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a b s t r a c t

The ‘free energy principle’ (FEP) has been suggested to provide a unified theory of the brain, integrating
data and theory relating to action, perception, and learning. The theory and implementation of the FEP
combines insights from Helmholtzian ‘perception as inference’, machine learning theory, and statistical
thermodynamics. Here, we provide a detailed mathematical evaluation of a suggested biologically
plausible implementation of the FEP that has been widely used to develop the theory. Our objectives
are (i) to describe within a single article the mathematical structure of this implementation of the FEP;
(ii) provide a simple but complete agent-basedmodel utilising the FEP and (iii) to disclose the assumption
structure of this implementation of the FEP to help elucidate its significance for the brain sciences.
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1. Introduction

The brain sciences have long searched for a ‘unified brain the-
ory’ capable of integrating experimental data relating to, and dis-
closing the relationships among action, perception, and learning.
One promising candidate theory that has emerged over recent
years is the ‘free energy principle’ (FEP) (Friston, 2009, 2010c).
The FEP is ambitious in scope and attempts to extend even beyond
the brain sciences to account for adaptive biological processes
spanning an enormous range of time scales, from millisecond
neuronal dynamics to the tens of millions of years span covered
by evolutionary theory (Friston, 2010b, c).

The FEP has an extensive historical pedigree. Some see its
origins starting with Helmholtz’ proposal that perceptions are
extracted from sensory data by probabilistic modelling of their
causes (Von Helmholtz & Southall, 2005). Helmholtz also orig-
inated the notion of thermodynamic free energy, providing a
second key inspiration for the FEP.2 These ideas have reached
recent prominence in the ‘Bayesian brain’ and ‘predictive coding’
models, according to which perceptions are the results of Bayesian
inversion of a causal model, and causal models are updated by
processing of sensory signals according to Bayes’ rule (Bubic, von
Cramon, & Schubotz, 2010; Clark, 2013; Knill & Pouget, 2004b;
Rao & Ballard, 1999). However, the FEP naturally accommodates
and describes both action and perception within the same frame-
work (Friston, Daunizeau, Kilner, & Kiebel, 2010), thus others see
its origins in 20th-century cybernetic principles of homoeostasis
and predictive control (Seth, 2015).

A recognisable precursor to the FEP as applied to brain opera-
tion was developed by Hinton and colleagues, who showed that
a function resembling free energy could be used to implement
a variation of the expectation–maximisation algorithm (Neal &
Hinton, 1998), as well as for training autoencoders (Hinton &
Zemel, 1994a) and learning neural population codes (Zemel &
Hinton, 1995). Because these algorithms integrated Bayesian ideas
with a notion of free energy, Hinton named them as ‘Helmholtz
machines’ (Dayan, Hinton, Neal, & Zemel, 1995). The FEP builds
on these insights to provide a global unified theory of cognition.
Essentially, the FEP generalises these results by noting that all (vi-
able) biological organisms resist a tendency to disorder as shown
by their homoeostatic properties (or, more generally, their au-
topoietic properties), and must therefore minimise the occurrence
of events which are atypical (‘surprising’) in their habitable en-
vironment. For example, successful fish typically find themselves
surrounded by water, and very atypically find themselves out of
water, since being out of water for an extended time will lead
to a breakdown of homoeostatic (autopoietic) relations. Because
the distribution of ‘surprising’ events is in general unknown and
unknowable, organisms must instead minimise a tractable proxy,
which according to the FEP turns out to be ‘free energy’. Free

2 Thermodynamic free energy describes the macroscopic properties of nature,
typically in thermal equilibrium where it takes minimum values, in terms of a few
tractable variables.

energy in this context is an information-theoretic construct that
(i) provides an upper bound on the extent to which sensory data
is atypical (‘surprising’) and (ii) can be evaluated by an organ-
ism, because it depends eventually only on sensory input and
an internal model of the environmental causes of sensory input.
While at its most general this theory can arguably be applied to all
life-processes (Friston, 2013), it provides a particularly appealing
account of brain function. Specifically it describes how neuronal
processes could implement free energy minimisation either by
changing sensory input via action on the world, or by updating
internal models via perception, with implications for understand-
ing the dynamics of, and interactions among action, perception,
and learning. These arguments have been developed in a series of
papers which have appeared over the course of the last several
years (Adams, Shipp, & Friston, 2013; Carhart-Harris & Friston,
2010; Friston, 2005, 2008a; Friston, Daunizeau, & Kiebel, 2009;
Friston et al., 2010; Friston, FitzGerald, Rigoli, Schwartenbeck, &
Pezzulo, 2016; Friston & Kiebel, 2009a, b; Friston, Kilner, & Harri-
son, 2006; Friston, Mattout, Trujillo-Barreto, Ashburner, & Penny,
2007; Friston & Stephan, 2007; Friston, Stephan, Li, & Daunizeau,
2010; Friston, Trujillo-Barreto, & Daunizeau, 2008; Pezzulo, Rigoli,
& Friston, 2015).

The FEP deserves close examination because of the claimsmade
for its explanatory power. It has been suggested that the FEP
discloses novel and straightforward relationships among funda-
mental psychological concepts such as memory, attention, value,
reinforcement, and salience (Friston, 2009). Even more generally,
the FEP is claimed to provide a ‘‘mathematical specification of
‘what’ the brain is doing’’ (Friston, 2009 p.300), to unify percep-
tion and action (Friston et al., 2010), and to provide a basis for
integrating several general brain theories including the Bayesian
brain hypothesis, neural Darwinism, Hebbian cell assembly theory,
and optimal control and game theory (Friston, 2010c). The FEP
has even been suggested to underlie Freudian constructs in psy-
choanalysis (Carhart-Harris & Friston, 2010).

Our purpose here is first to supply a mathematical appraisal of
the FEP, which we hope will facilitate evaluation of claims such
as those listed above; note that we do not attempt to resolve any
such claims here. A mathematical appraisal is worthwhile because
the FEP combines advanced concepts from several fields, particu-
larly statistical physics, probability theory, machine learning, and
theoretical neuroscience. The mathematics involved is non-trivial
and has been presented over different stages of evolution and
using varying notations. Herewe first provide a complete technical
account of the FEP, based on a history of publications through
which the framework has been developed. Second we provide a
complete description of a simple agent-based model working un-
der this formulation. While we note that several other agent based
models have been presented, e.g see (Friston et al., 2010), they
have often made use of existing toolboxes which, while powerful,
have perhaps clouded a fuller understanding of the FEP. Lastly we
use our account to identify the assumption structure of the FEP,
highlighting several instances in which non-obvious assumptions
are required.

In the next section we provide a brief overview of the FEP
followed by a detailed guide to the technical content covered in
the rest of the paper.



C.L. Buckley et al. / Journal of Mathematical Psychology 81 (2017) 55–79 57

2. An overview of the FEP

Broadly the FEP is an account of cognition derived from the
consideration of how biological organisms maintain their state
away from thermodynamic equilibrium with their ambient sur-
roundings. The argument runs that organisms are mandated, by
the very fact of their existence, to minimise the dispersion of their
constituent states. The atypicality of an event can be quantified
by the negative logarithm of the probability of its sensory data,
which is commonly known in information theory as ‘surprise’ or
‘self-information’ and the overall atypicality of an organism’s ex-
changes with its environment can be quantified as a total lifetime
surprise (Friston, 2009, 2010c). The term surprise has causedmuch
confusion since it is distinct from the subjective psychological
phenomenon of surprise. Instead, it is a measure of how atypical
a sensory exchange is. This kind of surprise can be quantified using
the standard information-theoretic log-probability measure

− ln p(ϕ)

where p(ϕ) is the probability of observing some particular sensory
data ϕ in a typical (habitable) environment. Straightforwardly this
quantity is large if the probability of the observed data is small
and zero if the data is fully expected, i.e., probability 1. To avoid
confusion with the common-sense meaning of the word ‘surprise’
we will refer to it as ‘‘surprisal’’ or ‘‘sensory surprisal’’.

2.1. R- and G-densities

The FEP argues that organisms cannot minimise surprisal di-
rectly, but instead minimise an upper bound called ‘free energy’.
To achieve this it is proposed that all (well adapted) biological or-
ganisms maintain a probabilistic model of their typical (habitable)
environment (which includes their body), and attempt tominimise
the occurrence of eventswhich are atypical in such an environment
as measured by this model. Two key probability densities are nec-
essary to evaluate free energy. First it is suggested that organisms
maintain an implicit representation of a ‘‘best guess’’ at the rele-
vant variables that comprise their environment (i.e. those variables
which cause its sensory data). This account is in the form of a prob-
ability distribution over all possible values of those variables, like
a Bayesian belief; this model is instantiated, and parameterised, by
physical variables in the organism’s brain such as neuronal activity
and synaptic strengths, respectively. When an organism receives
sensory signals, it updates this distribution to better reflect the
world around it, allowing it to effectively model its environment.
In other words, the organism engages in a process equivalent to
an approximate form of Bayesian inference regarding the state
of its environment, based on sensory observations. This internal
model of environmental states is called the ‘‘recognition density’’
or the R-density. Later in Section 3 we will assume that agents
approximate the R-density as a multivariate Gaussian distribution
(NB: the true posterior may be considerably more complex) where
the means and variances represent an organisms best represen-
tation of the distribution of environment variables. In order to
update the R-density appropriately, the organism needs some im-
plicit assumptions about howdifferent environmental states shape
sensory input. These assumptions are presumed to be in the form
of a more complicated joint probability density between sensory
data and environmental variables, the ‘‘generative density’’, or G-
density. Typically we will assume this density is also Gaussian, see
Section 5.1 for the simplest example. As we will see, following a
Bayesian formalism, this joint density is calculated as the product
of two densities; a likelihood describing the probability of sensory
input given some environmental state and a prior describing the
organisms current ‘‘beliefs’’ of the probability distribution over
environmental states.

2.2. Minimising free energy

Free energy is a (non-negative) quantity formed from the
Kullback–Leibler divergence between the R- and G-densities. Con-
sequently, it is not a directly measurable physical quantity: it de-
pends on an interpretation of brain variables as encoding notional
probability densities. Note: the quantity ’free energy’ is distinct
from thermodynamic free energy thus here we will refer to it
as variational free energy (VFE) (referring to its role in variational
Bayes, see later for details).

Minimisation of VFE has two functional consequences. First
it provides an upper bound on sensory surprisal. This allows
organisms to estimate the dispersion of their constituent states
and is central to the interpretation of FEP as an account of life
processes (Friston, 2010c). However, VFE minimisation also plays
a central role in a Bayesian approximation method. Specifically
ideal (exact) Bayesian inference, in general, involves evaluating
difficult integrals and thus a core hypothesis of the FEP framework
is that the brain implements approximate Bayesian inference in an
analogous way to a method known as variational Bayes. It can be
shown that minimising VFE makes the R-density a good approxi-
mation to the posterior density of environmental variables given
sensory data. Under this interpretation the surprisal term in the
VFE becomes more akin to the negative of log model evidence, see
Section 3, defined inmore standard implementations of variational
Bayes (Hinton & Zemel, 1994b).

2.3. The action–perception cycle

Minimising VFE by updating the R-density provides an upper-
bound on surprisal but cannot minimise it directly. The FEP sug-
gests that organisms also act on their environment to change
sensory input, and thus minimise surprisal indirectly (Friston,
2009, 2010c). The mechanism underlying this process is formally
symmetric to perceptual inference, i.e., rather than inferring the
cause of sensory data an organism must infer actions that best
make sensory data accord with an internal representation of the
environment (Friston et al., 2010). Thus, the mechanism is often
referred to as active inference. Formally, action allows an organism
to avoid the dispersion of its constituent states and is suggested to
underpin a formof homoeostasis, or perhapsmore precisely home-
orhesis (a generalisation of homoeostasis referring to a system that
is stable about a complex trajectory of states rather than around
a fixed point) (Seth, 2015). However, equivalently, one can view
action as satisfying hard constraints encoded in the organism’s
environmental model (Friston et al., 2010). Here expectations in
the organism’s G-density (its ‘‘beliefs’’ about the world) cannot
be met directly by perception and thus an organism must act
to satisfy them. In effect these expectations effectively encode
the organism’s desires on environmental dynamics. For example,
the organism’s model may prescribe that it maintains a desired
local temperature; we will see an example of this in Section 7.
Here action is seen as more akin to control (Seth, 2015) where
behaviour arises from a process of minimising deviations between
the organism’s actual and a desired trajectory (Friston et al.,
2010). Note: an implicit assumption here is that these constraints
are conducive to the organism’s survival (Friston, 2009, 2010c),
perhaps arrived at by an evolutionary process. Other different roles
for action within the FEP have also been suggested, e.g., actions
performed to disambiguate competing models (Friston, Adams,
Perrinet, & Breakspear, 2012; Seth, 2015). However, here we only
consider action as a source of control (Friston et al., 2010; Seth,
2015).
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2.4. Predictive coding

There at least two general ways to view most FEP-based re-
search. First the central theory (Friston et al., 2006) which offers a
particular explanation of cognition in terms of Bayesian inference.
Second a biologically plausible process theory of how the relevant
probability densities could be parameterised by variables in the
brain (i.e. a model of what it is that brain variables encode),
and how the variables should be expected to change in order to
minimise VFE. The most commonly used implementation of the
FEP, and the one we focus on here, is strongly analogous with the
predictive coding framework (Rao & Ballard, 1999). Specifically
predictive coding theory constitutes one plausible mechanism
whereby an organism could update its environmental model (R-
density) given a belief of how its environment works (G-density).
The concept of predictive coding overturns classical notions of per-
ception (and cognition) as a largely bottom-up process of evidence
accumulation or feature detection driven by impinging sensory
signals, proposing instead that perceptual content is determined
by top-down predictive signals arising frommulti-level generative
models of the environmental causes of sensory signals, which
are continually modified by bottom-up prediction error signals
communicating mismatches between predicted and actual signals
across hierarchical levels (see Clark, 2013 for a nice review). In
the context of the FEP the R-density is updated using a hierarchi-
cal predictive coding (see Section 8). This has several theoretical
benefits. Firstly, under suitable assumptions VFE becomes formally
equivalent to prediction error (weighted by confidence terms),
which can readily be computed in neural wetware. Hierarchical
coding also provides a very generic prior which allows high-level
abstract sensory features to be learned from the data, in a manner
similar to deep learning nets (Hinton, 2007). Finally, the sense in
which the brain models the environment can be conceptualised
in a very direct way as the prediction of sensory signals. We will
also see in Section 8 that this implementation suggests that we do
not even need to know what environmental features the R- and
G-densities constitute a model of.

2.5. A technical guide

In the rest of this work we review the FEP in detail but first
we provide a detailed guide to each section. Most of what we
present is related to standard concepts and techniques in statistical
mechanics and machine learning. However, here we present these
ideas in detail to make clear their role for the FEP as theory of
biological systems.

In Section 3 we describe the core technical concepts of FEP
including the R-density, G-density, and VFE. We show how min-
imising VFE has two consequences. First, it makes the R-density
a better estimate of posterior beliefs about environmental state
given sensory data, thus implementing approximate Bayesian in-
ference. Second, it makes the VFE itself an upper-bound on sensory
surprisal.

In Section 4 we discuss the approximations that allow the
brain to explicitly instantiate the R-density and thus specify VFE.
Specifically, we make the approximation that the R-density take
Gaussian form, the Laplace approximation, and that brain states,
e.g. neural activity, represent the sufficient statistics of this distri-
bution (mean and variance). Utilising this form for the R-density
and various other approximations we derive an expression for the
VFE in terms of the unknown G-density only; we refer to this
approximation as the Laplace encoded energy. The derivations in
this section are done for the univariate Gaussian case, but we give
an expression for the fullmultivariate case at the end of the section.

In Section 5 we look at different forms for the G-density. We
start by specifying simple generative models which comprise the

brain’s model of how the world works, i.e., how sensory data is
caused by environmental (including bodily) variables. We utilise
these generative models to specify the brain’s expectation on
environmental states given sensory data in terms of a Gaussian
distribution parameterised by expected means and variances (in-
verse precisions) on brain states. Combining this with the result of
the last section allows us to write an expression for the Laplace
encoded-energy as a quadratic sum of prediction errors (differ-
ences between expected and actual brain states given sensory
data) modulated by expected variances (or inverse precisions), in
line with predictive-coding process theories. Initially we show this
for a static generative model but extend it to include dynamic gen-
erative models by introducing the concept of generalised motion.
Again we derive the results for the univariate case but provide
expressions for the multivariate case.

In Section 6 we show how the brain could dynamically
minimise VFE. Specifically, we describe how brain states are opti-
mised tominimise VFE through gradient descent.We discuss com-
plications of this method when considering dynamical generative
models.

Section 7 demonstrates how action can be implemented as a
similar gradient descent scheme. Specificallywe showhow, given a
suitable inverse model, actions are chosen to change sensation such
that they minimise VFE. We ground this idea, and the mechanisms
for perception described in prior sections, in a simple agent based
simulation. We show how an agent with an appropriate model of
the environment, can combine action and perception to minimise
VFE constrained both by the environment and its own expectations
on brain states.

In Section 8 we extend the formalism to include learning.
Specifically we show how the brain could modify and learn the
G-density. To facilitate this we describe notion of hierarchical
generative models which involve empirical priors. We lastly de-
scribe a gradient descent scheme which allows the brain to infer
parameters and hyperparameters of the VFE and thus allow the
brain to learn environmental dynamics based on sensory data.

Finally, Section 9 summarises the FEP and discusses the impli-
cations of its assumption structure for the brain sciences.

3. Variational free energy

We start by considering a world that consists of a brain and its
surrounding body/environment. For the rest of the presentationwe
refer to the body and environment as simply the environment and
use this to refer to all processes outside of the brain. The brain is
distinguished from its environment by an interface which is not
necessarily a physical boundary but rather may be defined func-
tionally; thus the boundary could reside at the sensory and motor
surfaces rather than, for example, at the limits of the cranial cavity.
The environment is characterised by states, denoted collectively as
{ϑ}, which include well-defined characteristics like temperature
or the orientation of a joint but also unknown and uncontrollable
states, all evolving according to physical laws. The environmental
states, as exogenous stimuli, give rise to sensory inputs for which
the symbols {ϕ} are designated collectively. These sensory inputs
are assumed to reside at the functional interface distinguishing
the brain from the environment, and we assume a many-to-one
(non-bijective)mapping between {ϑ} and {ϕ} (Friston, 2010a).We
further assume that the brain, in conjunction with the body, can
perform actions to modify sensory signals.

We assume that the important states of the environment cannot
be directly perceived by an organism but instead must be inferred
by a process of Bayesian inference. Specifically, the goal of the
agent is to determine the probability of environmental states given
its sensory input. To achieve this we assume organism’s encodes
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prior beliefs about these states characterised by the joint density
p(ϑ, ϕ) or G-density. Where the G-density can be factorised into
(with respect toϑ), the prior p(ϑ) (corresponding to the organism’s
‘‘beliefs’’ about the world before sensory input is received) and
a likelihood p(ϕ|ϑ) (corresponding to the organism’s assumptions
about how environmental dynamics cause sensory input),

p(ϑ, ϕ) = p(ϕ|ϑ)p(ϑ). (1)

Given an observation, ϕ = φ (e.g. some particular sensory data),
a posterior belief about the environment can then be written as
p(ϑ |ϕ = φ). This quantity can be calculated using the prior and
likelihood using Bayes theorem as,

p(ϑ |φ) =
1

p(ϕ = φ)
p(φ|ϑ)p(ϑ) =

p(φ|ϑ)p(ϑ)∫
p(φ|ϑ)p(ϑ)dϑ

. (2)

All the probability densities are assumed to be normalised as∫
dϑ
∫

dϕ p(ϑ, ϕ) =

∫
dϑ p(ϑ) =

∫
dϕ p(ϕ) = 1,

where p(ϑ) and p(ϕ) are the reduced or marginal probability-
densities conforming to

p(ϑ) =

∫
dϕ p(ϑ, ϕ) and p(ϕ) =

∫
dϑ p(ϑ, ϕ). (3)

To calculate the posterior probability it is necessary to evaluate
themarginal integral,

∫
p(φ|ϑ)p(ϑ)ϑ , in the denominator of Eq. (2).

However, this is often difficult, if not practically intractable. For
example, when continuous functions are used to approximate the
likelihood and prior, the integral may be analytically intractable.
Or in the discrete case, when this integral reduces to a sum, the
number of calculations may grow exponentially with the number
of states. Variational Bayes (sometimes known as ‘ensemble learn-
ing’) is a method for (approximately) determining p(ϑ |ϕ) which
avoids the evaluation of this integral, by introducing an optimisa-
tion problem (Friston et al., 2008). Such an approach requires an
auxiliary probability density, representing the current ‘best guess’
of the causes of sensory input. This is the recognition density, or
R-density, introduced in the overview. Again the R-density is also
normalised as:∫

q(ϑ)dϑ = 1. (4)

We can construct a measure of the difference between this den-
sity and the true posterior in terms of an information-theoretic
divergence, e.g., the Kullback–Leibler divergence (Cover & Thomas,
1991), i.e.,

DKL(q(ϑ) ∥ p(ϑ |ϕ)) =

∫
dϑ q(ϑ) ln

q(ϑ)
p(ϑ |ϕ)

. (5)

An R-density that minimises this divergence would provide a good
approximation to the true posterior. But obviously we cannot eval-
uate this quantity because we still do not know the true posterior.
However, we can rewrite this equation as,

DKL(q(ϑ) ∥ p(ϑ |ϕ)) = F + ln p(ϕ) (6)

where we have defined F as the variational free energy (VFE),

F ≡

∫
dϑ q(ϑ) ln

q(ϑ)
p(ϑ, ϕ)

. (7)

Note here we have introduced the G-density to the denominator
on the right-hand side. In contrast to Eq. (5) we can evaluate VFE
directly because it depends only on the R-density, which we are
free to specify, and theG-density, i.e., amodel of the environmental
causes of sensory input. Furthermore, the second termon the right-
hand side in Eq. (6) only depends on sensory input and is indepen-
dent of the form of the R-density. Thus, minimising Eq. (7) with

respect to the R-density will also minimise the Kullback–Leibler
divergence between the R-density and the true posterior. Thus, the
result of this minimisation will make the R-density approximate
the true posterior.

The minimisation of VFE also suggests an indirect way to
estimate surprisal. Specifically according to Jensen’s inequality
(Cover & Thomas, 1991), the Kullback–Leibler divergence is always
greater than zero. This implies the inequality,

F ⩾ − ln p(ϕ), (8)

which means that the VFE also provides an upper bound on the
surprisal as described in Section 1. However, note that VFE is equal
to surprisal only when the R-density q(ϑ) becomes identical with
the posterior density p(ϑ |ϕ); i.e., it is this condition that specifies
when VFE provides a tight bound on surprisal (see Section 2).
Furthermore, while this process furnishes the organism with an
approximation of surprisal it does not minimise it. Instead the
organism can minimise VFE further by minimising surprisal indi-
rectly by acting on the environment and changing sensory input,
see Section 7.

Note: formally p(ϕ), which describes the agent’s internal (im-
plicit) probabilistic predictions of sensory inputs, should bewritten
as p(ϕ|m). This follows a convention in Bayesian statistics to indi-
cate that a reasoner must begin with some arbitrary prior before
it can learn anything; p(ϕ) indicates the prior assigned to p ab
initio by agentm. However, this notation is unwieldy and does not
change the derivations that follow thus we will omit this for the
rest of the presentation.

There are several analogies between the terms in the formalism
above and the formulation of Helmholtz’ thermodynamic free en-
ergy. These terms can serve as useful substitutions in the derivation
to come and, thus, we describe them here. Specifically when the
G-density is unpacked in Eq. (7), the VFE splits into two terms,

F =

∫
dϑ q(ϑ)E(ϑ, ϕ) +

∫
dϑ q(ϑ) ln q(ϑ) (9)

where, formally speaking, the first term in Eq. (9) is an average of
the quantity

E(ϑ, ϕ) ≡ − ln p(ϑ, ϕ) (10)

over the R-density q(ϑ) and the second term is essentially the
negative entropy associated with the recognition density. By anal-
ogy with Helmholtz’ thermodynamic free energy the first term
in Eq. (9) is called average energy [Accordingly, E(ϑ, ϕ) itself may
be termed the energy] and the second term the negative of en-
tropy (Adkins, 1983).

In summary, minimising VFE with respect to the R-density,
given an appropriate model for the G-density p(ϑ, ϕ) in which the
sensory inputs are encapsulated, allows one to approximate the
Bayesian posterior. Furthermore minimising VFE through percep-
tion also gives a upper bound on the sensory surprisal.

Table 1 provides a summary of the mathematical objects asso-
ciated with the VFE.

4. The R-density: how the brain encodes environmental states

To implement the method described above the brain must
explicitly encode the R-density. To achieve this it is suggested
that neuronal quantities (e.g., neural activity) parametrise sufficient
statistics (e.g., means and variances, see later) of a probability
distribution.More precisely the neuronal variables encode a family
of probability densities over environmental states, ϑ . The instan-
taneous state of the brain µ then picks out a particular density
q(ϑ; µ) (the R-density) from this family; the semicolon in q(ϑ; µ)
indicates that µ is a parameter rather than a random variable.
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Table 1
Mathematical objects relating to the VFA.

Symbol Name Description

ϑ Environmental variables These refer to all states outside of the brain and include both environmental and bodily variables.
ϕ Sensory data Signals caused by the environment (or body).
q(ϑ) R-density Organism’s (implicit) probabilistic representation of environmental states which cause sensory data.
p(ϕ, ϑ) G-density Joint probability distribution relating environmental states and sensory data. This is necessary to specify the

Laplace-encoded energy and is usually specified in terms of a likelihood and prior
p(ϑ) Prior density Organism’s prior beliefs, encoded in the brain’s state, about environmental states.
p(ϕ|ϑ) Likelihood density Organism’s implicit beliefs about how environmental states map to sensory data.
p(ϑ |ϕ) Posterior density The inference that a perfectly rational agent (with incomplete knowledge) would make about the environment’s state

upon observing new sensory information, given the organism’s prior assumptions.
p(ϕ) Sensory density Probability density of the sensory input, encoded in the brain’s state, which cannot be directly quantified given

sensory data alone.
− ln p(ϕ) Surprisal Surprise or self-information in information-theory terminology, which is equal to the negative of log model evidence in

Bayesian statistics.
F (ϑ, ϕ) Variational free energy (VFE) The quantity minimised under the FEP which forms an upper bound on surprisal allows the approximation of the

posterior density.

Finding the optimal q(ϑ; µ) that minimises VFE in the most
general case is intractable and thus further approximations about
the form of this density are required. Two types of approximation
are often utilised. First, an assumption that the R-density q(ϑ) can
be factorised into independent sub-densities q1(θ1) × · · · qN (θN ).
Under this assumption the optimal R-density still cannot be ex-
pressed in closed form but an approximate solution (of general
form) can be improved iteratively (Friston, 2008b). This leads
to a formal solution in which the sub-densities affect each other
only through mean-field quantities. Approaches that utilise this
form of the R-density are often referred to an ensemble learning.
This approach is not the focus of the work presented here but for
completeness we provide a treatment of unconstrained ensemble
learning in Appendix A.

Amore common approximation is to assume that the R-density
take Gaussian form, the so called Laplace approximation (Friston et
al., 2008). In this scenario, the sufficient statistics of this Gaussian
form become parameters which can be optimised numerically to
minimise VFE. For example the R-densities take the form

q(ϑ) ≡ N (ϑ; µ, ζ ) =
1

√
2πζ

exp
{
−(ϑ − µ)2/(2ζ )

}
(11)

where µ and ζ are the mean and variance values of a single
environmental variable ϑ . Substituting this form for the R-density
into Eq. (7), and carrying out the integration produces a vastly
simplified expression for the VFE. In the followingwe examine this
derivation in detail. For the clarity of presentation we pursue it in
the univariate casewhich captures all the relevant assumptions for
the multivariate case. We write the formulation for the multivari-
ate case at the end of the section. For notational ease we define

Z ≡

√
2πζ and E(ϑ) ≡ (ϑ − µ)2/(2ζ ), (12)

to arrive at

q(ϑ; µ, ζ ) =
1
Z
e−E(ϑ), (13)

where herewe have drawn on terminology from statistical physics
in which the normalisation factor Z is called the partition function
and E(ϑ) the energy of the subsystem {ϑ} (Huang, 1987). Substi-
tuting this equation into Eq. (9) and carrying out the integration
leads to a much simplified expression for VFE :

F =

∫
dϑ q(ϑ) (− ln Z − E) +

∫
dϑ q(ϑ)E(ϑ, ϕ)

= − ln Z −

∫
dϑ q(ϑ)E(ϑ)

+

∫
dϑ q(ϑ)E(ϑ, ϕ) (14)

wherewe have used the normalisation condition, Eq. (4) in the sec-
ond step. The Gaussian integration involved in the first and second

terms in Eq. (14) can be evaluated straightforwardly. Specifically,
utilising Eq. (12), the first term in Eq. (14) can be readily manipu-
lated into

− ln Z = −
1
2

(ln 2πζ) .

Using Eq. (12) the second term in Eq. (14) becomes

−
1
2ζ

∫
dϑ q(ϑ) (ϑ − µ)2 → −

1
2
.

The final term demands further technical consideration because
the energy E(ϑ, ϕ) is still unspecified. However, further simpli-
fications can be made by assuming that the R-density, Eq. (13)
is sharply peaked at its mean value µ (i.e., the Gaussian bell-
shape is squeezed towards a delta function) and that E(ϑ, ϕ) is
a smooth function of ϑ . Under these assumptions we notice that
the integration is appreciably non-zero only at the peaks. One
can then use a Taylor expansion of E(ϑ, ϕ) around ϑ = µ with
respect to a small increment, δϑ . Note: while these assumptions
permit a simple analytic model of the FEP, they have non-trivial
implications for the interpretation of brain function so we return
to this issue at the end of this section and in the Discussion. This
assumption brings about,∫

dϑ q(ϑ)E(ϑ, ϕ),

≈

∫
dϑ q(ϑ)

{
E(µ, ϕ) +

[
dE
dϑ

]
µ

δϑ +
1
2

[
d2E
∂ϑ2

]
µ

δϑ2

}
.

Now substituting back δϑ = ϑ − µ we get,

≈ E(µ, ϕ) +

[
∂E
∂ϑ

]
µ

∫
dϑ q(ϑ)(ϑ − µ)

+
1
2

[
d2E
dϑ2

]
µ

∫
dϑ q(ϑ)(ϑ − µ)2.

Here the second term in the first line is zero identically because
the integral equates to the mean. Furthermore recognising the
expression for the variance in the third term allows us to write

≈ E(µ, ϕ) +
1
2

[
d2E
dϑ2

]
µ

ζ (15)

wherewe identify E(µ, ϕ) as the Laplace-encoded energy. Substitut-
ing all terms derived so far into Eq. (14) furnishes an approximate
expression for the VFE,

F = E(µ, ϕ) +
1
2

([
d2E
dϑ2

]
µ

ζ − ln 2πζ − 1

)
(16)

which is now written as a function (i.e., not a functional) of
the Gaussian means and variances, and sensory inputs, i.e. F =
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Table 2
Mathematical objects relating to the Laplace encoding.

Symbol Name Description

N (ϑ; µ, ζ ) (Gaussian) fixed-form R-density An ‘ansatz’ for unknown q(ϑ) (the Laplace approximation)
µ, ζ Parameters for the R-density Sufficient statistics (expectation and variance) of the fixed-form

R-density, encoded in the brain’s state.
ζ ∗ Optimal variance Analytically derivable optimal ζ , removing an explicit dependence of F

on ζ .
p(ϕ, µ) Laplace-encoded G-density A mathematical construct based upon the G-density that scores the

surprise associated with any posterior expectation.
E(µ, ϕ) Laplace-encoded energy Mathematical construct defined to be − ln p(µ, ϕ).

F (µ, ζ , ϕ). To simplify further we remove the dependence of the
VFE on the variances by taking derivative of Eq. (16) with respect
ζ as follows:

dF =
1
2

{
d
dζ

([
d2E
dϑ2

]
µ

ζ

)
−

1
ζ

}
dζ

=
1
2

{[
d2E
dϑl

]
µ

−
1
ζ

}
dζ .

Minimising by demanding that dF ≡ 0 one can get

ζ ∗
=

[
d2E
dϑ2

]−1

µ

(17)

where the superscript in ζ ∗ indicates again that it is an optimal
variance (i.e., it is the variance which optimises the VFE). Substi-
tuting Eq. (17) into Eq. (16) gives rise to the form of the VFE as

F = E(µ, ϕ) −
1
2
ln
{
2πζ ∗

}
. (18)

The benefit of this process has been to recast the VFE in terms of a
joint density p(µ, ϕ) over sensory data ϕ and the R-density’s suf-
ficient statistics µ, rather than a joint density over some (unspeci-
fied) environmental features ϑ . Note: this joint density amounts
to an approximation of the G-density described in Eq. (1); we
shall examine the implementation of this density in detail in
the next section. Furthermore, under these assumptions the VFE
only depends on Gaussian means (first-order Gaussian statistics)
and sensory inputs, and not on variances (second-order Gaussian
statistics), which considerably simplifies the expression. It is pos-
sible to pursue an analogous derivation for the full multivariate
Gaussian distribution under the more general assumption that the
environment states only weakly covary, i.e., both the variance of,
and covariances between, variables are small. Under this assump-
tion the full R-density distribution is still tightly peaked and the
Taylor expansion employed in Eq. (15) is still valid.

To get rid of the constant variance term in Eq. (18), we write
the Laplace-encoded energy for the full multivariate case, as an
approximation for the full VFE as

E({µα}, {ϕα}) = − ln p({µα}, {ϕα}), (19)

where we define {µα} and {ϕα} as vectors of brain states and sen-
sory data respectively, corresponding to environmental variables
{ϑα} with α = 1, 2, . . . ,N indexing N variables. This equation for
the Laplace-encoded energy serves as a general approximation for
the VFE which we will use in the rest of this study.

Conceptually this expression suggests the brain represents only
the most likely environmental causes of sensory data and not the
details of their distribution per se. However, as we will see later,
the brain also encodes uncertainties through (expectations about)
precisions (inverse variances) in the G-density.

Table 2 provides a glossary of mathematical objects involved in
the Laplace encoding of the environmental states in the brain.

5. The G-density: encoding the brains beliefs about environ-
mental causes

In the previous section we constructed an approximation of the
VFE, which we called the Laplace-encoded energy, in terms of the
approximate G-density p(µ, ϕ) where the environmental states ϑ

have been replaced by the sufficient statisticsµ of the R-density. In
this sectionwe consider how the brain could specify this G-density,
and thus evaluate VFE. We start by specifying a generative model of
the environmental causes of sensory data (informally, a description
of causal dependencies in the environment and their relation to
sensory signals).We then showhow tomove from these generative
models to specification of the G-density, in terms of brain states
and their expectations, and finally construct expressions for the
VFE. We develop various specifications of G-densities for both
static and dynamic representations of the environment and derive
the different expressions for VFE they imply.

Table 3 provides a summary of the mathematical objects as-
sociated with the G-density in the simplest model and also its
extension to the dynamical generative model.

5.1. The simplest generative model

We first consider a simplified situation corresponding to an or-
ganism that believes in an environment comprising of a single vari-
able and a single sensory channel. To represent this environment
the agent uses a single brain state µ and sensory input ϕ. We then
write down the organism’s belief about the environment directly
in terms of a generativemapping between brain states and sensory
data. Note these equationswill have a slightly strange construction
because in reality sensory data is caused by environmental, not
brain, states. However, writing the organism beliefs in this way
will allow us to easily construct a generative density, see below.
Specifically, we assume the agent believes its sensory is generated
by:

ϕ = g(µ; θ ) + z (20)

where g is a linear or nonlinear function, parameterised by θ and
z is a random variable with zero mean and variance σz . Thus
the organism believes its sensory data is generated as non-linear
mapping between environmental states (here denoted in terms of
its belief about environmental state µ) with added noise. Similarly
we specify the organismbeliefs about how environmental state are
generated as

µ = µ̄ + w, (21)

where µ̄ is some fixed parameter and w is random noise drawn
from a Gaussian with zero mean and variance σw . In other words,
the organism takes the environment’s future states to be history-
independent, fluctuating around some mean value µ̄ which is
given a priori to the organism. There is a potential confusion
here because Eq. (21) describes a distribution over the brain state
variable µ, which itself represents the mean of some represented
environmental state ϑ . Specifically, it is worth reiterating that µ̄
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Table 3
Mathematical objects relating to dynamical generative models.

Symbol Name & description

Simple model p(ϕ, µ) = p(ϕ|µ)p(µ)
g(µ; θ ) Generative mapping between the brain states µ and the observed data

ϕ, parameterised by θ

z, w Random fluctuations represented by Gaussian noise
σz , σw The variance of these fluctuations (the inverse of precisions)
p(ϕ|µ), p(µ) Likelihood, prior of µ, which together determine p(ϕ, µ)
Dynamical model p(ϕ, µ) =

∏
∞

n=0p(ϕ[n]|µ[n])p(µ[n+1]|µ[n])
µ̃ Brain states in generalised coordinates; an infinite vector whose

components are given by successive time-derivatives,
µ̃ ≡ (µ, µ′, µ′′, . . .) ≡ (µ[0], µ[1], µ[2], . . .).

ϕ̃ Sensory data, similarly defined as ϕ̃ = (ϕ, ϕ′, ϕ′′, . . .).
ϕ[n] = g[n] + z[n] Generalised mapping between the observed data ϕ̃ and the brain

states µ̃ at the dynamical order n
µ[n+1] = f[n] + w[n] Generalised equations of motion of the brain state µ̃ at the dynamical

order n
g[n] , f[n] Generative functions in the generalised coordinates
p(ϕ[n]|µ[n]) Likelihood of the generalised state µ[n] , given the data ϕ[n]
p(µ[n+1]|µ[n]) Gaussian prior of the generalised state µ[n]

and σw are distinct from the sufficient statistics of the R-density (µ
and ζ ) see Eq. (11). The former correspond to prior beliefs about
latent or hidden causes in the environment before encountering
any sensory inputs. Conversely, the latter are the posterior beliefs
after encountering data. This is why the R-density is referred to as
a recognition density. As we will see in Section 7, there is conflict
here because the organism’s best estimate µ (the mean of its sub-
jective distribution over ϑ) may not be in line with its expectation
µ̄ stemming from its model of environmental dynamics.

To construct the generative density we assume that the noise z
is given as Gaussian, [1/

√
2πσz] exp

{
−z2/(2σz)

}
. Then, rewriting

Eq. (20) as z = ϕ − g(µ; θ ), the functional form of the likelihood
p(ϕ|µ) can be written as

p(ϕ|µ) =
1

√
2πσz

exp
{
−(ϕ − g(µ; θ ))2/(2σz)

}
. (22)

Assuming similar Gaussian noise for the random deviation w =

µ − µ̄, in Eq. (34), the prior density p(µ) can be written as

p(µ) =
1

√
2πσw

exp
{
−(µ − µ̄)2/(2σw)

}
(23)

where σw is the variance.
Thus far, we have specified the likelihood and the prior of µ

which together determine the G-density p(µ, ϕ) according to the
identity,

p(µ, ϕ) = p(ϕ, µ) = p(ϕ|µ)p(µ).

Next, we construct the Laplace-encoded energy by substituting the
likelihood and prior densities obtained above into Eq. (19) to get,
up to a constant,

E(µ, ϕ) = − ln p(ϕ|µ) − ln p(µ) (24)

=
1

2σz
ε2
z +

1
2σw

ε2
w +

1
2
ln (σzσw) , (25)

where the auxiliary notations have been introduced as

εz ≡ ϕ − g(µ; θ ) and εw ≡ µ − µ̄,

which comprise a residual error or a prediction error in the pre-
dictive coding terminology (Rao & Ballard, 1999). The quantity
εz is a measure of the discrepancy between actual ϕ and the
outcome of its prediction g(µ; θ ). While εw describes the extent
to which µ itself deviates from its prior expectation µ̄. The former
describes sensory prediction errors, εz , while the latter describes
model prediction errors, εw , (i.e., how brain states deviate from
their expectation). Each error term is multiplied by the inverse
of variance which weights the relative influence of these terms,

i.e., how they contribute to the Laplace-encoded energy. We note
in other works that inverse of variance, i.e., precision, is used in
these equations perhaps to highlight that these terms represent the
confidence, or reliability, of the prediction. However, here we stick
to more standard notation involving variances.

The above calculation can be straightforwardly extended to the
multivariate case. Specifically, we represent {µα} as a row vector
of N brain states, and write their expectations as

µα = µ̄α + wα.

Here {wα} is a row vector describing correlated noise sources, thus
generally the fluctuations of each variable are not independent,
which all have zeromean and covarianceΣw . We canwrite down a
set ofN sensory inputs {ϕα}which depend on combination of these
brain states in some nonlinear way such that

ϕα = gα(µ0, µ1, . . . , µN ) + zα. (26)

Again {zα} are noise sources with zero mean and covariance Σz
and thus each sensory input may receive statistically correlated
noise. Then, the prior over brain states may be represented as the
multivariate correlated Gaussian density,

p({µα}) =
1√

(2π )N |Σw|

× exp
(

−
1
2
{µα − µ̄α}Σ−1

w {µα − µ̄α}
T
)

, (27)

where {µα − µ̄α}
T is the transpose of vector {µα − µ̄α}; |Σw| and

Σ−1
w are the determinant and the inverse of the covariance matrix

Σw , respectively. Similarly, we can write down the multivariate
likelihood as

p({ϕα}|{µα}) =
1√

(2π )N |Σz |

× exp
(

−
1
2
{ϕα − gα(µ)}Σ−1

z {ϕα − gα(µ)}T
)

. (28)

Now substituting these expressions into Eq. (19) we can get an
expression of the Laplace-encoded energy as, up to an overall
constant,

E({ϕα}, {µα}) =
1
2
{µα − µ̄α}Σ−1

w {µα − µ̄α}
T

+
1
2
ln|Σw|

+
1
2
{ϕα − gα(µ)}Σ−1

z {ϕα − gα(µ)}T

+
1
2
ln|Σz |. (29)
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The above Eq. (29) contains non-trivial correlations among the
brain variables and sensory data. It is possible to pursue the full
general case, e.g., see Bogacz (2017) for a nice tutorial on this,
but we do not consider this here. Instead we can simplify on the
assumption of statistical independence between environmental
variables and between sensory inputs. Under this assumption the
prior and likelihood are factorised into the simple forms, respec-
tively,

p({µα}) =

N∏
α=1

p(µα), (30)

p({ϕα}|{µα}) =

N∏
α=1

p(ϕα|{µα}), (31)

where probability densities are the uncorrelated Gaussians,

p({µα}) =

N∏
α=1

1√
2πσ α

z

exp
{
−[µα − µ̄α]

2/
(
2σ α

w

)}
,

p({ϕα}|{µα}) =

N∏
α=1

1√
2πσ α

w

exp
{
−[ϕα − gα(µ)]2/

(
2σ α

z

)}
.

This gives the Laplace-encoded energy as

E({ϕα}, {µα}) =

N∑
α=1

[
(εα

w)
2

2σ α
w

+
1
2
ln σ α

w

]

+

N∑
α=1

[
(εα

z )
2

2σ α
z

+
1
2
ln σ α

z

]
, (32)

where the variances σ α
w and σ α

z are diagonal elements of the
covariance matrices Σw and Σz , respectively. In Eq. (32) we have
again used the auxiliary variables

εα
w = µα − µ̄α,

εα
z = ϕα − gα.

The structure of Eq. (32) suggests that the Laplace-encoded energy,
which is an approximation for the VFE, is a quadratic sum of the
prediction-errors, modulated by the corresponding inverse vari-
ances, and an additional sum of the logarithm of the variances.

5.2. A dynamical generative model

In the previous section we considered a simple generative
model where an organism understood the environment to be
effectively static. Here we extend the formulation to dynamic
generativemodelswhich have the potential to support inference in
dynamically changing environments. Again we start by examining
a single sensory input ϕ and a univariate brain state µ. Here we
assume that the agent’s model of environmental dynamics (again
expressed in terms of brain states) follows not Eq. (21), but rather
a Langevin-type equation (Zwanzig, 2001)
dµ
dt

= f (µ) + w (33)

where f is a function of µ and w is a random fluctuation. A
dynamical generative model can then be obtained by combining
the simple generative model, Eq. (20), with Eq. (33).

The FEP utilises the notions of generalised coordinates and
higher-order motion (Friston et al., 2008) to incorporate general
forms of dynamics into the G-density. Generalised coordinates
involve representing the state of a dynamical system in terms of
increasingly higher order derivative of its state variables. For exam-
ple, generalised coordinates of a position variable may correspond
to bare ‘position’ as well as its (unbounded) higher-order temporal

derivatives (velocity, acceleration, jerk, and so on) allowing amore
precise specification of a system’s state (Friston et al., 2008). To
obtain these coordinates we simply take recursively higher order
derivatives of both Eqs. (20) and (33).

For the sensory data:

ϕ = g(µ) + z

ϕ′
=

∂g
∂µ

µ′
+ z ′ (34)

ϕ′′
=

∂g
∂µ

µ′′
+ z ′′

...

where we have used the notations,

ϕ′
≡ dϕ/dt, µ′

≡ dµ/dt, µ′′
≡ d2µ/dt2, etc.

and where z, z ′, . . . are the noises sources at each dynamic order.
Here nonlinear derivative terms such as µ′2, µ′µ′′, etc., have been
neglected under a local linearity assumption (Friston et al., 2007)
and only linear terms have been collected. In some treatments of
the FEP it is assumed that the noise sources are correlated (Friston
et al., 2008). However, here, for the clarity of the following deriva-
tions, we follow more standard state space models and assume
each dynamical order receives independent noise, i.e, we assume
the covariance between noise sources is zero.

Similarly, the Langevin equation, Eq. (33), is generalised as

µ′
= f (µ) + w

µ′′
=

∂ f
∂µ

µ′
+ w′ (35)

µ′′′
=

∂ f
∂µ

µ′′
+ w′′

...

where again we have applied the local linearity approximation
and we assume each dynamical order receives independent noise
denoted as w, w′, . . .. Here, it is convenient to denote the multi-
dimensional sensory-data ϕ̃ as

ϕ̃ = (ϕ, ϕ′, ϕ′, . . .) ≡ (ϕ[0], ϕ[1], ϕ[2], . . .)

and states µ̃ as

µ̃ = (µ, µ′, µ′′, . . .) ≡ (µ[0], µ[1], µ[2], . . .), (36)

both being row vectors; where the nth-components are defined to
be

ϕ[n] ≡
dn

dtn
ϕ = ϕ′

[n−1] and µ[n] ≡
dn

dtn
µ = µ′

[n−1].

The generalised coordinates, Eq. (36), span the generalised state-
space inmathematical terms. In this state-space, a point represents
an infinite-dimensional vector that encodes the instantaneous tra-
jectory of a brain variable (Friston, 2008a). By construction, the
time-derivative of the state vector µ̃ becomes

µ̃′
≡ Dµ̃ =

d
dt

(µ, µ′, µ′′, . . .) = (µ′, µ′′, µ′′′
· · · )

≡ (µ[1], µ[2], µ[3], . . .).

The fluctuations in the generalised coordinates are written as

z̃ = (z, z ′, z ′′, . . .) ≡ (z[0], z[1], z[2], . . .),

w̃ = (w, w′, w′′, . . .) ≡ (w[0], w[1], w[2], . . .).

In addition,wedenote the vectors associatedwith time-derivatives
of the generative functions as

g̃ ≡ (g[0], g[1], g[2], . . .) and f̃ ≡ (f[0], f[1], f[2], . . .)
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Fig. 1. A schematic representation of an agent comprising of a univariate dynamical
generativemodel, see Section 5.2. Interactions between the generalised brain states,
{µ, µ′, . . .} (black) and sensory data, {ϕ, ϕ′, . . .} (blue). The arrows denote where
one variable (source) specifies themean of the other (target). Solid arrows represent
dependencieswithin the brain and dashed arrows represent incoming sensory data.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

where the components are given as g[0] ≡ g(µ) and f[0] ≡ f (µ),
and for n ⩾ 1 as

g[n] ≡
∂g
∂µ

µ[n] and f[n] ≡
∂ f
∂µ

µ[n].

In terms of these constructs the infinite set of coupled Eqs. (34) and
(35) can be written in a compact form as

ϕ̃ = g̃ + z̃ (37)

Dµ̃ = f̃ + w̃. (38)

The generalised map, Eq. (37), describes how the sensory data
ϕ̃ are inferred by the representations of their causes µ̃ at each
dynamical order. According to this map, the sensory data at a
particular dynamical order n, i.e. ϕ[n], engages only with the same
dynamical order of the brain states, i.e. µ[n]. The generalised equa-
tion of motion, Eq. (38), specifies the coupling between adjacent
dynamical orders. A schematic picture of the interactions between
these variables is provided in Fig. 1.

As before, in order to obtain the G-density we need to specify
the likelihood of the sensory data p(ϕ̃|µ̃) and the prior p(µ̃). The
statistical independence of noise at each dynamical order means
that we can write the likelihood as a product of conditional densi-
ties, i.e.,

p(ϕ̃|µ̃) = p(ϕ[0], ϕ[1], ϕ[2], · · · |µ[0], µ[1], µ[2], . . .)

=

∞∏
n=0

p(ϕ[n]|µ[n]). (39)

Assuming that the fluctuations at all dynamics orders, z[n], are
induced by Gaussian noise, the conditional likelihood-density
p(ϕ[n]

|µ[n]) is specified as

p(ϕ[n]|µ[n]) =
1√

2πσz[n]
exp

[
−
{
ϕ[n] − g[n]

}2
/
(
2σz[n]

)]
.

Similarly, the postulate of the conditional independence of the
generalised noises w[n] leads to a prior in the form

p(µ̃) = p(µ[0], µ[1], µ[2], . . .) =

∞∏
n=0

p(µ[n+1]|µ[n]). (40)

The form of the prior density at dynamical order n is fixed by the
assumption of Gaussian noise, which is then given as

p(µ[n+1]|µ[n]) =
1√

2πσw[n]
exp

[
−
{
µ[n+1] − f[n]

}2
/
(
2σw[n]

)]
.

Utilising Eqs. (39) and (40), the G-density is specified as

p(ϕ̃, µ̃) =

∞∏
n=0

p(ϕ[n]|µ[n])p(µ[n+1]|µ[n]). (41)

Given the G-density, the Laplace-encoded energy can be calculated
(Eq. (19)) to give, up to a constant,

E(µ̃, ϕ̃) =

∞∑
n=0

{
1

2σz[n]
[εz[n]]

2
+

1
2
ln σz[n]

}

+

∞∑
n=0

{
1

2σw[n]
[εw[n]]

2
+

1
2
ln σw[n]

}
(42)

where εz[n] and εw[n] are nth component of the vectors ε̃z and ε̃w ,
respectively, which have been defined to be

εz[n] ≡ ϕ[n] − g[n] and εw[n] ≡ µ[n+1] − f[n].

As before, the auxiliary variables, εz[n] and εw[n], encode prediction
errors: εz[n] is the error between the sensory data ϕ[n] and its
prediction g[n] at dynamical order n. Likewise, εw[n] measures the
discrepancy between the expected higher-order output µ[n+1] and
its generation f[n] from dynamical order n. Typically only dynamics
up to finite order are considered. This can be done by setting the
highest order term to random fluctuations, i.e.,

µ[nmax] = w[nmax]

where w[nmax] has large variance; thus, the corresponding error
term in Eq. (42) will be close to zero and effectively eliminated
from the expression for the Laplace-encoded energy. In effect it
means that the order below is unconstrained, and free to change
in a way that best fits the incoming sensory data. This is related
to the notion of empirical priors as discussed in Section 8.1. Thus
we have expressed Laplace-encoded energy for dynamics environ-
ment, which is an approximation for the VFE, is a quadratic sum
of the sensory prediction-error, εw[n], and model prediction errors,
εw[n], across different dynamical orders. Again each error term is
modulated by the corresponding variances describing the degree
of certainty in those predictions.

We can generalise this to themultivariate case.We set {ϕ̃α} and
{µ̃α} as vectors of brain states and rewrite Eqs. (37) and (38) as

ϕ̃α = g̃α + z̃α (43)

Dµ̃α = f̃α + w̃α, (44)

where α runs from 1 to N . Thus, Eq. (42) becomes

E({µ̃α}, {ϕ̃α}) =

N∑
α=1

∞∑
n=0

{
1

2σ α
z[n]

[εα
z[n]]

2
+

1
2
ln σ α

z[n]

}

+

N∑
α=1

∞∑
n=0

{
1

2σ α
w[n]

[εα
w[n]]

2
+

1
2
ln σ α

w[n]

}
(45)

where we have again used the auxiliary variables

εα
z[n] ≡ ϕα[n] − gα[n] (46)

εα
w[n] ≡ µα[n+1] − fα[n]. (47)

Thus this constitutes an approximation of VFE for a multivariate
system across arbitrary number of dynamical orders.
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6. VFE minimisation: how organisms infer environmental
states

In the previous section we demonstrated how to go from a
generative model, specifying the organism’s beliefs about the en-
vironment, to a generative density given expectations on brain
states, and finally to an expression for the VFE. In this section
we discuss how organisms could minimise VFE to make the R-
density a good approximation of the posterior and thus we begin
to outline a full biologically plausible process theory. In particular,
here, we focus on how this minimisation could be implemented by
the neuronal dynamics of the brain outlining oneparticular process
theory.

Under the FEP it is proposed that the innate dynamics of the
neural activity evolves in such a way as to minimise the VFE.
Specifically, it is suggested that brain states change in such way
that they implement a gradient descent scheme on VFE referred
to as recognition dynamics. Under the proposed gradient-descent
scheme, a brain state µα is updated between two sequential steps
t and t + 1 as

µt+1
α = µt

α − κµ̂α · ∇µαE({µα}, {ϕα})

where κ is the learning rate and µ̂α is the unit vector along µα .
Note: this dot product is necessary to pick out the relevant term in
the vector differential operator. This process recursively modifies
brain states in a way that follows the gradient of Laplace-encoded
energy. In the continuous limit the update may be converted to a
differential form as

µt+1
α − µt

α ≡ µ̇α.

Then, the above discrete updating-scheme can be transformed into
a spatio-temporal differential equation,

µ̇α = −κµ̂α · ∇µαE({µα}, {ϕα}). (48)

The essence of the gradient descent method, as described in
Eq. (48), is that theminima of the objective function E, i.e., the point
where∇µE = 0, occur at the stationary solutionwhen µ̇α vanishes.
Thus the dynamics of the brain states settle at a point where the
Laplace-encoded energy is minimised.

To update dynamical orders of the brain state µα , Eq. (48) must
be further generalised to give

µt+1
α[n] − µt

α[n] = −κµ̂α[n] · ∇µ̃αE({µ̃α}, {ϕ̃α})

where µ̂α[n] is the unit vector along µα[n], nth-component of the
generalised brain state µ̃α (Section 5.2). Here, we face a complica-
tion because the temporal difference between dynamical orders is
equal to order above i.e.,µt+1

α[n]−µt
α[n] = µα[n+1]. Consequently, it is

not possible to make this difference vanish at any order, meaning
that a gradient descent procedure equivalent to Eq. (48) is unable
to construct a stationary solution at which the gradient of the
Laplace-encoded energy vanishes. However, it is argued that the
motion of a point (velocity), i.e. ˙̃µα , in the generalised state-space
is distinct from the ‘trajectory’ encoded in the brain (flow velocity)
(Friston, 2008a, b; Friston et al., 2008). The latter object is denoted
by Dµ̃α where D implies also a time-derivative operator which,
when acted on µ̃, results in (see Section 5.2)

Dµ̃α ≡ (µ′

α[0], µ
′

α[1], µ
′

α[2] · · · ) ≡ (µ′

α, µ′′

α, µ′′′

α · · · ).

Note that this definition of the time derivative operator is formally
distinct from the time derivative ˙̃µα , i.e. µ′

α[n] ̸= µ̇α[n]. The term
‘velocity’ here has been adapted by analogy with velocity in me-
chanics in the sense that ˙̃µα denotes first order time-derivative of
‘position’, namely the bare variable µ̃α . Prepared with this extra
theoretical construct, the gradient descent scheme is restated in

the FEP as

µ̇α[n] − Dµα[n] = −κµ̂α[n] · ∇µ̃αE({µ̃α}, {ϕ̃α}) (49)

where Dµα[n] = µ′

α[n]. According to this formulation, E is min-
imised with respect to the generalised state µ̃α when the ‘path
of the mode’ (generalised velocity) is equal to the ‘mode of the
path’ (average velocity), in other words the gradient of E vanishes
when ˙̃µα = Dµ̃α . It is worth noting that in ‘static’ situations
where generalised motions are not required (see Section 8.4), the
concept of the ‘mode of the path’ is not needed, i.e. Dµ̃α ≡ 0
by construction. In such situations we consider the relevant brain
variables µα to reach the desired minimumwhen there is no more
temporal change in µα in the usual sense, i.e. when µ̇α = 0.

In sum, these equations specify sets of first order ordinary dif-
ferential equations that could be straightforwardly integrated by
neuronal processing, e.g., they are very similar equations for firing
rate dynamics in neural networks (e.g., see Haykin & Network,
2004). Continuously integrating these equations in the presence
of stream of sensory data would make brain states continuously
minimise VFE and thus implement approximate inference on envi-
ronmental states. Furthermore, with some additional assumptions
about their implementation (Friston & Kiebel, 2009c) they become
strongly analogous to the predictive coding framework (Rao &
Ballard, 1999).

7. Active inference

A central appeal of the FEP is that it suggests not only an account
of perceptual inference but also an account of action within the
same framework: active inference. Specifically while perception
minimises VFE by changing brain states to better predict sensory
data, action instead acts on the environment to alter sensory input
to better fit sensory predictions. Thus action minimises VFE indi-
rectly by changing sensations.

In this section we describe a gradient-descent scheme analo-
gous to that in the previous section but for action. To ground this
idea for action, and combine it with the framework for perceptual
inference discussed in previous sections, we present an implemen-
tation of a simple agent-based model.

Under the FEP action does not appear explicitly in the formu-
lation of VFE but minimises VFE by changing sensory data. To
evaluate this the brainmust have a inversemodel (Wolpert, 1997)
of how sensory data change with action (Friston et al., 2010).
Specifically, for a single brain state variable µ we write this as
ϕ = ϕ(a) where a represents the action and ϕ is a single sensory
channel. Action in this context could be moving ones limbs or eyes
and thus changing sensory input. Given an inverse model we can
write how the Laplace-encoded energy changes with respect to
action using the chain rule as,
dE(µ, ϕ)

da
≡

dϕ
da

∂E(µ, ϕ)
∂ϕ

. (50)

Thus we can write the same gradient decent scheme outlined in
the last section to calculate the actions that minimise the Laplace-
encoded energy as

ȧ = −κa
dϕ
da

dE(µ, ϕ)
dϕ

(51)

where κa is the learning rate associated with action.
It is straightforward to write this gradient descent scheme for a

vector of brain states in generalised coordinates as

ȧ = −κa

∑
α

dϕ̃α

da
· ∇ϕ̃α E({µ̃α}, {ϕ̃α}). (52)

The idea that brains innately possess inverse models, at first
glance, seems somewhat troublesome. However, under the FEP
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the execution of motor control depends only on predictions about
proprioceptors (internal sensors) which can be satisfied by classic
reflex arcs (Friston, 2011; Friston et al., 2010). On this reading ex-
teroceptive, and perhaps interoceptive (Seth, 2015), sensations are
only indirectlyminimised by action.While a full assessment of this
idea’s implications is outside the remit of this work, it provides an
interesting alternative to conventional notions of motor control, or
behaviour optimisation, that rest on maximising a value function
or minimising a cost function (Friston, 2011).

To give a concrete example of how perceptual and active infer-
ence work we present an implementation of a simple agent-based
model. Specifically we present a model that comprises a mobile
agent that must move to achieve some desired local temperature,
Tdesire.

The agent’s world. The agent’s environment, or generative pro-
cess (Friston et al., 2010), consists of a 1-dimensional line and a
simple temperature source. The agent’s position on this plane is
denoted by the environmental variable ϑ and the agent’s temper-
ature depends on its position in the following manner,

T (ϑ) =
T0

ϑ2 + 1
, (53)

where T0 is the temperature at the origin, i.e., this equation
gives the dynamics of the agents’ environment (the environmen-
tal causes of its sensory signals). The corresponding temperature
gradient is readily given by,
dT
dϑ

= −T0
2ϑ

(ϑ2 + 1)2
≡ Tϑ . (54)

The temperature profile is depicted by the black line in Fig. 3(a).
We allow the agent to sense both the local temperature and the
temporal derivative of this temperature

ϕ = T + zgp (55)

ϕ′
= Tϑϑ ′

+ z ′

gp (56)

where zgp and z ′
gp are normally distributed noise in the sensory

readings. Note that the subscript gp reminds us that this noise is
a part of the agent’s environment (rather than its brain model)
described by the generative process.

In this model the agent is presumed to sit on a flat frictionless
plane and, thus, in the absence of action the agent is stationary.
We allow the agent to set its own velocity by setting it equal to the
action variable a as,

ϑ ′
= a. (57)

The agent’s brain. To construct a scheme to minimise VFE we first
write down what the agents believe in terms of it brain states.
Note: here we will assumed the agent knows the dynamics of the
environment and how sensory data is generated, i.e., we provide
it with an appropriate generative model a priori. In Section 8 we
consider how the agent could learn this model but we do not deal
with this possibility in the simple simulation presented here.

The agent has brain state µ which represents the agents esti-
mate of its temperature in the environment. Following Eqs. (35),
we write a generative model for the agent, up to third order, as

µ′
= f (µ) + w where f (µ) ≡ −µ + Tdesire (58)

µ′′
= −µ′

+ w′ (59)

µ′′′
= w′′, (60)

where the third order term is just random fluctuations with large
variance and thus is effectively eliminated from the expression for
the Laplace-encoded energy, see Section 5.2. Following Eq. (34), we

write the agent’s belief about its sensory data only to first order as,

ϕ = g(µ) + z where g(µ) ≡ µ

ϕ′
= µ′

+ z ′

which follow Eqs. (55) and (56), i.e., the agent knows how its
sensory data is generated. It is important to note that in this
dynamic formulation agents do not desire specific states them-
selves but rather have beliefs about the dynamics of the world.
For example the agent we present does not explicitly desire to
be at Tdesire (so there is not an explicit prior on µ, or rather this
is a flat prior). However, examining the agent’s generative model
we easily see that it possesses a stable equilibrium point at Tdesire.
In effect the agent believes in a environment where the forces
it experiences naturally move it to its desired temperature, see
Section 2 and (Friston et al., 2010). However, examining the agent’s
generativemodel, see Eqs. (58)–(60) we easily see that it possesses
a stable equilibrium point at Tdesire .

We can write the Laplace-encoded energy, Eq. (45), for this
model, as

E(µ̃, ϕ̃) =
1
2

[
1

σz[0]
(εz[0])2 +

1
σz[1]

(εz[1])2 +
1

σw[0]
(εw[0])2

+
1

σw[1]
(εw[1])2

]
, (61)

where the various error terms are given as

εz[0] = ϕ − µ

εz[1] = ϕ′
− µ′

εw[0] = µ′
+ µ − Tdesire

εw[1] = µ′′
+ µ′.

Also, σz[0], σz[1], σw[0], and σw[1] in Eq. (61) are the variances cor-
responding to the noise terms z, z ′, w, and w′, respectively. In
additionwe have dropped logarithm of variance terms, see Eq. (24)
because they play no role whenweminimise these equations with
respect to the brain variableµ. A schematic of the generativemodel
for this system is given in Fig. 2. Note, that the noise terms in the
agents internal model are distinct from those in Eqs. (55) and (56)
and represent the agent’s beliefs about the noise on environmental
states and sensory data rather than the actual noise on these
variables. As we will see these terms effectively represent the
confidence of the agent in its own sensory input.

Using the gradient decent schemedescribed in Eq. (49)wewrite
the recognition dynamics as

µ̇ = µ′
− κa

[
−

εz[0]

σz[0]
+

εw[0]

σw[0]

]
µ̇′

= µ′′
− κa

[
−

εz[1]

σz[1]
+

εw[0]

σw[0]
+

εw[1]

σw[1]

]
(62)

µ̇′′
= −κa

εw[1]

σw[1]
.

Here we have considered generalised coordinates up to second
order only. To allow the agent to perform action we must provide
it with an inverse model, which we assume is hard-wired (Friston
et al., 2010). Replacing the agent’s velocity with the action variable
a in Eq. (56) we specify this as
dϕ′

da
=

d
da

(
aTϑ + z ′

gp

)
= Tϑ . (63)

Effectively the agent believes that action changes the temperature
in a way that is consistent with its beliefs about the temperature
gradient. Given this inverse model we can write down theminimi-
sation scheme for action as.

ȧ = −κa

[
dϕ′

da
∂E
∂ϕ′

]
= −κaTϑ

εz[1]

σz[1]
. (64)
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Fig. 2. The generative model for an active inference agent: Terms have the same
meanings as in Fig. 1. The agent acts on the world, via variable a (red arrow), to
change sensory input ϕ′ and minimise VFE indirectly. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Thus, Eqs. (62) through (64) describe the complete agent–
environment system and can be straightforwardly integrated.

A simulation of the agent-world system. Simulating agent-world
system involves three steps:

1. We simulate the agent’s environment by numerically inte-
grating Eqs. (53)–(56) (i.e the generative process).

2. Perception is implemented by updating the brain states
constrained by this sensory data using the gradient descent
scheme, this achieved by numerically integrating Eq. (62).

3. Action involves the agent changing the environment,
through action a, which here involves simply moving along
a line, so that ϕ′ also minimises the VFE. This is given by
Eq. (63) and the gradient descent update for this is given in
Eq. (64).

See the code in Appendix B for details.
Fig. 3 shows the behaviour of the agent in the absence of action,

i.e., when the agent is unable tomove.We examine two conditions.
In a first condition the agent’s sensory variances σz[0], σz[1] are
several orders of magnitude smaller than model variances σw[0]
and σw[1]. Thus the agent has higher confidence (see Section 5.1)
in sensory input than in its internal model. Under this condition
the agent successfully infers both the local temperature and its
corresponding derivatives, see Fig. 3(b) black lines. In effect the
agent ignores its internal model and the gradient descent scheme
is equivalent to a leastmean square estimation on the sensory data,
see supplied code in Appendix B. In a second condition, see Fig. 4
red lines, we equally balance internal model and sensory variances
(σz[i] = σw[i], i = 0, 1). Now minimisation of VFE cannot satisfy
both sensory perception and predictions of the agent’s internal
model, i.e., what the agent perceives is in conflict with what it de-
sires. Thus the inferred local temperature sits somewhere between
its desired and sensed temperature, see Fig. 3(b).

In Fig. 4, after an initial period, the agent is allowed to act
according to Eq. (64). It does so by changing the environment to
bring it in line with sensory predictions and the desires encoded
within its dynamicmodel, i.e., the agentmoves towards the desired
temperatures.

The reduction of surprisal can be quantified as the difference
between the Laplace-encoded energy (and thus VFE) in presence
and absence of action, i.e., the difference between black and red
traces in Fig. 4(e), respectively. Specifically, it is the portion of the
VFE that must be minimised by acting on the environment rather
than through optimisation of the agent’s environment model. We

Fig. 3. Perceptual inference: The agent’s environment comprises a simple temper-
ature gradient (a), the blue and magenta lines give the actual and desired positions
of the agent, respectively. The agent performs simple perceptual inference (b), the
dynamics of three generalised coordinates,µ,µ′ andµ′′ , are given in the top,middle
and bottom panels, respectively. Two conditions are shown, when the confidence
in the sensory input is high (i.e. σz[i] is small in comparison to σw[i]), black line,
and when confidence is equal between the internal model and sensory input, red
line, respectively. VFE in both conditions monotonically decreases (c): black and
red traces, respectively. The tension between sensory input and internal model
manifests a relatively high value of VFE (c) (red curve), compared to the case where
sensation has much higher confidence than the internal model (black curve). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

leave amore explicit quantification of the dynamics of surprisal for
future work.

In summary we have presented an example of an agent per-
forming a very simple task under the FEP. Themodel demonstrates
how the minimisation of VFE can underpin both perception and
action. Furthermore, it shows how a tension between desires and
perception can be reconciled through action. Many other agent
based implementations of the FEP have been presented in the
literature, see for example (Friston et al., 2010), which can be
constructed in a similarly way.

8. Hierarchical inference and learning

In the previous sections we developed the FEP for organisms
given simple dynamical generative models. We then investigated
the emergence of behaviour in a simulated organism (agent) fur-
nished with an appropriate generative model of a simple envi-
ronment. The assumption here was that organisms possess some
knowledge or beliefs of about how the environmentworks a priori,
in the form of a pre-specified generative model. However, another
promise of the FEP is the ability to learn and infer arbitrary environ-
mental dynamics (Friston, 2008a). To achieve this it is suggested
that the brain starts outwith a very general hierarchical generative
model of environmental dynamics which is moulded and refined
through experience. The advantage of using hierarchical models,
as we will see, is that they suggest a way of avoiding specifying
an explicit and fixed prior, and thus can implement empirical
Bayes (Casella & Berger, 2002). In what follows, we will first
consider inference and then turn to learning.We start by providing
a description of a hierarchical G-density which is capable of hier-
archical inference which is equivalent to empirical Bayes (Casella
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Fig. 4. Perceptual and active inference: An agent with equal confidence in its
internal model and sensory input σz[i] = σw[i] = 1 is allowed to act at t = 25.
The agent acts, see (d), to alter its position, see (a: orange line), to bring down its
initial temperature (T = 20) to the desired temperature (T = Tdesire = 4), see
(a: blue line). It does this by bringing its sensory data (c) in line with its desire,
i.e., ϕ = Tdesire and thus the brain state becomes equal to its desired state, see (b).
VFE was calculated in the presence and absence of the onset of action at t = 25, see
e, black and red lines, respectively. First VFE is reduced by inference (t < 25), then
later through action (eg., black line). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

& Berger, 2002). We then combine this with dynamical genera-
tive model described in Eq. (45) to define what we shall call the
full construct. We go on to describe how appropriate parameters
(e.g. parameters that define generative functions) hyperparam-
eters (e.g. inverse variances or precisions) of the G-density for
given world could be discovered through learning. Note: there is
a fundamental distinction between inference and learning. Infer-
ence refers to recognising the current causes of sensory input by
inferring hidden or latent states of the world that vary with time.
This contrasts with inferring the (time invariant) parameters that
mediate dependencies among (time varying) states. We finish this
section by showing how action can be described in this construct.

8.1. Hierarchical generative model

A key challenge for Bayesian inferencemodels is how to specify
the priors. Hierarchical models provide a powerful response to
this challenge, in which higher levels can provide empirical priors
or constraints on lower levels (Kass & Steffey, 1989). In the FEP,
hierarchical models aremapped onto the hierarchical organisation
of the cortex (Felleman & Van Essen, 1991; Zeki & Shipp, 1988),
which requires extension of the simple generativemodel described
above.

We denote µ(i) as a brain state at hierarchical level i and we
assume M cortical levels, with i = 1 the lowest level and i = M as
the highest. Then, the hierarchical model may be written explicitly

Fig. 5. Ahierarchical generativemodel for the univariate case: Interactions between
hierarchical brain states, {µ(1), µ(2), . . .}, and sensory data at the lowest hierarchical
level, ϕ . The arrows denote where one variable (source) specifies the mean of the
other (target).

as (Friston, 2008a)

ϕ = g (1)(µ(1)) + z(0)

µ(1)
= g (2)(µ(2)) + z(1)

µ(2)
= · · ·

...

µ(M)
= z(M)

which can be written compactly as

µ(i)
= g (i+1)(µ(i+1)) + z(i) (65)

where i runs through 1, 2, . . . ,M . We further assume that the
sensory data ϕ reside exclusively at the lowest cortical level µ(1)

and dynamics at the highest level µ(M) are governed by a random
fluctuation z(M), i.e:

µ(0)
≡ ϕ and g (M+1)

≡ 0. (66)

Thehierarchy Eq. (65) specifies that a cortical stateµ(i) is connected
to higher level µ(i+1) through the generative function g (i+1). The
fluctuations z(i) exist at each level, in particular z(0) designating
the observation noise at the sensory interface, and are assumed to
be statistically independent. A schematic of the interaction in the
hierarchical generative model is given in Fig. 5.

Having defined the hierarchical model, one can write the corre-
sponding G-density as

p(ϕ, µ) = p(µ(0)
|µ(1), µ(2), . . . , µ(N))p(µ(1), µ(2), . . . , µ(M))

≡ p(µ(0)
|µ(1))p(µ(1)

|µ(2)) · · · p(µ(M−1)
|µ(M))p(µ(M)). (67)

The second step in Eq. (67) assumes that the transitionprobabilities
from higher levels to lower levels are Markovian. Consequently,
Eq. (67) asserts that the likelihood associated with a given level,
for instance p(µ(i)

|µ(i+1)), serves as a prior density for the level
immediately below, i − 1. The prior at the highest level p(µ(M))
contains information only with respect to its spontaneous noise,
which may be given by a Gaussian form

p(µ(M)) =
1√

2πσ
(M)
z

exp
{
−[µ(M)

]
2/
(
2σ (M)

z

)}
(68)

where the mean has been assumed to be zero and σ
(M)
z is the

variance. We shall further assume that the Gaussian noises are
responsible for the (statistically independent) fluctuations at all
hierarchical levels. Accordingly, the likelihoods p(µ(i)

|µ(i+1)) are
given as

p(µ(i)
|µ(i+1)) =

1√
2πσ

(i)
z

× exp
[
−
{
µ(i)

− g (i+1)(µ(i+1))
}2

/
{
2σ (i)

z

}]
. (69)
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Table 4
Mathematical objects relating to the hierarchical generative model.

Symbol Name & description

Hierarchical model p(ϕ, µ) = p(µ(M))
∏M−1

i=0 p(µ(i)
|µ(i+1))

µ(i) Brain states at cortical level i (i = 1, 2, . . . ,M); µ(0)
≡ ϕ denotes the

sensory data which reside at the lowest cortical level.
g (i)(µ(i)) Generative map (or function) of the brain state µ(i) to estimate

one-level lower state µ(i−1) in the cortical hierarchy via
µ(i−1)

= g (i)(µ(i)) + z(i−1); where z(i−1) is Gaussian noise.
p(µ(i)

|µ(i+1)) Likelihood of µ(i) given a value for µ(i+1); which acts as a prior for
p(µ(i−1)

|µ(i)) in the cortical hierarchy.
p(µ(M)) Probabilistic representation of brain states at the highest level, which

forms the highest prior.

and the G-density reduces to

p(ϕ, µ) =

⎡⎣ M∏
i=0

1√
2πσ

(i)
z

⎤⎦ exp

(
−

M∑
i=0

1

2σ (i)
z

[ε(i+1)
]
2

)
(70)

where the auxiliary variables ε(i) have been introduced as

ε(i)
≡ µ(i−1)

− g (i)(µ(i)). (71)

The quantity ε(i) measures the discrepancy between the prediction
(estimation) at a given level µ(i) via g (i) and µ(i−1) at a lower-level,
which comprises a prediction error.

Finally, by substituting the G-density, constructed in Eq. (70),
into Eq. (19), after a simple manipulation, the Laplace-encoded
energy E is given up to a constant as

E(µ, ϕ) =

M∑
i=0

{
1

2σ (i)
z

[ε(i+1)
]
2
+

1
2
ln σ (i)

z

}
. (72)

The variance of the noise at the top level of hierarchy is typi-
cally assumed to be large and thus the corresponding term in the
Laplace-encoded energy Eq. (72) is approximately zero. Aswith the
higher dynamical orders discussed above Section 5.2 this means
that the level below is effectively unconstrained (has no prior) and
thus this type of inference constitutes an example of empirical
Bayes (Casella & Berger, 2002).

Table 4 itemises the mathematical objects associated with the
hierarchical generative model.

8.2. Combining hierarchical and dynamical models: the full construct

We now combine the dynamical structure and the multivariate
brain states in a single expression. First we note that under the FEP
brain states representing neuronal activity µα are divided into the
hidden states xα and the causal states vα ,

µα = (xα, vα).

Here causal and hidden states distinguish between states that are
directly observable from those that are not. At the lowest level
of the hierarchy causal states refer to sensory variables (e.g., the
colour of a red hot poker) and hidden states the variables that con-
stitute the generative process (e.g., the temperature of the poker).
However this distinction is generalised throughout the hierarchy
and each level is thought of as ‘observing’ (through causal states)
the level below. Then, the full FEP implementation can be derived
formally by extending Eqs. (43) and (44) (Eq. (65))

ṽ(i)
α = g̃ (i+1)

α (x̃(i+1)
α , ṽ(i+1)

α ) + z̃(i)α , i = 0, 1, . . .M (73)

Dx̃(i)α = f̃ (i)α (x̃(i)α , ṽ(i)
α ) + w̃(i)

α , i = 1, 2 . . . ,M (74)

where the brain-state index runs through α = 1, 2, . . . ,N and ṽ(0)
α

designates the sensory data at the lowest cortical level, i = 1. Inter-
level hierarchical links are made through the causal states and

intra-hierarchical level dynamics through the hidden states. The
generalised coordinates of neuronal brain state α in hierarchical
level i are given by the infinite-dimensional vectors

x̃(i)α ≡ (x(i)α[0], x
(i)
α[1], x

(i)
α[2], . . .) and ṽ(i)

α ≡ (v(i)
α[0], v

(i)
α[1], v

(i)
α[2], . . .)

where the components are labelled by the subscripts [n], n =

0, 1, . . . ,∞. Note that we have introduced different notations in
the vector components: The subscript α for brain states at a given
hierarchical level, the superscript (i) for the hierarchical indices,
and the subscript [n] for the dynamical orders. Recall that the nth
component of the vector x̃(i)α and ṽ(i)

α are time-derivatives of order
n, namely

x(i)α[n] ≡
dn

dtn
x(i)α and v

(i)
α[n] ≡

dn

dtn
v(i)

α .

The other mathematical quantities in Eqs. (73) and (74) are given
explicitly as:

Dx̃(i)α = (x(i)α[1], x
(i)
α[2], x

(i)
α[3], . . .),

z̃(i)α ≡ (z(i)α[0], z
(i)
α[1], z

(i)
α[2], . . .), and w̃(i)

α ≡ (w(i)
α[0], w

(i)
α[1], w

(i)
α[2], . . .).

The generative functions appearing in Eqs. (73) and (74) are spec-
ified for n ⩾ 1, under the local-linearity assumption, as

gα[n](x
(i+1)
α[n] , v

(i+1)
α[n] ) ≡

∂g

∂v
(i+1)
α[n]

v
(i+1)
α[n] ≡ g (i+1)

α[n]

and

fα[n](x
(i)
α[n], v

(i)
α[n]) ≡

∂ f

∂x(i)α[n]

x(i)α[n] ≡ f (i)α[n].

For the lowest dynamical order of n = 0,

g (i+1)
α[0] = g(x(i+1)

α[0] , v
(i+1)
α[0] ) and f (i)α[0] = f (x(i)α[0], v

(i)
α[0]).

It is evident from Eq. (73) that the causal states ṽ(i)
α at one

hierarchical level are predicted from states at one level higher in
the hierarchy ṽ(i+1)

α via themap g̃ (i+1)
α : z̃(i)α specifies the fluctuations

associated with these inter-level links. Eq. (74) asserts that the
dynamical transitions of the hidden states x̃(i)α are induced within
a given hierarchical level via f̃ (i)α : The corresponding fluctuations
are given by w̃(i)

α . In order to describe these transitions more trans-
parently, we spell out Eqs. (73) and (74) explicitly:

ṽ(0)
α = g̃ (1)

α (x̃(1)α , ṽ(1)
α ) + z̃(0)α Dx̃(1)α = f̃ (1)α (x̃(1)α , ṽ(1)

α ) + w̃(1)
α

ṽ(1)
α = g̃ (2)

α (x̃(2)α , ṽ(2)
α ) + z̃(1)α Dx̃(2)α = f̃ (2)α (x̃(2)α , ṽ(2)

α ) + w̃(2)
α

...
...

ṽ(M−1)
α = g̃ (M)

α + z̃(M−1)
α Dx̃(M−1)

= f̃ (M−1)
+ w̃(M−1)

ṽ(M)
α = z̃(M)

α Dx̃(M)
α = f̃ (M)

α + w̃(M)
α

where we have set that

ϕ̃α ≡ ṽ(0)
α and g̃ (M+1)

α ≡ 0.
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Fig. 6. The full construct for the univariate case: See text for description of the
variables. The arrows denote where one variable (source) specifies the mean of the
other (target).

Note that the sensory data ϕ̃α reside at the lowest hierarchical level
and are to be inferred by the causal states ṽ(1)

α at the corresponding
dynamical orders. At the highest cortical level M the causal states
ṽ(M)

α are described by the spontaneous fluctuations z̃(M)
α around

their means (which have been set to be zero without loss of
generality). Note that the generalised motions of hidden states are
still present at the highest cortical level, in just the same way that
theymanifest at all the other hierarchical levels: the corresponding
spontaneous fluctuations are given by w̃(M)

α . A schematic of the
interactions between the variables that comprise the full construct
is given in Fig. 6.

Separating brain states into causal and hidden states, we can
now express the G-density by generalising Eq. (67) as

p(ϕ̃, µ̃) =

N∏
α=1

p(ϕ̃α, µ̃α) =

N∏
α=1

p(µ̃(M)
α )

M−1∏
i=0

p(µ̃(i)
α |µ̃(i+1)

α )

⇒

N∏
α=1

p(x̃(M)
α , ṽ(M)

α )
M−1∏
i=0

p(x̃(i)α , ṽ(i)
α |x̃(i+1)

α , ṽ(i+1)
α )

=

N∏
α=1

p(x̃(M)
α , ṽ(M)

α )
M−1∏
i=0

p(x̃(i)α |ṽ(i)
α )p(ṽ(i)

α |x̃(i+1)
α , ṽ(i+1)

α ) (75)

where in the second step we have used µ̃(i)
α = (x̃(i)α , ṽ(i)

α ) and only
the causal states ṽ(i)

α are involved in the inter-level transitions in
the third step. Also, it must be understood that p(x̃(0)α |ṽ(0)

α ) ≡ 1 in
Eq. (75),which appears solely for amathematical compactness. The
intra-level conditional probabilities p(x̃(i)α |ṽ(i)

α ) are given as

p(x̃(i)α |ṽ(i)
α ) = p(x(i)α[0], x

(i)
α[1], . . . |v

(i)
α[0], v

(i)
α[1], · · · )

=

∞∏
n=0

p(x(i)α[n]|v
(i)
α[n]) (76)

where in the second step we have made use of the assumption of
statistical independence among the generalised states at different
dynamical orders. The quantity p(x(i)α[n]|v

(i)
α[n]) specifies the condi-

tional density at the dynamical order nwithin the hierarchical level
i, where the corresponding fluctuations w

(i)
α[n] are assumed to take

Gaussian form as

p(x(i)α[n]|v
(i)
α[n]) ≡

1√
2πσ

α(i)
w[n]

× exp
[
−

(
x(i)α[n+1] − f (i)α[n]

)2
/

(
2σ α(i)

w[n]

)]
. (77)

The conditional densities p(ṽ(i)
α |x̃(i+1)

α , ṽ(i+1)
α ) appearing in Eq. (75)

link two successive causal states in the cortical hierarchy which
are specified by a similar Gaussian fluctuation for z(i)α[n] via Eq. (73)
as

p(ṽ(i)
α |x̃(i+1)

α , ṽ(i+1)
α ) ≡

∞∏
n=0

1√
2πσ

α(i)
z[n]

× exp
[
−

(
v
(i)
α[n] − g (i+1)

α[n]

)2
/

(
2σ α(i)

z[n]

)]
. (78)

What is left unspecified in constructing the G-density fully, i.e.
Eq. (75), is the prior density p(x̃(M)

α , ṽ(M)
α ) at the highest cortical

level. It is given here explicitly as

p(x̃(M)
α , ṽ(M)

α ) ≡

∞∏
n=0

1√
2πσ

α(M)
w[n]

exp
{
−[x(M)

α[n+1] − f (M)
α[n]]

2/

(
2σ α(M)

w[n]

)}

×

∞∏
n=0

1√
2πσ

α(M)
z[n]

exp
{
−[v

(M)
α[n]]

2/

(
2σ α(M)

z[n]

)}
. (79)

The prior in the highest cortical level, Eq. (79), comprises the lateral
generalisedmotions of the hidden states and the spontaneous, ran-
dom fluctuations associated with the causal states. It is assumed
that both causal and hidden states fluctuate about zero means.

Next, the Laplace-encoded energy E can bewritten explicitly by
substituting Eq. (75) into Eq. (19) and incorporating the likelihood
and prior densities, Eq. (77), (78), and (79), at all hierarchical levels
and dynamical orders. After a straightforward manipulation, we
obtain the Laplace-encoded energy for a specific brain variable µα

as

Eα(µ̃α, ϕ̃α) =

∞∑
n=0

{
1

2σ α(M)
w[n]

(
x(M)
α[n+1] − f (M)

α[n]

)2
+

1
2
ln σ

α(M)
w[n]

}

+

∞∑
n=0

{
1

2σ α(M)
z[n]

(
v
(M)
α[n]

)2
+

1
2
ln σ

α(M)
z[n]

}

+

M−1∑
i=1

∞∑
n=0

{
1

2σ α(i)
w[n]

(
x(i)α[n+1] − f (i)α[n]

)2
+

1
2
ln σ

α(i)
w[n]

}

+

M−1∑
i=0

∞∑
n=0

{
1

2σ α(i)
z[n]

(
v
(i)
α[n] − g (i+1)

α[n]

)2
+

1
2
ln σ

α(i)
z[n]

}
where the first and second terms are from prior-densities at the
highest level, Eq. (79), the third term is from Eq. (77), and last term
from Eq. (78). A quick inspection reveals that the first and second
terms canbe absorbed into the third and fourth terms, respectively.
Then, the Laplace-encoded energy for multiple brain variables is
written compactly as

E(µ̃, ϕ̃) =

N∑
α=1

Eα(µ̃α, ϕ̃α)

=
1
2

N∑
α=1

∞∑
n=0

M∑
i=1

{
1

σ
α(i)
w[n]

(
ε

α(i)
w[n]

)2
+ ln σ

α(i)
w[n]

}

+
1
2

N∑
α=1

∞∑
n=0

M∑
i=0

{
1

σ
α(i)
z[n]

(
ε

α(i+1)
z[n]

)2
+ ln σ

α(i)
z[n]

}
(80)
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Table 5
Mathematical objects relating to the full generative model.

Symbol Name & description

Full construct p(ϕ̃α, µ̃α) = p(x̃(M)
α , ṽ(M)

α )
∏M−1

i=0 p(x̃(i)α |ṽ(i)
α )p(ṽ(i)

α |x̃(i+1)
α , ṽ(i+1)

α )
µ̃(i)

α Brain state α in cortical level i in generalised coordinates, whose nth
component is denoted as µ

(i)
α[n] .

x̃(i)α , ṽ(i)
α Two distinct neuronal representations, µ̃(i)

α = (x̃(i)α , ṽ(i)
α ); designated as

hidden and causal states, respectively.
g̃ (i)
α Generative map of the causal state ṽ(i)

α to learn the state one level
below, ṽ(i−1)

α = g̃ (i)
α (x̃(i)α , ṽ(i)

α ) + z̃(i−1)
α .

f̃ (i)α Generative function which induces the Langevin-type equation of
motion of the hidden state x̃(i)α , ˙̃x

(i)
α = f̃ (i)α (x̃(i)α , ṽ(i)

α ) + w̃(i)
α .

z̃(i)α , w̃(i)
α Random fluctuations treated as Gaussian noise.

p(x̃(M)
α , ṽ(M)

α ) Prior density of the brain state µ̃α at the highest cortical level (M).
p(x̃(i)α |ṽ(i)

α ) Probabilistic representation of the intra-level dynamics of hidden
states x̃(i)α conditioned on the causal state ṽ(i)

α via f̃ (i)α ; dynamic
transition from order n to n + 1 is hypothesised as the Gaussian
fluctuation of w(i)

α[n] = x(i)α[n+1] − f (i)α[n] .
p(ṽ(i)

α |x̃(i+1)
α , ṽ(i+1)

α ) Likelihood density of the causal state ṽ(i+1) which serves as a prior for
one level lower density, representing statistically the inter-level map
between two successive causal states, z(i)α[n] = v

(i)
α[n] − g (i+1)

α[n] , by the
Gaussian fluctuation.

where we have defined the prediction errors

ε
α(i)
z[n] ≡ v

(i−1)
α[n] − g (i)

α[n]

(
x(i)α[n], v

(i)
α[n]

)
(81)

ε
α(i)
w[n] ≡ x(i)α[n+1] − f (i)α[n]

(
x(i)α[n], v

(i)
α[n]

)
. (82)

Thus, it turns out that the Laplace-encoded energy is expressed
essentially as a sum of the prediction-errors (squared) and their
associated variances. It appears in Eq. (80) that the structure of
the first term differs from the second term: In the first term the
hierarchical index runs from i = 1 which indicates the lowest cor-
tical level, while the second term includes additional i = 0 in the
hierarchical sumwhich designates the sensory data, ϕ̃ ≡ ṽ(0). Note
also in Eq. (81) that εα(M+1)

z[n] = v
(M)
α[n] because the highest hierarchical

level is at i = M , accordingly g (M+1)
α[n] ≡ 0 by construction.

Table 5 provides the glossary of the mathematical objects in-
volved in the G-density in the full construct for a single brain
activity µα .

To summarise, the ‘full construct’ incorporates into the G-
density, both multi-level hierarchies corresponding to cortical ar-
chitecture, and multi-scale dynamics in each level via generalised
coordinates. The G-density is expressed as the sequential product
of the priors and the likelihoods, cascading down the cortical
hierarchy to the lowest level where the sensory data are registered
(mediated by causal states), and taking into account the intra-level
dynamics,mediated by hidden states. The final formof the Laplace-
encoded energy, Eq. (80), has been derived from Eq. (19) which
specifies the Laplace-encoded energy as the (negative) logarithmof
the generative density constructed for the hidden and causal brain
states.

8.3. The full-construct recognition dynamics and neuronal activity

We now describe recognition dynamics incorporating the full
construct (Section 8.2), given the Laplace-encoded energy E(µ̃, ϕ̃),
Eq. (80). In the full construct, the brain states µ̃α are decomposed
into the causal states ṽα which link the cortical hierarchy and the
hidden states x̃α which implement the dynamical ordering within
a cortical level.

Distinguishing the ‘path of the modes’ from the ‘modes of the
path’, see Section 6, the learning algorithm for the dynamical causal
states on the cortical level i can be constructed from

v̇
(i)
α[n] − Dv

(i)
α[n] ≡ −κz v̂

(i)
α[n] · ∇ṽαE(µ̃, ϕ̃) (83)

where κz is the learning rate and v̂
(i)
α[n] is the unit vector along

v
(i)
α[n]. As mentioned in Section 6, the crucial assumption here is

that when the path of modes becomes identical to the modes of
the path, i.e. ˙̃v

(i)
α − Dṽ(i)

α → 0, the Laplace-encoded energy E takes
its minimum, and vice versa. The gradient operation in the RHS of
Eq. (83) can be made explicit to give

v̂
(i)
α[n] · ∇ṽαE(µ̃, ϕ̃)

=
∂

∂v
(i)
α[n]

[
1

2σ α(i−1)
z[n]

{
ε

α(i)
z[n]

}2
+

1

2σ α(i)
z[n]

{
ε

α(i+1)
z[n]

}2
+

1

2σ α(i)
w[n]

{
ε

α(i)
w[n]

}2]

=
1

σ
α(i−1)
z[n]

ε
α(i)
z[n]

∂ε
α(i)
z[n]

∂v
(i)
α[n]

+
1

σ
α(i)
z[n]

ε
α(i+1)
z[n]

∂ε
α(i+1)
z[n]

∂v
(i)
α[n]

+
1

σ
α(i)
w[n]

ε
α(i)
w[n]

∂ε
α(i)
w[n]

∂v
(i)
α[n]

(84)

where one can further see that

∂ε
α(i)
z[n]

∂v
(i)
α[n]

= −
∂gα(i)

z[n]

∂v
(i)
α[n]

,
∂ε

α(i+1)
z[n]

∂v
(i)
α[n]

= 1, and
∂ε

α(i)
w[n]

∂v
(i)
α[n]

= −
∂ f (i)α[n]

∂v
(i)
α[n]

.

The additional auxiliary variables are introduced:

ξ
α(i)
z[n] ≡ ε

(i)
z[n]/σ

α(i−1)
z[n] ≡ Λ

α(i−1)
z[n]

{
v
(i−1)
α[n] − g (i)

α[n]

(
x(i)α[n], v

(i)
α[n]

)}
, (85)

ξ
α(i)
w[n] ≡ ε

(i)
w[n]/σ

(i)
w[n] ≡ Λ

α(i)
w[n]

{
x(i)α[n+1] − f (i)

[n]

(
x(i)α[n], v

(i)
α[n]

)}
, (86)

where Λ
α(i)
z[n] and Λ

α(i)
w[n] are the inverse of the variances,

Λ
α(i)
z[n] ≡ 1/σ α(i)

z[n] and Λ
α(i)
w[n] ≡ 1/σ α(i)

w[n], (87)

which are called the precisions. Note that the precisions reflect the
magnitude of the prediction errors.

Its is proposed that the auxiliary variables ξ
α(i)
z[n] and ξ

α(i)
w[n] repre-

sent error units and that the brain states, v(i)
α[n] and x(i)α[n], similarly

represent state units or, equivalently, representation units, within
neuronal populations (Friston, 2010c; Friston & Kiebel, 2009a).

In terms of ‘predictive coding’ or (more generally) hierarchical
message passing in cortical networks (Friston, 2008a), Eq. (85)
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implies that the error-units ξ
α(i)
z[n] receive signals from causal states

v
(i−1)
α[n] lying in immediately lower hierarchical level and also from

causal and hidden states in the same level, v(i)
α[n] and x(i)α[n], via the

generative function g (i)
α[n]. Similarly, Eq. (86) implies that the error-

units ξ
α(i)
w[n] specify prediction-error in the within-level (lateral)

dynamics: ξ
α(i)
w[n] designates prediction error between the objec-

tive hidden-state x(i)α[n+1] and its estimation from one-order lower
causal- and hidden-states v

(i)
α[n] and x(i)α[n], via the different genera-

tive function f (i)α[n].
With the help of Eq. (84), one can recast Eq. (83) to give the

dynamics of the causal states as

v̇
(i)
α[n] = Dv

(i)
α[n] + κz

∂gα(i)
[n]

∂v
(i)
α[n]

ξ
α(i)
z[n] − κzξ

α(i+1)
z[n] + κz

∂ f (i)α[n]

∂v
(i)
α[n]

ξ
α(i)
w[n] (88)

which shows clearly how hierarchical links are made among
nearest-neighbour cortical levels. Specifically, the representation
units of causal states v

(i)
α[n] are updated by the error units ξ

α(i+1)
z[n]

which reside in the level immediately above, and also by the error-
units ξ

α(i)
z[n] and ξ

α(i)
w[n] in the same hierarchical level, all at the same

dynamical order.
The intra-level dynamics of hidden states are generated simi-

larly as

ẋ(i)α[n] ≡ Dx(i)α[n] − κw x̂
(i)
α[n] · ∇x̃αE(µ̃, ϕ̃)

= Dx(i)α[n] − κwξ
α(i)
w[n−1] + κw

∂ f (i)α[n]

∂x(i)α[n]

ξ
α(i)
w[n] + κw

∂g (i)
α[n]

∂x(i)α[n]

ξ
α(i)
z[n] (89)

where κw is the leaning rate. In passing to the second line in
Eq. (89), one needs to evaluate

x̂(i)α[n] · ∇x̃αE(µ̃, ϕ̃)

→
1

σ
α(i)
w[n−1]

ε
α(i)
w[n−1]

∂ε
α(i)
w[n−1]

∂x(i)α[n]

+
1

σ
α(i)
w[n]

ε
α(i)
w[n]

∂ε
α(i)
w[n]

∂x(i)α[n]

+
1

σ
α(i−1)
z[n]

ε
α(i)
z[n]

∂ε
α(i)
z[n]

∂x(i)α[n]

,

and an explicit evaluation of the derivatives of the prediction
errors, Eqs. (81) and (82). The hidden-state learning algorithm,
Eq. (89), specifies how the representation-units x(i)α[n] are driven
by the error-units in the current level i at both the immediately
lower dynamical order ξ

α(i)
w[n−1] and the same dynamical order ξ

α(i)
w[n],

and also by the error units ξ
α(i)
z[n] in the current level at the same

dynamical order.
To summarise, the hierarchical, dynamical causal structure of

the generative model is fully implemented in the mathematical
constructs given by Eqs. (85) and (86) (specifying prediction er-
rors), and Eqs. (88) and (89) (specifying update rules for state-
units).

According to these equations, the state units come to encode the
conditional expectations of the environmental causes of sensory
data, and the error units measure the discrepancy between these
expectations and the data. Error units are driven by state units
at the same level and from the level below, whereas state units
are driven by error units at the same level and the level above.
Thus, prediction errors are passed up the hierarchy (bottom-up)
and predictions (conditional expectations) are passed down the
hierarchy (top-down), fully consistent with predictive coding (Rao
& Ballard, 1999).

8.4. Parameters and hyperparameters: synaptic efficacy and gain

Thus farwe have discussed howenvironmental variables can be
inferred given an appropriate G-density. In this section we discuss
how the G-density itself can be learned. It has been proposed that
the dynamics of neural systems is captured by three time-scales,
τµ < τθ < τγ . The first, τµ, represents the timescale of the dynam-
ics of sufficient statistics of the encoded in the R-density i,.e µ ≡

(x, v) as described above. In contrast τθ and τγ represent the slow
timescale of synaptic efficacies and gains which are parameterised
implicitly in Eq. (80) through the generative functions, f and g , and
the variances σ (or the precisions Λ, Eq. (87)), respectively. Under
the FEP slow variables are assumed to be approximately ‘static’ or
‘time-invariant’ in contrast to the ‘time-varying’ neuronal states
µ (Friston & Kiebel, 2009a). Second, changes in θ and γ (with
respect to a small δt) have a much smaller effect on the Laplace-
encoded energy (or VFE) than do changes in µ, i.e.
∂F
∂θ

δθ

δt
≪

∂F
∂µ

δµ

δt
.

The latter point implies that, from the perspective of gradient-
descent, what is relevant for θ and γ is not the VFE F but the accu-
mulation, more precisely the integration of F over time (Friston &
Stephan, 2007)

S[F ] ≡

∫
dtF (µ̃, ϕ̃; θ, γ ) (90)

where the time-dependence of F is implicit through the arguments.
To distinguish their different roles, θ (i)

α are called parameters and
γ (i)

α are called hyperparameters, corresponding to brain state µα , in
each hierarchical level i. Eqs. (85) and (86) can now be generalised
to include these parameters and hyperparameters as

ξ
α(i)
z[n] = Λ

α(i−1)
z[n] (γ (i−1)

α )
{
v
(i−1)
α[n] − g (i)

α[n]

(
x(i)α[n], v

(i)
α[n]; θ (i)

α

)}
, (91)

ξ
α(i)
w[n] = Λ

α(i)
w[n](γ

(i)
α )
{
x(i)α[n+1] − f (i)α[n]

(
x(i)α[n], v

(i)
α[n]; θ (i)

α

)}
. (92)

The Laplace-encoded energy including θ and γ may therefore be
written as

E(µ̃, ϕ̃; θ, γ ) =
1
2

N∑
α=1

∞∑
n=0

M∑
i=1

{
ε

α(i)
w[n]ξ

α(i)
w[n] − lnΛ

α(i)
w[n]

}
+

1
2

N∑
α=1

∞∑
n=0

M∑
i=0

{
ε

α(i+1)
z[n] ξ

α(i+1)
z[n] − lnΛ

α(i)
z[n]

}
. (93)

We are now in a position towrite down the recognition dynam-
ics for the slow synaptic efficacy θ and for the slower synaptic gain
γ . Specifically, gradient descent for the parameters θ (i)

α is applied
using the time-integral of F , given in Eq. (90), assuming a static
model (i.e., without dynamical order indices), as

θ̇ (i)
α = −κθ θ̂

(i)
α · ∇θS

which, when temporal differentiation is repeated on both sides,
gives rise to

θ̈ (i)
α = −κθ θ̂

(i)
α · ∇θE(µ̃, ϕ̃; θ, γ ). (94)

After explicitly carrying out the gradient on the RHS of Eq. (94),
one obtains an equation to minimise θ (i)

α corresponding to brain
variable µα at cortical level i

θ̈ (i)
α =

∞∑
n=0

[
κθ

∂g (i)
α[n]

∂θ
(i)
α

ξ
α(i)
z[n] + κθ

∂ f (i)α[n]

∂θ
(i)
α

ξ
α(i)
w[n]

]
(95)

where the summation over the dynamic index n reflects the gen-
eralised motion over causal as well as hidden states. According to
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Table 6
Mathematical objects relating to the recognition dynamics.

Symbol Name & description

∇µ̃E(µ̃, ϕ̃) ‘Gradient’ of the Laplace encoded-energy: Multi-dimensional
derivative of the scalar function E; which vanishes at an optimum µ̃∗ .

Dynamical construct ˙̃µ
(i)
α − Dµ̃(i)

α = −κα∇
µ̃
(i)
α
E(µ̃, ϕ̃), µ̃(i)

α = (x̃(i)α , ṽ(i)
α )

µ̃(i)
α Generalised brain states: A point in the generalised state space to

represent fast ‘time-dependent’ neuronal activity µ̃α on each cortical
level i [see Eqs. (73) and (74)].

˙̃µ
(i)
α , Dµ̃(i)

α
˙̃µ
(i)
α is the ‘path of the mode’; Dµ̃(i)

α is the ‘mode of the path’. ˙̃µ
(i)
α

represents the rate of change of a brain state in generalised state space,
while Dµ̃(i)

α represents the encoded motion in the brain; when the two

become identical, i.e. ˙̃µ
(i)
α = Dµ̃(i)

α , in the course of recognition
dynamics, E reaches its minimum.

Static construct µ̈
(i)
β = −κβ µ̂

(i)
β · ∇µβ

E(µ̃, ϕ̃; θ, γ ), µβ = θ, γ

Λ̃
α(i)
z , Λ̃α(i)

w Precisions: Inverse variances in the generalised coordinates [see
Eq. (87)].

θ (i)
α , γ (i)

α Parameters, hyperparameters: Slow brain states that are treated as
‘static’ and are associated with θ (i)

α and γ (i)
α , respectively, on each

cortical level; where θ (i)
α appear as parameters in the generative

functions g (i)
α and f (i)α , and γ (i)

α are hyperparameters in the precisions
Λ

α(i)
z and Λα(i)

w .
ξ̃

α(i)
z , ξ̃α(i)

w Prediction errors; measuring the discrepancy between the observation
and the evaluation [e.g. Eqs. (91), (92)]

Eq. (95) synaptic efficacy is influenced by error-units only in the
same cortical level.

Similarly, the learning algorithm for the hyperparameters γ ,
specifically for γ (i)

α associated with brain’s representation of envi-
ronmental states µα at cortical level i, is given from

γ̇ (i)
α = −κγ γ̂ (i)

α · ∇γ S

which results in

γ̈ (i)
α = −

1
2

∞∑
n=0

[
κγ

∂Λ
α(i)
w[n]

∂γ
(i)
α

{
ξ

α(i)
w[n]

}2
− κγ

∂

∂γ
(i)
α

lnΛ
α(i)
w[n]

]

−
1
2

∞∑
n=0

[
κγ

∂Λ
α(i)
z[n]

∂γ
(i)
α

{
ξ

α(i+1)
z[n]

}2
− κγ

∂

∂γ
(i)
α

lnΛ
α(i)
z[n]

]
. (96)

According to this equation, synaptic gains are influenced by error
units in the same level ξ (i)

w and also by error units in one-level above
ξ
(i+1)
z .
Note that the equations for θ and γ , Eqs. (95) and (96), are by

construction second-order differential equations, unlike the corre-
sponding equations for state-units µ [Eqs. (88) and (89)], which
are first-order in time (Friston et al., 2008). Table 6 provides the
summary of mathematical symbols appearing in the recognition
dynamics in the dynamical construct and also in the static con-
struct.

To summarise the FEP prescribes recognition dynamics by gra-
dient descent with respect to the sufficient statistics µ̃, param-
eters θ , and hyperparameters γ on the Laplace-encoded energy
E(µ̃, ϕ̃; θ, γ ), given the sensory input ϕ̃. At the end of this process,
an optimal µ̃∗ is specified which represents the brain’s posterior
expectation of the environmental cause of the observed sensory
data. In theory the second term in the VFE F , Eq. (18), can be fixed
according to Eq. (17) thereby completing the minimisation of the
VFE, although in practice this is rarely done and the focus is on
approximating the means, parameters and hyperparameters.

This whole minimisation process is expressed abstractly as

µ̃∗
= arg min

µ̃
F (µ̃, ϕ̃) (97)

where µ̃∗ is the minimising (optimal) solution. The resulting min-
imised VFE can be calculated by substituting the optimising µ̃∗ for
µ̃ as

F∗
= F (µ̃∗, ϕ̃ ).

The only remaining task is to specify the generative functions f
and g , which will depend on the particular system beingmodelled.
We have utilised a concrete model in our calculation in Section 7.
Examples of various generating functions have already been pro-
vided (Friston, 2008a; Friston et al., 2010, 2016; Pezzulo et al.,
2015; Pio-Lopez, Nizard, Friston, & Pezzulo, 2016), to which we
refer the reader.

8.5. Active inference on the full construct

The VFE also accounts for an active inference byminimising the
VFE with respect to action, for which a formal procedure can be
written as

a∗
= arg min

a
F (µ̃, ϕ̃(a)) (98)

where a∗ is theminimising solution. Similarly with Eq. (51) we can
write down the gradient descent scheme for the minimisation in
the full construct for action corresponding to brain’s representa-
tion µα as

ȧα = −κaâα · ∇aαE(µ̃, ϕ̃(a)) (99)

where Eq. (93) is to be used for the Laplace-encoded energy. Then,
after the gradient operation is completed, the organism’s action is
implemented explicitly as,

ȧα = −κa

∞∑
n=0

dϕ̃α[n]

daα

Λ
α(0)
z[n] ε

α(1)
z[n] (100)

where ε
α(1)
z[n] = ϕα[n] − g (1)

α[n](x
(1)
α[n], v

(1)
α[n]; θ (1)

α ) is the prediction-error
associated with learning of the sensory data on the dynamical
order n at the lowest cortical level and Λ

α(0)
z[n] = Λ

α(0)
z[n] (γ

(0)
α ) is the

precision of the sensory noise.
In summary, we have seen how the principle of variational free

energy minimisation can be applied to hidden states of generative
models to provide a formal description of perceptual inference.
Furthermore we have shown how action can be described as a
process thatmodifies the environment, to change sensory data, and
indirectly minimise VFE. Lastly we have shown how learning can
be described when the same principles are applicable to the time
invariant parameters that govern the dynamics of states.
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9. Discussion

The FEP framework is an ambitious project, spanning a chain
of reasoning from fundamental principles of biological self-
maintenance essential for sustainable life, to a mechanistic brain
theory that proposes to account for a startling range of properties
of perception, cognition, action and learning. It draws conclusions
about neurocognitivemechanisms fromextremely general statisti-
cal considerations regarding the viability of organism’s survival in
unpredictable environments. Under certain assumptions – which
wediscuss inmore detail below– it entails a hierarchical predictive
processing model geared towards the inference and control of
the hidden causes of sensory inputs, which both sheds new light
on existing data about functional neuroanatomy and motivates a
number of specific hypotheses regarding brain function in health
and in disease. At the same time, the current status of much of the
research under the rubric of the FEP does depend on, to different
degrees, a variety of assumptions and approximations, both at the
level of the overarching theory and with regard to the specific
implementation (or ‘process theory’) the theory proposes. In this
section, we discuss the consequences of some ofmore important of
these assumptions and approximations, with respect to the frame-
work and implementation described in the body of this paper.

A central assumption in this (representative) exposition of the
FEP is that the brain utilises properties of Gaussian distributions
in order to carry out probabilistic computation. Specifically, the
Laplace approximation assumes a Gaussian functional form for the
R-density and G-density which are encoded by sufficient statistics,
see Sections 4 and 5. Additionally, it is assumed that the R-density
is tightly peaked, i.e., the variance and covariance are small, see
Section 4. At first glance this assumptionmay appear troublesome,
because it suggests that organisms do not directly represent the
uncertainty of environmental variables (hidden causes of sensory
signals). However, this worry is misplaced and the organism in
fact does represent a distribution over states. Representations of
uncertainty are accommodated via precisions on the expectations
of brain states that comprise the G-density, see Eq. (32). Intuitively
this means that organisms encode uncertainties about their model
of how hidden causes relate to each other and to sensory signals.

The main advantage of adopting Gaussian assumptions is that
they vastly simplify the implementation of the FEP, and make it
formally equivalent to the more widely known predictive coding
framework (Clark, 2013; Elias, 1955; Friston & Kiebel, 2009c),
see the Introduction. Furthermore, it can be argued this imple-
mentation is compatible with a plausible neuronal functional
architecture in terms of message passing in cortical hierarchies
(Friston, 2005). Specifically, inferred variables (hidden causes) can
be represented in terms of neural firing rates; the details of gen-
erative models encoded as patterns of synaptic connectivity, and
the process of VFE minimisation by the relaxation of neuronal
dynamics (Bastos, Usrey, Adams, Mangun, Fries, & Friston, 2012).
The concept of hierarchical generative models, see Section 8, also
maps neatly onto the hierarchical structure of cortical networks,
at least in the most frequently studied perceptual modalities like
vision. Here, the simple idea is that top-down cortical signalling
conveys predictions while bottom-up activity returns prediction
errors (Bastos et al., 2012). However, it remains an open question
whether representing the world in terms of Gaussian distributions
is sufficient given the complexities of real-world sensorimotor in-
teractions. For example, standard robotics architectures have long
utilised practical strategies for representing more complex distri-
butions (Thrun, Burgard, & Fox, 2005) including (for example)mul-
timodal peaks (Otworowska, Kwisthout, & van Rooij, 2014). Other
authors have proposed that brains engage in Bayesian sampling
rather than the encoding of probability distributions, suggesting
that sampling schemes parsimoniously explain classic cognitive

reasoning errors (Knill & Pouget, 2004a). Whether these alternate
schemes can be used to constructmore versatile and behaviourally
powerful implementations of the FEP, and whether they remain
compatible with neuronally plausible process theories, remains to
be seen.

The minimisation of VFE, for both inference and learning, is
assumed to be implemented as a gradient descent scheme. While
this has the major advantage of transforming difficult or infeasible
inference problems into relatively straightforward optimisation
problems, it is not clear whether the proposed gradient descent
schemes always have good convergence properties. For example,
the conditions under which gradient descent will become stuck
in local minima, or fail to converge in an appropriate amount
of time, are not well understood. Furthermore, parameters such
as learning rate will be crucial for the timely inference of the
dynamics of variables, as well as central to the dynamics of control,
see Figs. 3 and 4. Parameters like these, which play important roles
in the estimation of – but not specification of – the VFE, can be
incorporated into process theories in many ways, with as yet no
clear consensus (though see, for one proposal (Joffily & Coricelli,
2013)).

The implementation described in this paper supports inference
in dynamical environments. This is based on the concept of gen-
eralised motions, whereby it is assumed that the brain infers not
only the current value of environmental variables (e.g., position)
but also their higher-order derivatives (i.e., velocity, acceleration,
jerk, etc.). This requires that both that the relevant sensory noise
is differentiable, and, that interactions between derivatives are
linear (Friston et al., 2007). The extent towhich these assumptions
are justifiable remains unclear, as does the utility of encoding gen-
eralised motions in practical applications. It is likely, for example,
that signal magnitudes after the second derivative will be small
and carry considerable noise, thus practical usefulness of including
higher order derivatives is unclear, although thismay be justifiable
in some cases (Balaji & Friston, 2011).

Under active inference, prediction errors are minimised by act-
ing on theworld to change sensory input, rather than bymodifying
predictions. Active inference therefore depends on the ability to
make conditional predictions about the sensory consequences of
actions. To achieve this the FEP assumes that agents have a model
of the relationship between action and sensation, in the form of
an inverse model, in addition to their generative model (Friston
et al., 2016; Seth, 2014). In the general case the specification of an
inverse model is non-trivial (Wolpert, 1997), thus at first glance
this seems like a strong assumption. However, the FEP suggests
generation of motor actions are driven through the fulfilment of
proprioceptive predictions only, where relations between actions
and (proprioceptive) sensations are assumed to be relatively sim-
ple such that minimisation of prediction error can be satisfied by
simple reflex arcs (Friston, 2011; Friston et al., 2010). On this
view, action only indirectly affects exteroceptive or interoceptive
sensations, obviating the need for complicated inverse models like
those described in the motor control literature (Friston, 2011;
Wolpert, 1997). In the implementation of the FEP given in this
paper there is no distinction between different types of sensory
input.

In Section 7 we showed that behaviour is extremely sensitive
to precisions. This is often presented as an advantage of the frame-
work, allowing an agent to balance sensory inputs against internal
predictions in an optimal and context sensitive manner, through
precision weighting (which is associated with attention) (Clark,
2013). Supposedly the appropriate regulation of precision should
also emerge as a consequence of the minimisation of free energy,
see Section 8 for a description of this. But how the interplay
between brain states and precisions will unfold in an active agent
involved in a complex behaviour is far from clear.
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Where do the priors come from? This is an intuitive way to put
a key challenge for models involving Bayesian inference (Kass &
Steffey, 1989). To some extent the FEP circumvents this problem
via the concept of hierarchical models, which maps neatly onto
the framework of ‘empirical Bayes’ (Casella & Berger, 2002). In
this view, the hierarchical structure allows priors at one level to be
supplied by posteriors at a higher level. Sensory data are assumed
to reside only at the lowest level in the hierarchy, and the highest
level is assumed to generate only spontaneous random fluctua-
tions. While this is a powerful idea within formal frameworks, its
practicality for guiding inference in active agents remains to be
established.

These discussion points merely scratch the surface of the
promises and pitfalls of the FEP formalism, a formalism which is
rapidly advancing both in its theoretical aspects and in its various
implementations and applications. Nevertheless, research directed
towards addressing these issues should further clarify both the
explanatory power and the practical utility of this increasingly
influential framework. In this paper, we have tried to present an
inclusive and self-contained presentation of the essential aspects
of the free energy principle. We then unpacked a particular appli-
cation of the free energy principle to continuous state spacemodels
in generalised coordinates of motion. This is a particularly impor-
tant example because it provides a process theory that has a degree
of biological plausibility, in terms of neuronal implementation. In
doing so we hope to clarify the scientific contributions of the FEP,
facilitate discussions of some of the core issues and assumptions
underlying it, and motivate additional research to explore how far
the grand ambitions of the FEP can be realised in scientific practice.
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Appendix A. Variational Bayes: ensemble learning

In this section, we present a general treatment of ensemble
learning that does not assume a particular form for the marginal
recognition density is (e.g., the Laplace approximation). The key
approximation we focus on is the mean field approximation; in
other words, the factorisation of the posterior into marginal ap-
proximate posteriors. Note that when the true posterior factorises
in the same way as the approximate posterior, minimising varia-
tional free energy renders the approximate posterior exactly equal
to the true posterior. This corresponds to exact Bayesian infer-
ence – as opposed to approximate Bayesian inference. This ap-
proachmakes no assumptions about how the R-density is encoded
in the brain’s state; namely the Laplace approximation for the
R-density is dispensedwith. Technically themethodwedescribe in
Section 4 is known as ‘Generalised Filtering’ in Friston et al. (2010)
while the one we present here is known as ‘Variational Filtering’ in
Friston (2008b).

According to Eq. (7) the VFE is a functional of the R-density
q(ϑ) where the variable ϑ denotes the environmental states col-
lectively. The environmental sub-states ϑα , α = 1, 2, . . . ,N , must
vary on distinctive time-scale, τ1 < τ2 < · · · < τN , where τα is
associated with ϑα . Then, the sub-densities may be assumed to be
statistically-independent to allow the factorisation approximation
for q(ϑ) as

q(ϑ) ≡

N∏
i=1

qα(ϑα). (A.1)

Eq. (4) gives rise to the individual normalisation condition:∫
dϑ q(ϑ) =

N∏
α=1

∫
dϑα qα(ϑα) = 1

which asserts that∫
dϑα qα(ϑα) = 1. (A.2)

When the factorisation approximation, Eq. (A.1) is substituted into
Eq. (7), the VFE is written as

F =

∫ ∏
α

[dϑαqα(ϑα)]

{
E(ϑ, ϕ) +

∑
σ

ln qσ (ϑσ )

}
≡ F [q(ϑ); ϕ]

where the last expression indicates explicitly that the VFE is to be
treated as a functional of the R-density. We now optimise the VFE
functional by taking the variation of F with respect to a particular
R-density qβ (ϑβ ).We treat the remainder of the ensemble densities
as constant and use the normalisation constraint, Eq. (4), in the
form

λ

(∏
α

∫
dϑα qα(ϑα) − 1

)
= 0 (A.3)

where λ is a Lagrange multiplier.
A straightforward manipulation brings about

δβF =

∫
dϑβ

⎧⎨⎩
∫ ∏

α ̸=β

dϑαqα(ϑα)

(
E(ϑ, ϕ) +

∑
σ

ln qσ (ϑσ )

)

+ 1 + λ

⎫⎬⎭ δqβ

where δβ represents a functional derivative with respect to qβ (ϑβ ).
Next, by imposing δβF ≡ 0 it follows that the integration must
vanish identically for any change in δqβ ,∫ ∏

α ̸=β

dϑαqα(ϑα)

(
E(ϑ, ϕ) +

∑
σ

ln qσ (ϑσ )

)
+ 1 + λ = 0

which is to be solved for qβ (ϑβ ). The result brings out the optimal
density for the sub-state ϑβ as

q∗

β = exp

⎧⎨⎩−(λ + 1) −

∑
σ ̸=β

∫ ∏
α ̸=β

dϑαqα(ϑα) ln qσ (ϑσ )

− Eβ (ϑβ , ϕ)

⎫⎬⎭ (A.4)

where use has been made of the definition

Eβ (ϑβ , ϕ) ≡

∫ ∏
α ̸=β

dϑαqα(ϑα)E(ϑ, ϕ) (A.5)

which is the partially-averaged energy (Friston et al., 2006, 2007).
Here, it is worthwhile to note that the following relation holds∫

dϑβ qβ (ϑβ )Eβ (ϑβ , ϕ) =

∫
dϑ q(ϑ)E(ϑ, ϕ),

which states that the expectation of the partially-averaged energy
Eβ (ϑβ , ϕ) under qβ (ϑβ ) is the average energy, i.e. the first term in
Eq. (9). The undetermined Lagrange multiplier is now fixed by the
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normalisation constraint, Eq. (A.2), which results in[∫
dϑβ e−Eβ (ϑβ ,ϕ)

]
exp

⎧⎨⎩−(λ + 1)

−

∑
σ ̸=β

∫ ∏
α ̸=β

dϑαqα(ϑα) ln qσ (ϑσ )

⎫⎬⎭ = 1,

which is to be solved for λ. When the determined λ is substituted
back into Eq. (A.4), the resulting ensemble-learned R-density can be
expressed formally as3

q∗

β (ϑβ ) =
1
Zβ

e−Eβ (ϑβ ,ϕ) (A.6)

where Zβ has been defined to be

Zβ ≡

∫
dϑβ e−Eβ (ϑβ ,ϕ). (A.7)

The superscript ∗ appearing in q∗

β indicates that it is the solution
which optimises the VFE. The functional form of Eq. (A.6) is remi-
niscent of the equilibrium canonical ensemble in statistical physics
in which the normalisation factor Zβ is called the partition function
of the subsystem {ϑβ} (Huang, 1987).

Under the factorisation approximation, by substituting Eq. (A.6)
into Eq. (A.1), the R-density becomes

q∗(ϑ) =
1
ZT

e−ET (ϑ,ϕ) (A.8)

where

ET (ϑ, ϕ) ≡

N∑
α=1

Eα(ϑα, ϕ) and ZT ≡

N∏
α=1

Zα =

∫
dϑe−ET (ϑ,ϕ).

In Eq. (A.8) ZT may be called the ‘total’ partition function of the
environmental states and ET is the sum of the partially-averaged
energies. Note that, as a consequence of the ensemble-learning, the
optimising R-density approximates the posterior density p(ϑ |ϕ)
(see Section 3 and below). In principle, the optimising R-density,
Eq. (A.8), completes the ensemble-learning of the sensory data.
However, it does not provide a functionally fixed-form for the
optimal R-density. This is because the partially-averaged energy
appearing on the RHS of Eq. (A.8) is a functional of the R-density
itself (see Eq. (A.5)). One possible way to obtain a closed form
of q∗(ϑ, ϕ) is to seek a self-consistent solution: One starts with an
educated guess (an ‘ansatz’) for the optimal R-density to evaluate
the partially-averaged energy, Eq. (A.5) and uses the outcome to
update the R-density, Eq. (A.6). This iterative process is to be
continued until a convergence reaches between estimation and
evaluation of the R-densities.

We now exploit the optimal R-density, q∗

β (ϑβ ) given in Eq. (A.6).
The partially averaged-energy appearing in q∗

β can be manipulated
as

Eβ (ϑβ , ϕ) =

∫ ∏
α ̸=β

dϑαqα(ϑα)E(ϑ, ϕ)

= −

∑
σ

∫ ∏
α ̸=β

dϑαqα(ϑα) ln p(ϑσ , ϕσ ), (A.9)

3 Note that the minus sign arises in the exponent because we have defined the
energy as Eq. (10) differently from other papers on the free energy principle. We
have made this choice because our definition resembles the Boltzmann factor in
the canonical ensemble in statistical physics.

where we have used the factorisation approximation for the
G-density appearing in the energy E = − ln p(ϑ, ϕ) as

p(ϑ, ϕ) =

∏
σ

p(ϑσ , ϕσ ) =

∏
σ

p(ϑσ |ϕσ )p(ϕσ ). (A.10)

Next, one can separate out the environmental sub-state ϑβ among
summation on the RHS of Eq. (A.9) to cast it into

Eβ (ϑβ , ϕ) = − ln p(ϑβ , ϕβ )

−

∑
σ ̸=β

∫ ∏
α ̸=β

dϑαqα(ϑα) ln p(ϑσ , ϕσ ). (A.11)

Then, it follows from Eq. (A.6) that

q∗

β (ϑβ ) =
e−Eβ (ϑβ ,ϕ)∫

dϑβ e−Eβ (ϑβ ,ϕ) →
p(ϑβ , ϕβ )∫
dϑβp(ϑβ , ϕβ )

= p(ϑβ |ϕβ ),

where the last step can be obtained by noticing the identity,
p(ϑβ , ϕβ ) = p(ϑβ |ϕβ )p(ϕβ ), and

∫
dϑβp(ϑβ , ϕβ ) = p(ϕβ ). Finally,

the ensemble-learned R-density, Eq. (A.8), is given by

q∗(ϑ) =

∏
α

q∗

α(ϑα) =

∏
α

p(ϑα|ϕα) = p(ϑ |ϕ). (A.12)

Note that we have expressed the true posterior as a product of
marginal posteriors and thus we have exact Bayesian inference.
In other situations, the above equation becomes an approximate
equality and we have approximate Bayesian inference.

By substituting the optimal R-density, Eq. (A.12), into expres-
sion for VFE given in Eq. (7), we can also obtain the minimised VFE
as

F∗
=

∫
dϑ q∗(ϑ) ln

q∗(ϑ)
p(ϑ, ϕ)

=

∫
dϑ q∗(ϑ) ln

p(ϑ |ϕ)
p(ϑ |ϕ)p(ϕ)

= − ln p(ϕ)
∫

dϑ q∗(ϑ)

= − ln p(ϕ) (A.13)

where we have used Eq. (A.12) in moving to second line and the
normalisation condition for q∗(ϑ) in the last step. Note that we
have made it explicit that the sensory density p(ϕ) is conditioned
on the biological agentm. Thus, we have come to a conclusion that
the minimum VFE provides a tight bound on surprisal.

In summary, the variation of the VFE functional with respect
to the R-density (ensemble-learning) has allowed us to specify an
optimal (ensemble-learned) R-density, q∗(ϑ, ϕ), selected among
an ensemble of R-densities. The specified R-density is the brain’s
solution to statistical inference of the posterior density about the
environmental states given sensory inputs. The minimum VFE,
fixed in this way, is identical to the surprisal. To achieve this it
was assumed that distinctive independent timescales characterise
environmental sub-states (the factorisation approximation). The
ensemble-learned R-density of each partitioned variable set ϑβ ,
q∗

β (ϑβ ), is specified by the corresponding partially-averaged energy
(see Eq. (A.6)). The influence from other environmental variables
{ϑσ } (σ ̸= β) occurs through their mean, i.e, their complicated
interactions are averaged out in Eq. (A.5). In this sense, ϑβ may
be regarded as a ‘mean-field’ of the environmental states and
the procedure described as a mean-field approximation (Friston,
2008b; Friston et al., 2008).
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Appendix B. Dynamic Bayesian thermostat

% A Simple Bayesian Thermostat
% The free energy pr inc ip le for action and perception : A mathematical review , Journal of Mathematical Psychology
% Christopher L . Buckley , Chang Sub Kim , Simon M. McGregor and Anil K . Seth
c lear ;
rng (6 ) ;
%simulation parameters
simTime=100; dt =0.005; time =0:dt : simTime ;
N =length ( time ) ;
action =true ;
%Generative Model Parameters
Td = 4; %desired temperature

%The time that action onsets
actionTime =simTime /4;

% i n i t i a l i s e sensors
rho_0 (1) =0;
rho_1 (1)=0;

%sensory variances
Omega_z0 =0.1;
Omega_z1 =0.1;
%hidden state variances
Omega_w0 = .1 ;
Omega_w1 = .1 ;

%Params for generative process
T0 = 100; %temperature at x=0

% I n i t i a l i s e brain s ta te var iab les
mu_0(1)=0;
mu_1(1)=0;
mu_2(1)=0;

%Sensory noise in the generative process
zgp_0 = randn (1 ,N)∗ . 1 ;
zgp_1 = randn (1 ,N)∗ . 1 ;

% I n i t i a l i s e the action var iab le
a (1) =0;

% I n i t i a l i s e generative process
x_dot (1) = a (1 ) ;
x (1) = 2;
T (1) = T0 / ( x (1)^2+1);
Tx (1)= −2∗T0∗x (1)∗ ( x(1)^2+1)^−2;
T_dot (1) = Tx (1)∗ ( x_dot ( 1 ) ) ;

% I n i t i a l i s e sensory input
rho_0 (1) = T (1 ) ;
rho_1 (1) = T_dot (1 ) ;

% I n i t i a l i s e error terms
epsilon_z_0 = ( rho_0(1)−mu_0(1 ) ) ;
epsilon_z_1 = ( rho_1(1)−mu_1(1 ) ) ;

epsilon_w_0 = (mu_1(1)+mu_0(1)−Td ) ;
epsilon_w_1 = (mu_2(1)+mu_1( 1 ) ) ;

% I n i t i a l i s e Var ia t iona l Energy
VFE(1) = 1/Omega_z0∗epsilon_z_0 ^2/2 . . .

+ 1/Omega_z1∗epsilon_z_1 ^2/2 . . .
+1/Omega_w0∗epsilon_w_0^2/2 . . .
+1/Omega_w1∗epsilon_w_1^2/2 . . .
+1/2∗ log (Omega_w0∗Omega_w1∗Omega_z0∗Omega_z1 ) ;

%Gradient descent learning parameters
k = .1 ; %for inference
ka= .01; %for learning

for i =2:N

%The generative process ( i . e . the rea l world )
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x_dot ( i ) = a ( i −1);%action
x( i ) = x ( i−1)+dt∗( x_dot ( i ) ) ;
T ( i ) = T0 / ( x ( i )^2+1);
Tx ( i )= −2∗T0∗x( i )∗ ( x ( i )^2+1)^−2;
T_dot ( i ) = Tx ( i )∗ ( x_dot ( i ) ) ;

rho_0 ( i ) = T ( i ) + zgp_0 ( i ) ; %ca lc laute sensory input
rho_1 ( i ) = T_dot ( i ) + zgp_1 ( i ) ;

%The generative model ( i . e . the agents brain )
epsilon_z_0 = ( rho_0 ( i−1)−mu_0( i −1));% error terms
epsilon_z_1 = ( rho_1 ( i−1)−mu_1( i −1));

epsilon_w_0 = (mu_1( i−1)+mu_0( i−1)−Td ) ;
epsilon_w_1 = (mu_2( i−1)+mu_1( i −1));

VFE( i ) = 1/Omega_z0∗epsilon_z_0 ^2/2 . . .
+1/Omega_z1∗epsilon_z_1 ^2/2 . . .
+1/Omega_w0∗epsilon_w_0^2/2 . . .
+1/Omega_w1∗epsilon_w_1^2/2 . . .
+1/2∗ log (Omega_w0∗Omega_w1∗Omega_z0∗Omega_z1 ) ;

mu_0( i ) = mu_0( i−1) . . .
+dt∗(mu_1( i−1)−k∗(−epsilon_z_0 /Omega_z0 . . .
+epsilon_w_0 /Omega_w0) ) ;

mu_1( i ) = mu_1( i−1) +dt∗(mu_2( i−1)− k∗(−epsilon_z_1 /Omega_z1 . . .
+epsilon_w_0 /Omega_w0+epsilon_w_1 /Omega_w1) ) ;

mu_2( i ) = mu_2( i −1 ) . . .
+dt∗−k∗( epsilon_w_1 /Omega_w1) ;

i f ( time ( i ) >25)
a ( i ) = a ( i−1) +dt∗−ka∗Tx ( i )∗ epsilon_z_1 /Omega_z1; %act ive inference

else
a ( i ) = 0;

end
end
f igure (1 ) ; c l f ;

subplot (5 ,1 ,1)
plot ( time , T ) ; hold on;
plot ( time , x ) ; hold on;
legend ( ’ T ’ , ’ x ’ )

subplot (5 ,1 ,2)
plot ( time ,mu_0, ’ k ’ ) ; hold on;
plot ( time ,mu_1, ’m’ ) ; hold on;
plot ( time ,mu_2, ’ b ’ ) ; hold on;

legend ( ’ \mu’ , ’ \mu’ , ’ \mu’ ) ;

subplot (5 ,1 ,3)
plot ( time , rho_0 , ’ k ’ ) ; hold on;
plot ( time , rho_1 , ’m’ ) ; hold on;

legend ( ’ \ rho ’ , ’ \ rho ’ ) ;

subplot (5 ,1 ,4)
plot ( time , a , ’ k ’ ) ;
y label ( ’ a ’ )

subplot (5 ,1 ,5)
plot ( time , VFE , ’ k ’ ) ; x label ( ’ time ’ ) ; hold on;
ylabel ( ’ VFE ’ )
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