 and g2 is large.
Then as λ → ∞, that difference will be suppressed (“deamplified” in Wilson’s
terminology) and the difference between the two couplings for λ � m will be
small. Conversely, this entails that very small changes in the value of a coupling
at very high energies will translate into very large changes in its value at low
energies. Wilson describes this as “a problem,” continuing that “physically the
qualitative nature of a given amplitude should be determined by a qualitative
knowledge of the physical couplings which determine that amplitude. If one
has to specify a coupling constant to 1% accuracy in order to determine the
amplitude to 50% accuracy, there is something wrong.” Wilson’s remark is made
while evaluating a different a physical situation than Susskind is discussing –
in particular, Wilson is not at that point talking about elementary scalars nor
assuming the existence of a UV cutoff – but I think Wilson’s claim that there is
“something wrong” with a sensitive dependence of low-energy observables on the
precise value of high-energy couplings suggests that the concept of naturalness
attributed to him by Susskind in 1979 had at least begun to take shape already
in 1971.

Let us now return from this historical aside to the first introductions of an
explicit notion of naturalness in the late 1970s. In [60] the principle introduced
by ’t Hooft under the label “naturalness” appears, at least superficially, to be
a distinct notion from that introduced by Susskind. ’t Hooft introduces it as
“an order-of-magnitude restriction that must hold at all energy scales µ” [p.
135] and motivates it by invoking our experience with solid state physics; in
particular, the relative insensitivity of macroscopic properties of bulk matter to
small variations in the parameters characterizing its microscopic constituents.
He goes on:

. . . it is unlikely that the microscopic equations contain various free
parameters that are carefully adjusted by Nature to give cancelling
effects such that the macroscopic systems have some special prop-
erties. This is a philosophy which we would like to apply to the
unified gauge theories: the effective interactions at a large length
scale, corresponding to a low energy scale µ1, should follow from
the properties at a much smaller length scale, or higher energy scale
µ2, without the requirement that various different parameters at the

11



energy scale µ2 match with an accuracy of the order of µ1

µ2
. That

would be unnatural. . . We now conjecture that the following dogma
should be followed:

at any energy scale µ, a physical parameter or set of physical pa-
rameters αi(µ) is allowed to be very small only if the replacement
αi(µ) = 0 would increase the symmetry of the system.

In what follows this is what we mean by naturalness [60, pp. 135-6].

At first glance, Susskind and ’t Hooft seem to be describing different prin-
ciples. Susskind’s concern is that the self-energy contribution to the physical
mass of the elementary scalar requires the effective mass at the cutoff scale to
be very finely tuned; this, in turn, entails that the measurable physical mass
will be unstable against “minute variations” of the effective mass at the cutoff
scale. He says nothing about symmetry. ’t Hooft, on the other hand, offers
as a necessary condition for a parameter to be natural that the parameter be
“protected” by a symmetry; he says nothing about quadratic divergences or
fine-tuning.13 In what sense, if any, can these two early formulations have been
motivated by a univocal underlying intuition about naturalness?

I will shortly argue that these apparently distinct formulations of natural-
ness can be motivated most compellingly by understanding them as capturing
distinct aspects of an underlying expectation that quantum field theory respect
an “autonomy of scales” principle. However, I want first to introduce one more
common way of phrasing the content of the naturalness principle. This is the
idea that a quantum field theory is natural if and only if all dimensionless pa-
rameters and ratios of parameters either are, or can be explained in terms of,
parameters that are O(1), a notion that Wells [68] calls “Absolute Natural-
ness”.14 For example, Zee describes the notion of naturalness in the particle
physics community as tantamount to an expectation“that dimensionless ratios
of parameters in our theories should be of order unity. . . say anywhere from
10−2 or 10−3 to 102 or 103” [72, p. 419]. Stated simply as a principle about
the expected size of dimensionless parameters appearing in a Lagrangian, this
strikes some physicists as numerology. For example, Hossenfelder has published
a blog posting titled “To understand the foundations of physics, study numerol-
ogy” that criticizes the influence of naturalness-based reasoning in high energy

13Indeed, ’t Hooft’s emphasis on the role of symmetry in his notion of naturalness has led
Grinbaum to suggest that “based upon ’t Hooft’s definition, [naturalness] could have received
a. . . conceptual foundation similar to that of symmetry” [41, p. 616]; see also [43] in which
the “conventional” approach to naturalness is described akin to a symmetry principle. I do
not think this kind of justification for naturalness is compelling, but these remarks illustrate
the extent to which ’t Hooft’s notion of naturalness has become identified with his remarks
about symmetries.

14Wells offers an interesting counterfactual history that argues strict insistence on Absolute
Naturalness could have grounded a series of inferential steps leading from quantum electro-
dynamics to the Standard Model.
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physics [44]. Even Wilson became suspicious of the idea that dimensionless pa-
rameters in a quantum field theory have a “natural” size of O(1) toward the end
of his career, stating that the claim that small scalar masses would be unnatural
“makes no sense when one becomes familiar with the history of physics. There
have been a number of cases where numbers arose that were unexpectedly small
or large” [71, p. 13].

Setting aside for the moment how one might justify a requirement that all
dimensionless parameters be of O(1), it also seems as distinct from Susskind and
’t Hooft’s formulations of naturalness as those two formulations seem from each
other. This raises two questions: how can these formulations of naturalness be
justified, and what is the relationship between them?

In [69], I have argued that the answers to these two questions are closely
related. One can understand these apparently distinct notions of naturalness as
highlighting distinct ways that elementary scalar masses violate an underlying
“autonomy of scales” expectation: for physical scales EL and EH that are sepa-
rated by several orders of magnitude, EL � EH , physical processes (couplings,
observables) at EL should be relatively insensitive to precise characterizations
of physical processes (couplings, observables) at EH .15 This, in turn, offers the
most compelling justification for the belief in and application of various formu-
lations of naturalness in the physics literature: to the extent that the structure
of effective field theory justifies the autonomy of scales expectation, then it jus-
tifies to the same extent the seemingly distinct formulations of naturalness. To
appropriate the famous picture of Descartes: the whole of naturalness is like a
tree. The roots are effective field theory, the trunk is the autonomy of scales,
and the branches emerging from the trunk are the precisifications, which may
be reduced to three principal ones, namely quadratic divergences, symmetry,
and dimensionless parameters of O(1).

One can motivate the three formulations of naturalness discussed above by
invoking the autonomy of scales as follows.16 Susskind’s formulation of natu-
ralness as requiring “the observable properties of a theory to be stable against
minute variations of the fundamental parameters” is straightforward to under-
stand as formalizing an autonomy of scales expectation: indeed, given that he
formulates the naturalness principle in a framework that assumes a “fundamen-
tal” scale Λ and a “light” scale EL with EL � Λ, Susskind’s formulation of
naturalness essentially is what I described as the autonomy of scales expecta-
tion.

The relationship between ’t Hooft’s formulation and an autonomy of scales
expectation is prima facie murkier, but examining ’t Hooft’s own stated moti-
vation for introducing his notion of naturalness is clarifying. As noted above, ’t
Hooft begins by stating that our experience with theories of solid state physics
suggests it is unlikely that the macroscopic properties of bulk matter depend

15This understanding of naturalness is also advocated in [36, 37, 11, 38].
16What follows is not primarily aimed at historically accurate exigesis: whether Susskind

or ’t Hooft, or others actually were motivated by an autonomy of scales expectation is not
of primary importance here. That said, I think there is fairly good evidence that they were,
some of which will be briefly presented here.
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sensitively on relationships between parameters in the theory governing that
matter’s microscopic constituents. He then states that this feature of solid state
physics should be satisfied by effective field theories.17 He translates the solid
state physics intuition into the quantum field theoretic framework as a require-
ment that the physical processes (couplings, observables) in a theory charac-
terizing physics at the scale EL should not depend sensitively on relationships
between parameters defined at a much higher scale Λ; the parameters αi(Λ) in
the effective field theory characterizing physical processes at Λ should not have
to be carefully set to cancel with one another in order for the theory character-
izing physics at EL � Λ to be empirically adequate. The rough degree to which
such a cancellation would be unnatural is given by the ratio EL/Λ, and thus is
determined by how many orders of magnitude separate the scales in question.

It is this kind of delicate cancellation between properties of effective field
theories characterizing physics at widely separated scales that is unnatural ac-
cording to ’t Hooft. He then imposes the symmetry requirement as a necessary
condition for ensuring that an effective field theory not contain any parameters
that require such unnatural cancellations between different scales.18

Finally, the claim that a parameter in an effective field theory is natural if
and only if it is of O(1) can be motivated by appeal to the autonomy of scales
as follows. Consider an effective field theory of a real scalar field defined at the
UV cutoff scale Λ:

S =

∫
d4x

1

2
(∂µφ)2 +

∑
n≥2

gnOn

where the operators On have mass dimension n and are products of scalar field
operators and their derivatives. To ensure that the action S has the appropriate
units, the couplings gn have the form anΛ−(n−4) where an is a dimensionless
number. Dimensional analysis allows one to estimate, to first order in pertur-
bation theory, the contribution of any operator On to a scattering amplitude
for particles with external momenta EL:∫

d4x gnOn ∼ an

(
EL
Λ

)(n−4)

Once the external momenta of the particles and the UV cutoff scale are spec-
ified, one has a qualitative picture of the dominant interactions determining
the scattering amplitude at a given scale EL, along with a rough quantitative

17’t Hooft assumes that all the gauge theories he is investigating in [60] have a UV cutoff,
which he refers to as the “Naturalness Mass Breakdown Scale” and estimates to be at about
1 TeV.

18A referee suggests that ’t Hooft’s claim that the smallness of a parameter must be ac-
counted for with a symmetry was motivated by reflection on the central methodological role
that symmetries occupy in constructing quantum field theories. I think this would have been
a strong argument for ’t Hooft to have given, but I am unable to find textual support for it in
[60]. However, I think it is an interesting and plausible conjecture about ’t Hooft’s attitude
toward quantum field theories at the time and I mention it here as an invitation for interested
parties to take up the question.
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estimate. In particular, one can see that interactions On with mass dimension
n > 4 will be heavily suppressed at energies EL � Λ: these operators become
important only for characterizing physical processes at high energies and their
contributions to low-energy processes can be ignored. On the other hand, in-
teractions with mass dimension n < 4 contribute more strongly at low energies
than at high energies; they are important for characterizing low-energy physical
processes, but become unimportant at very high energies. Throughout many
areas of physics this type of dimensional analysis argument is ubiquitous, and
is typically reliable.19

These dimensional analysis estimates of the contributions of interactions at
different scales all depend on the dimensionless numbers an being roughly of
O(1). If those parameters are allowed to be very small or very large, then the
discussion above is unsound: the sensitivity of scattering amplitudes at EL � Λ
to, say, the operator On=8 can’t be reliably estimated based solely on the scales
involved if an=8 is allowed to be of O(1010). The expectation that dimensionless
parameters in a quantum field theory should be of O(1) can thus be justified
on autonomy of scales grounds: one ought to be able to give a qualitatively
accurate characterization of the interactions on which a scattering amplitude
will depend based solely on the scales involved in the problem.

In response to the question about the relationship between these apparently
distinct formulations of naturalness, then, I claim that they can all be under-
stood as capturing different manifestations of an underlying expectation of the
autonomy of scales in effective field theory. Turning to the second question:
understood as a principle about the autonomy of scales, how well motivated is
naturalness as a guide to BSM model construction?

I think that understood in this fashion there is – or at least, there was
prior to recent LHC results – a reasonably good, but defeasible, motivation
for employing naturalness as a guide when constructing BSM models. The
motivation stemmed in part from structural features of effective field theory
and in part from induction on our experience with naturalness-based reasoning
in particle physics in the 20th century. The structural features that I have in
mind are the the applicability of the Appelquist-Carazzone decoupling theorem
and, more generally, the applicability of renormalization group methods. The
experiences with naturalness-based reasoning in particle physics that I have in
mind are (i) all couplings in the Standard Model are natural except for the
mass of the Higgs boson, and (ii) in several important episodes in 20th century
particle physics, successful predictions either could have been made or were in
fact made based on expectations of the autonomy of scales similar to those
motivating naturalness requirements.20 The particular episodes I have in mind
are the prediction of the positron, the prediction of the mass of the ρ-meson,
and the prediction of the mass of the charm quark. Since these are discussed in

19See [26] for a complementary discussion of the way that dimensional analysis informs
intuitions about naturalness.

20The claim that all couplings of the Standard Model except the Higgs boson mass are
natural is false if one is inclined to consider the cosmological constant as a Standard Model
coupling.
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some detail by others [36, 50, 69], I will focus on the motivations coming from
the structure of effective field theory.

Renormalization group methods, at their core, are methods for evaluating a
physical process involving many scales by systematically analyzing the process
one scale at a time. Suppose one has a quantum field theory, given by an action
SΛ and defined up to a chosen UV cutoff Λ, and they are interested in studying
physical processes at energies EL � Λ. The theory defined up to Λ may contain
degrees of freedom that are irrelevant for characterizing processes at EL, and it
is typically the case that calculations are more complicated in the theory defined
up to Λ. Renormalization group methods allow us to separate the scales of the
problem into “momentum slices” of width dΛ and systematically analyze the
problem one “slice” at a time.

This is done by evaluating the functional integral associated with SΛ be-
tween Λ and Λ−dΛ. As one iterates this process one may encounter thresholds,
such as the masses µ of heavy particles, at which some set of fields is “inte-
grated out” of the theory entirely, producing a new effective theory containing
only “light” degrees of freedom and applicable only up to a new cutoff energy
µ, with EL � µ < Λ. Renormalization group methods tell us that, in general,
the high energy degrees of freedom that have been integrated out contribute
to the resulting low-energy effective theory through (i) modifying the values of
the couplings in the low-energy theory and (ii) small corrections to scattering
amplitudes calculated in the low-energy theory for particles with external mo-
menta � µ. The widespread applicability of renormalization group methods
justifies a general expectation that the characterization of physical processes at
low energies EL � Λ will not depend sensitively on the structure of the theory
at the cutoff scale Λ.

A related result sometimes invoked to justify the expectation of the auton-
omy of scales in effective field theory is the decoupling theorem, which states
precise conditions under which one can integrate heavy fields out of a functional
integral and produce a consistent, low-energy effective field theory which, as
above, will have altered couplings and small corrections to scattering ampli-
tudes calculated in the low-energy theory [5, 49, 20, 48]. Dawson, for example,
has said that the problem with the Higgs boson mass stems from a failure to
obey the decoupling theorem: “The Higgs boson mass diverges quadratically!
The Higgs boson thus does not obey the decoupling theorem and this quadratic
divergence appears independent of the mass of the Higgs boson” [22]. As I will
discuss below, Dawson’s statement is, as a technical matter, not correct but
illustrates the idea that the problem with elementary scalar particle masses is
that they seem to violate the spirit, if not the letter, of the structural features
that underwrite the autonomy of scales in effective field theories.

Renormalization group methods and the decoupling theorem certainly do
license some expectation that physical processes at low energies will be largely
insensitive to the detailed structure of the effective field theory at much higher
scales. The question, however, is whether they license the right kind of ex-
pectation: that the values of parameters in the low energy theory (and thus
any observables that are functions of those parameters) will be insensitive to
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the values of parameters at the cutoff scale Λ. Put another way, the question
is whether, and in what sense, Giudice’s claim that “[naturalness] is the con-
sequence of a reasonable criterion that assumes the lack of special conspiracies
between phenomena occurring at very different length scales. It is deeply rooted
in our description of the physical world in terms of effective theories” [37, p. 3]
can be justified by renormalization group methods and the decoupling theorem.

The short answer is that requiring that a quantum field theory be natu-
ral demands a more stringent autonomy of scales than we are strictly licensed
to expect by these structural features of effective field theory. Nothing in the
structure of effective field theory just described places any restrictions on how
sensitive observables calculated in a low-energy effective field theory, obtained
by integrating out high-energy degrees of freedom, can be to the values of pa-
rameters in the original effective field theory defined up to the cutoff scale Λ.
This is why Dawson’s statement about the decoupling theorem was not correct;
the decoupling theorem does not place any constraints on the magnitude of
the corrections that couplings in the low-energy effective theory can receive.21

Renormalization group methods and the decoupling theorem tell us only that
the effects of the heavy degrees of freedom that have been integrated out can be
incorporated into the couplings in the low-energy effective theory; it offers no
assurances that one won’t have to arrange for “conspiracies” between parame-
ters at the cutoff scale Λ to ensure that observables in the low-energy effective
theory can be calculated accurately. Strictly speaking, the sense of the auton-
omy of scales that is underwritten by the structure of effective field theories is
independent of the stricter notion demanded by naturalness.

One can read this observation as a first caveat to the idea that naturalness,
understood as a principle about the autonomy of scales, is well-motivated within
effective field theory. Naturalness in this sense is motivated insofar as structural
features of effective field theory lead us to expect a general insensitivity of low-
energy observables to the structure of the theory at much higher energies, but
it goes beyond what is strictly licensed by those structural features. As I said
above, unnatural theories seem to violate the spirit, though not the letter, of
the relationship between scales in effective field theory.

There is a second caveat to this way of understanding naturalness. It is not a
precise criterion, but rather a rough physical heuristic. How sensitive can a low-
energy observable be to the values of couplings in the high-energy theory before
it counts as problematic? How many orders of magnitude have to separate the
scales EL and Λ before matching of O(EL

Λ ) between parameters at the scale
Λ becomes unnatural? How large or small can a dimensionless parameter be
before it is not considered of O(1)?22 I will turn attention to formal measures
of naturalness momentarily, and the imprecision here may initially seem like a
drawback when compared to the apparent precision of the quantitative measures

21In [20, chapter 8], for example, a pedagogical proof of the decoupling theorem is given using
a scalar field theory in which the couplings in the low-energy effective theory are quadratically
sensitive to the high-energy physics that is integrated out.

22Recall Zee’s somewhat relaxed attitude on this score; see also [68, p. 103] for a similarly
relaxed attitude.
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of naturalness one finds in the physics literature. However, it has proven very
difficult to construct any particular quantitative measure of naturalness that
earns widespread approval within the particle physics community. It is a virtue
of understanding naturalness as a rough physical heuristic about the autonomy
of scales that it offers an explanation for the difficulty of building a satisfactory
quantitative measure of naturalness. The endeavor seeks to impose unwarranted
precision on a essentially imprecise concept, running afoul of an old Aristotelian
dictum: “it is the mark of an educated man to look for precision in each class
of things just so far as the nature of the subject admits.”

3 Naturalness quantified

In order for naturalness to serve as a guide to constructing models of BSM
physics and extracting predictions from them – the use to which the principle
was put already by Susskind [58] and ’t Hooft [60] – a desire to formulate a
more quantitative statement of the principle is understandable.23 The first, and
most influential, quantitative measure of naturalness was given by Barbieri and
Giudice [12]. They explicitly aimed to quantify a notion of naturalness according
to which a parameter’s unnaturalness is captured by the degree to which it
violates an autonomy of scales expectation: “let us finally spend a word on the
significance of the ‘naturalness’ criterion that we are employing. The problem
of the quadratic divergences of the Higgs squared mass is a serious one. There
is no known example of cancellation between a quadratic divergence in the low
energy theory and contributions from shorter distances” [p. 73]. To quantify
this notion, they introduce a parameter ∆i (BG) capturing the sensitivity of a
low-energy observableM(αi) to infinitesimal variations in parameters αi defined
at higher energies:24

∆i (BG) =

∣∣∣∣ αi
M(αi)

∂M(αi)

∂αi

∣∣∣∣
Barbieri and Giudice then impose the requirement that a theory be considered
natural if and only if ∆BG ≡ max

{
∆i (BG)

}
< 10, and use this to extract upper

bounds for the masses of particles in the Minimal Supersymmetric Standard
Model (MSSM).

Since [12], there have been a number of proposals to revise this measure, the
allowed value of ∆, or both.25 My claim is that as these quantitative measures
of naturalness developed, a new notion of naturalness developed too. According
to this alternative notion, naturalness is a statistical property: a parameter (or

23The reader is encouraged to see Grinbaum [41, section 3] for a complementary discussion
of the evolution of quantitative measures of naturalness and how the concept of naturalness
itself underwent modifications through this process.

24In the original example, the low-energy observable is MZ , standing in for the scale of
EWSB, and they consider variations of parameters αi related to the scale at which super-
symmetry is broken in a given model. The prefactor αi

M is included to remove an overall
dependence on the scale of αi and M.

25See, for example, [23, 3, 4, 2, 19, 8].
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model) is natural if and only if it is “likely” or “probable” according to some
measure defined over some space of parameters (or models).

This alternative notion was not introduced fully in a single paper, but de-
veloped gradually. The earliest outlines of this alternative notion begin taking
shape in the early 1990s, beginning with de Carlos and Casas [23]. In that paper,
de Carlos and Casas note that ∆BG does not capture only the local sensitivity
of an observable M(αi) to infinitesimal variations of αi; it also captures any
global sensitivity in the functional dependence ofM on any αi. For example, if
M were the mapping M : α 7→ αn with n� 1, then the Barbieri and Giudice
measure yields an unacceptably large value of ∆BG independent of the value αi.

This global sensitivity of the Barbieri and Giudice measure was also recog-
nized by Anderson and Castaño [3]. They thought that a good measure of natu-
ralness should declare a model unnatural only if the model required fine-tuning,
and the fact that global sensitivity is not a reliable indicator of fine-tuning led
them to conclude that the Barbieri and Giudice measure was inadequate as a
measure of naturalness. This, in turn, motivated them to introduce an explic-
itly statistical notion of naturalness, which they took to more reliably indicate
the degree of fine-tuning required in a model. They propose as a measure of
naturalness

∆i (AC) =
∆i (BG)

∆i (BG)

This is the Barbieri and Giudice measure rescaled by an “average” fine-tuning
∆i (BG) over some range of the parameter(s) αi. In principle, this need not
signal any break with the “autonomy of scales” understanding of naturalness
that I outlined above: one might reasonably think that a global sensitivity of
a model’s low-energy observables to high-energy parameters is not terribly in-
formative, while a model whose low-energy observables exhibit different relative
local sensitivities at distinct points αj and αk of parameter space might be
telling us something interesting about the model at those two points.

In practice, however, Anderson and Castaño do initiate a break from this
understanding of naturalness in constructing their refined measure. In particu-
lar, they are the first to explicitly link naturalness to the statistical likelihood of
specific values of high-energy parameters. They state that “we wish to system-
atically clarify what measures of fine tuning best quantify our intuitive notion
of naturalness and how these measures should be normalized. . . Any measure
of fine tuning that quantifies naturalness can be translated into an assumption
about how likely a given set of Lagrangian parameters is” [3, p. 302].

To accomplish this, they must first assume a probability distribution f(αi)
over the fundamental parameters αi; as they recognize, the choice of any partic-
ular f(αi) “necessarily introduces an element of arbitrariness into the construc-
tion” [p. 302].26 In particular, they note that “our choice of f(αi) reflects our

26A number of such choices have to be made in any attempt to construct a quantitative
measure of naturalness, as is discussed in some detail in [34] and [21]. As I said above, I
think there is a plausible argument to be made that this inevitable sense that one is making
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theoretical prejudice about what constitutes a natural value of the Lagrangian
parameter αi” [p. 302]. Once one has selected a distribution f(αi), however,
one can translate this into a probability distribution over observables X (e.g.
MZ): “In studies of naturalness, we may ask: If the fundamental Lagrangian
parameters at our high energy boundary condition are distributed like f(αi),
how likely is a low energy observable, X(αi), to be contained in an interval
u(X)dX about X?” [p. 302]. Given that the experimental values of observ-
ables like MZ are known, one can then adopt the “interval” u(X) = X; if a set
of fundamental parameters distributed according to a distribution f(αi) make
it unlikely that X(αi) = X, one concludes that either (i) one’s selection of a
“natural” distribution of fundamental parameters f(αi) must be revised or (ii)
the model is unnatural.

It is important for Anderson and Castaño that one be able to distinguish
between sensitivity and naturalness. In particular, they treat naturalness as
closely related to, but distinct from, the sensitivity of certain low-energy ob-
servables to infinitesimal variations in the high-energy parameters. They draw
this distinction in their conclusion:

We have analyzed the prescription popularly used to measure fine
tuning. This prescription is an operational implementation of Susskind’s
statement of Wilson’s sense of naturalness, ‘Observable properties
of a system should be stable against minute variations of the fun-
damental parameters.’ Because this prescription is only a measure
of sensitivity, we found that it is not a reliable measure of natural-
ness. We then constructed a family of prescriptions which measure
fine tuning more reliably. Our measure is an operational imple-
mentation of a modified version of Wilson’s naturalness criterion:
Observable properties of a system should not be unusually unstable
against minute variations of the fundamental parameters” [3, p. 307,
emphasis added].

Anderson and Castaño thus present themselves as breaking with the “autonomy
of scales” understanding of naturalness and presenting a distinct, statistical
notion of naturalness.27

As a linguistic matter, the probabilistic notion of naturalness proposed by
Anderson and Castaño is a minor modification of the autonomy of scales no-
tion: they conclude that a natural model is one in which observables are not
unusually sensitive to the values of fundamental parameters. As a conceptual
matter, however, Anderson and Castaño’s desire to construct a notion of natu-
ralness that translated into an assumption about a probability distribution over

arbitrary choices stems from trying to impose unwarranted mathematical precision on an
imprecise physical heuristic.

27Anderson recalls that their understanding of naturalness at the time was that “if you
imagine that the fundamental (Lagrangian) parameters had some smooth probability distri-
bution, an observable parameter would be unnatural if the measured value of that parameter
was only within some characteristic range around the measured value for an unusually small
part of the parameter space relative to other values” (personal communication). This has no
essential connection to a notion of interscale sensitivity.
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fundamental parameters resulted in an early and important step toward the
development of a statistical notion of naturalness.

As I said above, this development occurred gradually. As summarized by
Grinbaum [41, section 3], it became increasingly popular to interpret measures of
naturalness as providing information about probability distributions on param-
eter space. For instance, several years after [3], one finds Ciafaloni and Strumia
treating measures of naturalness as a source of probabilistic information about
parameter space [19], while Giusti, Romanino, and Strumia [40] speak similarly
of the “naturalness probability” of certain regions of parameter space. By the
time Athron and Miller propose to “construct a tuning measure which deter-
mines how rare or atypical certain physical scenarios are” [8, p. 3] they are
building on over a decade of similar interpretations of naturalness.

In subsequent years this statistical notion of naturalness has become widespread,
leading to a bifurcation of naturalness into two notions which are closely re-
lated, both historically and conceptually, but essentially distinct: one notion of
naturalness according to which naturalness problems are failures of an expec-
tation about the autonomy of scales, and a second notion according to which
naturalness problems stem from a parameter (or theory) being “unlikely” or
“improbable”. A similar distinction has been recognized by Wells [67], who
distinguishes “Principled Finetuning” from “Chance Finetuning” and suggests
that these two distinct notions call for different types of solutions.

As I discussed in the Introduction of this paper, none of the BSM physics
predicted by natural extensions of the Standard Model has been detected at the
LHC and this has led to a rough trifurcation of attitudes about the status of
naturalness in particle physics. On the one hand, many have concluded that
since “no new physics has been so far seen at LHC with

√
s = 8 TeV. . . while

this is not conclusive evidence. . . it is fair to say that the most straightforward
interpretation of present data is that the naturalness ideology is wrong” [33].
This, I think, is a quite reasonable statement insofar as one understands natu-
ralness as a notion related to the autonomy of scales. On the other hand, one
finds increasingly frequent remarks that the best hope for saving the naturalness
ideology comes from embedding problems of naturalness into a new physical set-
ting: that of a vast landscape of effective field theories. This proposal hinges
on entirely divorcing naturalness from the effective field theory context and its
attendant autonomy of scales-based justification and re-casting it as a concep-
tually independent, purely statistical notion. The result, I claim, is a notion
employed in this new physical setting that is “naturalness” in name only.

4 Naturalness in the multiverse

It is increasingly common in high-energy physics – particle physics, quantum
gravity, and early universe cosmology – to encounter the idea that our universe
may be an isolated point in a much larger multitude of causally disconnected
universes: a multiverse. Most commonly, the picture is that of a large number
of effective field theory vacua that arise from different compactifications of extra
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dimensions in string theory models, with these vacua populated by some mech-
anism for eternal cosmic inflation.28 The result is a large space of low-energy
effective field theories – the string landscape – across which low-energy physics
such as symmetries, parameter values, and particle content can vary.

One also often finds it suggested that the notion of naturalness developed in
the context of effective field theory in a single universe can be conservatively em-
bedded into a multiverse setting. This trend is noted by Giudice, who remarks
that

There is already ongoing activity on how the concept of naturalness
could be reshaped in post-natural times. . . I will only comment on a
single new trend: the idea that the explanation of Higgs naturalness
may not lie behind some still undiscovered symmetry, but within the
cosmological evolution of the universe. The most daring approach
of this kind is based on a multiverse populated by eternal inflation,
in conjunction with the idea that fundamental parameters. . . [may
be] dynamical variables that take different values in a landscape of
vacuum states [38, p. 8].

It is not hard to substantiate Giudice’s claim that this is a trend. Consider a
representative sample of quotations:

• Dine, Gorbatov, and Thomas: “[We] stress that within the landscape,
conventional notions of naturalness are sharpened, not abrogated” [27].

• Silverstein: “I find the statistical program for seeking generic properties of
string vacua extremely interesting, particularly in its prospects for refining
our notions of naturalness” [57].

• Carroll: “the possible epistemological role of the multiverse is to explain
why our observed parameters are natural” [16].

• Douglas: “Moduli stabilization also determines the distribution of vacua...and
thus the distribution of couplings and masses in the low energy effective
theory. One can make detailed statistical analyses of this distribution,
which incorporate and improve the traditional discussion of naturalness
of couplings” [31].

The notion of naturalness upon which all of these authors draw is the statistical
one whose development was sketched above. Douglas has re-cast this statistical
notion in the setting of the string landscape as a principle of stringy naturalness:

An effective field theory (or specific coupling, or observable) T1 is
more natural in string theory than T2, if the number of phenomeno-
logically acceptable vacua leading to T1 is larger than the number
leading to T2 [30, 32, 31].

28For pedagogical discussion of the details of compactification mechanisms and the origin
of the landscape, see [46] or [24].
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Though not everyone arguing that a multiverse may offer solutions to natural-
ness problems uses Douglas’s exact definition, the statistical notions employed
are sufficiently similar that I will treat “stringy naturalness” as a catch-all term
for the notion(s) of statistical naturalness employed in the multiverse.

In a multiverse setting, then, naturalness problems are transformed from
problems concerning the autonomy of scales to problems concerning the count-
ing of vacua with phenomenologically acceptable values of the mass of the
Higgs boson and/or the cosmological constant. There are several properties
of the string landscape that might immediately give one pause.29 In order to
count phenomenologically acceptable string vacua, one needs both a measure for
counting and a clearly specified space of phenomenologically acceptable string
vacua; in a string landscape with the vacua populated by some mechanism for
eternal inflation, one has neither. The lack of a non-arbitrary measure is well-
known, and stems from the need for eternal inflation: as Guth [42] points out,
“In an eternally inflating universe, anything that can happen will happen; in
fact, it will happen an infinite number of times.”30 This makes clear the prob-
lem with imagining that one can simply count vacua and then compare relative
frequencies: one cannot define the relative frequency of vacua with property
A to vacua with property B if both numbers are infinite. As [42] points out,
one can introduce a regularization method to get a meaningful ratio, but do-
ing so produces results that depend sensitively on apparently arbitrary choices
about the regularization; for example, if one orders the natural numbers N as
{1, 3, 2, 5, 7, 4, . . .} and takes N → ∞ one gets that the relative frequency
of odd numbers in N is two-thirds, while choosing {1, 2, 3, 4, 5, . . .} yields a
relative frequency of odd numbers in N of one-half.

I will argue below that by re-casting in the string landscape the statistical
notion of naturalness born in BSM physics, one loses the effective field theory
structure that made it seem troubling that the measured value of the Higgs
mass was highly sensitive to variations of the high-energy parameters; that
is, one loses the motivation for viewing naturalness problems as “problems”
at at all. The measure problem entails that the situation is even worse than
that: one also loses any mathematically well-defined, non-arbitrary notion of
probability that was associated with the statistical notion of naturalness in
the BSM setting. Even if, in the BSM context, one preferred the statistical
conception of naturalness to the autonomy of scale notion, the mathematically
well-defined notion of probability attendant to that statistical conception that
contributed to its appeal in the BSM context does not carry over to the string
landscape.

In fact, for all of the trouble one faces in defining a measure on the string
landscape, there is an even more fundamental question that is unanswered:
what, precisely, is the space on which one seeks to define a measure? Specifically,
it is unclear how much volume of the space of all apparently consistent low-
energy effective field theories is occupied by effective field theories that can

29My thanks to a referee for urging me to address this.
30See also [55] for a discussion of this problem that is more directly focused on the string

landscape.
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arise from string theory. If the answer is that any consistent low-energy effective
field theory can be produced by some string compactification, then the space
on which one is attempting to define a measure is the space of all low-energy
effective field theories. This attitude is not uncommon: as Brennan, Carta,
and Vafa [15, p. 20] state, “there has been a distinct philosophical shift in
the community over the past decade. . . Instead of starting with fully-fledged
string theory and studying the compactifications down to 4D, many have started
studying effective four dimensional quantum field theories. . .The common lore
is that because the string landscape is so large, it is likely that any consistent
looking lower dimensional effective field theory coupled to gravity can arise in
some way from a string theory compactification.”

Contrary to this common lore, it has recently been conjectured that re-
quiring that a low-energy effective field theory be UV-completable into string
theory places strong constraints on the properties that the effective field theory
can have. According to this conjecture, most apparently consistent low-energy
effective field theories cannot arise from string compactifications, with the result
that the string landscape occupies a very small volume in the space of all low-
energy effective field theories [61, 51, 15].31 Those effective field theories that
cannot be UV-completed into string theory constitute the “swampland” and
the conjecture that the landscape occupies a very small volume in the enormous
space of all low-energy effective field theories is the “swampland conjecture.”
The truth or falsity of the swampland conjecture is relevant to any attempt to
employ a statistical notion of naturalness on the string landscape; insofar as
one does not know which low-energy effective field theories can arise from string
theory, one does not even have a clear specification of the space on which they
hope to define a measure.

Whether the swampland conjecture is true or not, the space on which one
is trying to define a naturalness measure is one in which not merely the param-
eter values, but also the symmetries, particle content, and so on can vary at
different points in the space. This is starkly different from the situation in BSM
applications of naturalness where one selects a single model, with fixed particle
content and symmetry group, and evaluates the sensitivity of its observables to
variations around different points in a clearly specified parameter space. I take
these considerations to indicate that even if a statistical notion of naturalness
could be well-defined in the string landscape, it would have little conceptual
relationship to even the statistical notion of naturalness that is employed in the
context of BSM physics, and would play a quite distinct methodological role
from that it plays in BSM physics.

All of that said, advocates of re-casting naturalness in a multiverse often
prefer to proceed as if the only feature of the multiverse that is relevant is that
it is a large space of low-energy effective field theories across which the values of
parameters, like the mass of an elementary scalar particle or the cosmological
constant, can vary. Even setting aside the above concerns and proceeding with

31See also [1] for an early investigation of the properties an effective field theory should
satisfy if it is to have a UV completion.
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the discussion on these terms, it quickly becomes clear that the conception of
naturalness being employed in these discussions has essentially nothing to do
with the notion that was well-motivated within the structure of effective field
theory; the result is that in a multiverse, one loses the traditional justification
for viewing naturalness problems as “problems” at at all.

One preliminary indication of this is that just the numerical value of the
Higgs boson mass was never the compelling problem for BSM physics; rather,
that the value seemed puzzling was a symptom of its sensitivity to the details
of the Standard Model’s structure at high energies. According to those who
developed the notion of naturalness – Wilson, Susskind, ’t Hooft, Barbieri and
Giudice, and others – it was this sensitivity that was unnatural in the context
of effective field theory. In that sense, the counting problems that stringy nat-
uralness picks out as requiring solutions have no relationship to the notion of
naturalness that is motivated within effective field theory and the problems it
identifies.

It is true that stringy naturalness bears some conceptual relationship to
the statistical notion of naturalness whose development was sketched above.
As was argued above, that statistical notion itself has tenuous connection to
the original conception of naturalness as an autonomy of scales requirement,
but it is certainly true that the statistical conception of naturalness retains at
least some connection to the autonomy of scales notion within the context of
effective field theory. If for no other reason, this is ensured by the fact that
the quantitative measures constructed by Anderson and Castaño or Athron and
Miller, for instance, are variations on the Barbieri and Giudice measure, which
was explicitly constructed to track the sensitivity of low-energy observables to
variations of high-energy parameters. Insofar as one is supposed to measure
stringy naturalness by something like a straightforward counting of vacua, it
does not enjoy even this formal relationship to the Barbieri and Giudice measure.
Whatever conceptual relation there is between the autonomy of scales notion
of naturalness and the statistical notion of naturalness in the BSM context,
it is entirely severed when the latter is re-cast as “stringy naturalness” in a
multiverse context.

There is a specific wedge issue that is helpful for seeing the way in which the
autonomy of scales notion of naturalness and stringy naturalness come apart:
whether low-energy supersymmetry should be considered natural. Low-energy
supersymmetry is, of course, paradigmatically natural according to the auton-
omy of scales conception of naturalness; its ability to provide an extension of
the Standard Model that naturally explained the stability the EWSB has long
been one of the most popular theoretical arguments in its favor. By contrast,
and somewhat remarkably, low-energy supersymmetry may count as unnatural
according to stringy naturalness!

It has long been unclear whether a low-energy scale of supersymmetry break-
ing is statistically favored among the effective field theories in the landscape.
Attempts to analyze the statistical distribution of low-energy effective field the-
ories in the landscape have led to conflicting results; see [29, 25, 59, 32, 27, 31]
and many references therein. This, combined with the definition of stringy nat-
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uralness as “statistically favored in a multiverse” is what allows Douglas [31] to
claim that an argument “from stringy naturalness” suggests that string theory
prefers a supersymmetry breaking scale of 30 − 100 TeV. That those who em-
ploy stringy naturalness are not working with the same notion of naturalness as
Wilson, Susskind, ’t Hooft, or Barbieri and Giudice is clear from the fact that
this is a supersymmetry-breaking scale several orders of magnitude too high for
the MSSM and other simple supersymmetric extensions of the Standard Model
to be natural, according to the autonomy of scales notion of naturalness.

I certainly do not claim to have any particular insight into whether low-scale
supersymmetry breaking is, in fact, statistically favored in the string landscape,
but such insight is unnecessary for my present aim.32 I want only to show how
thoroughly divorced the notion of stringy naturalness employed in a multiverse
setting is from the autonomy of scales notion of naturalness developed in the
context of effective field theory. All that is needed to achieve that goal is the fact
that it is widely considered an open question whether low-energy supersymmetry
is stringy natural in a multiverse setting, while low-energy supersymmetry is the
paradigmatically natural scenario in a effective field theory context. The fact
that an effective field theory with low-energy supersymmetry breaking can be
considered natural according to the autonomy of scales notion of naturalness
while that very same model, if embedded in a multiverse, could simultaneously
be deemed stringy-unnatural because there are insufficiently many other vacua
with low-energy supersymmetry breaking, demonstrates clearly that there are
two independent notions of naturalness in play.

5 Conclusion

I want to conclude with two further remarks. The first is an additional comment
on the way in which the two notions of naturalness come apart. On the one
hand, whether an effective field theory is natural is a “local” property according
to the autonomy of scales conception of naturalness: it is determined entirely by
the sensitivity of a theory’s low-energy observables to variations of fundamental
parameters within a small neighborhood of a selected point in parameter space.
In the Barbieri and Giudice measure, for instance, this small neighborhood is
infinitesimal: one simply takes derivatives of the selected low-energy observables
with respect to the selected high-energy parameters. It is a notion that tracks
the stability of the theory’s low-energy observables against these minute vari-
ations around selected points in parameter space. On the other hand, stringy
naturalness is a thoroughly “global” notion: in order to determine whether a
coupling, observable, or effective field theory is stringy natural, one must exam-
ine the entirety of the string landscape of low-energy effective field theories. It

32For what it is worth, the attitude expressed by Arkani-Hamed and Dimopoulos[6] seems
to me quite reasonable: “One might think that low-energy SUSY with mS ∼ TeV is preferred,
since this does not entail a large fine-tuning to keep the Higgs light. However, this conclusion
is unwarranted. . . without a much better understanding of the structure of the landscape, we
can’t decide whether low-energy SUSY breaking is preferred to SUSY broken at much higher
energies.”
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is thus unsurprising that the two notions can render conflicting verdicts on any
given model: they are tracking independent properties, and are determined by
investigating very different volumes of two very different spaces.

One may object to this diagnosis on the grounds that while the value that the
Barbieri and Giudice measure assigns to ∆i (BG) depends only on an infinitesimal
neighborhood around a point αi in parameter space, this is not true even for
other, non-stringy measures of naturalness.33 For example, the Anderson and
Castaño measure relies on information about the degree of global sensitivity of
an observable X to all parameter values αj over some chosen non-infinitesimal
volume of parameter space. They then incorporate this non-local information
into their proposed measure of naturalness, which is essentially ∆i (BG) rescaled
to eliminate the global sensitivity. The later measure proposed by Athron and
Miller [8] is also non-local, roughly defined as the ratio between the volume in
parameter space capable of reproducing the measured values of a model’s low
energy observables and the “typical” volume in parameter space that one would
expect to reproduce those observables in that model.

My response to this concern is as follows. The distinction I have aimed
to draw is between an “autonomy of scales” conception of naturalness and a
statistical notion of naturalness. I have argued that the definitions offered by
Wilson, Susskind, and ’t Hooft, and the quantitative measure introduced by
Barbieri and Giudice, are best understood as motivated by the “autonomy of
scales” conception, and that the measures proposed by Anderson and Castaño,
Athron and Miller, and advocates of stringy naturalness all, to different degrees,
break from the “autonomy of scales” conception. The fact that these latter
measures of naturalness are to some degree non-local can be seen as a symptom
of the fact that they are quantifying a conception of “naturalness” that is distinct
from the “autonomy of scales” conception.

In particular, Athron and Miller state explicitly that they are breaking from
the autonomy of scales conception and aim to construct a measure of statisti-
cal typicality: “fine tuning may also be characterized by instability. It is this
instability which the traditional measure is exploiting. Instead we wish to con-
struct a tuning measure which determines how rare or atypical certain physical
scenarios are” [8, p. 3]. The fact that the resulting measure is non-local should
not be taken as evidence that the autonomy of scales conception of naturalness
is itself non-local.

Although Anderson and Castaño also explicitly break with the autonomy
of scales conception of naturalness, the close connection of the measure they
propose with the Barbieri and Giudice measure makes its analysis less straight-
forward. I think a plausible, albeit strict, reading of the autonomy of scales
conception of naturalness does entail that global sensitivity is an informative a
property of a model. This would still allow naturalness to be used in practice,
just as it is now, when evaluating different models at points in some jointly
allowed region of parameter space: for instance, if a set of observables in the
Standard Model are more sensitive than are those same observables in the MSSM

33My thanks to a referee for offering this objection.
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to variations around every point αj in some allowed region of parameter space,
one might think that this global sensitivity should be factored into our judgment
about whether the MSSM is more natural than the SM, even at a specific point
in parameter space αk.

Adherence to this strict reading of the autonomy of scales conception would,
however, affect how one uses naturalness measures when comparing the same
model at different points. The naturalness value of ∆i (BG)(αi) or ∆j (BG)(αj)
would not be intrinsically informative, but only provide us with information
about the relative naturalness of the model at different points, i.e. only ∆i (BG)(αi)−
∆j (BG)(αj) would be meaningful. On this reading of the autonomy of scales
conception of naturalness, one maintains a local measure of naturalness at the
expense of accepting that it is only comparatively meaningful. The belief that
measures of naturalness have, at best, comparative meaning but no intrinsic
meaning is not unique; for example, after a review of some of the apparently
arbitrary decisions that one has to make when constructing a quantitative mea-
sure of naturalness, Craig [21, p. 7] concludes that “it is clear that measures of
tuning have no intrinsic meaning. They may have some comparative value in
terms of contrasting models, but even this is not absolute.” By contrast, Ander-
son and Castaño aim to construct a measure of naturalness that is intrinsically
meaningful, but at the expense of making the notion explicitly non-local.

I argued above that Anderson and Castaño initiate a break with the auton-
omy of scales conception of naturalness, but this is due to their tying naturalness
to a probability distribution over fundamental parameters, not by introducing a
non-local rescaling of what is essentially the Barbieri and Giudice measure. In
this particular case, choosing between a local, comparatively meaningful mea-
sure or a non-local, intrinsically meaningful measure of naturalness strikes me
as akin to choice of convention with little conceptual significance. I hasten to
add that this is not the case for the stringy naturalness; in that case, there is
no alternative, local way to construe the “global” notion of stringy naturalness
employed in the landscape.

My second remark concerns the purported ability of the multiverse to solve
naturalness problems; specifically, the manner in which this purported ability
has been presented as supporting evidence for the existence of a multiverse, and
thus as supporting evidence for theories that evidently give rise to a multiverse.
Hall and Nomura, for example, claim that “evidence for the multiverse can be
found in three different arenas: the cosmological constant, nuclear physics, and
electroweak symmetry breaking. In all three cases, the conventional approach. . .
leads to naturalness problems. . . In each arena the multiverse easily and gener-
ically solves the naturalness problem” [43, p. 39], a claim which they base on
a statistical notion of naturalness much like the stringy notion discussed above.
In a similar, though more restrained, spirit, Douglas [30] writes “We only live
in one vacuum. However. . . vacuum multiplicity can help in solving the cosmo-
logical constant problem. . . In the absence of other candidate solutions to the
problem, we might even turn this around and call these ideas evidence for the
hypothesis that we are in a compactification with many hidden sectors.”

Problems of naturalness have driven much of BSM physics since the late
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1970s and it would certainly count as an accomplishment of a multiverse theory
if it were able to solve those problems. However, as we have seen, the claim that
a multiverse can solve the naturalness problem(s) in the Standard Model trades
on a notion of “naturalness problem” that has fundamentally no conceptual
overlap with the naturalness problem(s) that 40 years of BSM theorizing have
aimed to solve. Those who present as evidence for a multiverse the claim that
it can solve the naturalness problem(s) of the Standard Model are equivocating
between two essentially different notions of naturalness. Thus, while statistical
analyses of the string landscape are certainly of great interest, and it would be
an important discovery to determine that string theory predicts that “most”
low-energy effective field theories in a multiverse contain an elementary Higgs
boson with a mass of 125 GeV or a very small cosmological constant, it is
misleading to present this as offering a natural solution to these problems: such
a statistical analysis could not and does not provide a solution to the naturalness
problem(s) that particle physics has aimed at solving since the 1970s.
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