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Abstract
Active inference is an approach to understanding behaviour that rests upon the idea that the brain uses an internal generative 
model to predict incoming sensory data. The fit between this model and data may be improved in two ways. The brain could 
optimise probabilistic beliefs about the variables in the generative model (i.e. perceptual inference). Alternatively, by acting 
on the world, it could change the sensory data, such that they are more consistent with the model. This implies a common 
objective function (variational free energy) for action and perception that scores the fit between an internal model and the 
world. We compare two free energy functionals for active inference in the framework of Markov decision processes. One of 
these is a functional of beliefs (i.e. probability distributions) about states and policies, but a function of observations, while 
the second is a functional of beliefs about all three. In the former (expected free energy), prior beliefs about outcomes are 
not part of the generative model (because they are absorbed into the prior over policies). Conversely, in the second (gen-
eralised free energy), priors over outcomes become an explicit component of the generative model. When using the free 
energy function, which is blind to future observations, we equip the generative model with a prior over policies that ensure 
preferred (i.e. priors over) outcomes are realised. In other words, if we expect to encounter a particular kind of outcome, 
this lends plausibility to those policies for which this outcome is a consequence. In addition, this formulation ensures that 
selected policies minimise uncertainty about future outcomes by minimising the free energy expected in the future. When 
using the free energy functional—that effectively treats future observations as hidden states—we show that policies are 
inferred or selected that realise prior preferences by minimising the free energy of future expectations. Interestingly, the 
form of posterior beliefs about policies (and associated belief updating) turns out to be identical under both formulations, 
but the quantities used to compute them are not.

Keywords Bayesian · Active inference · Free energy · Data selection · Epistemic value · Intrinsic motivation

1 Introduction

Over the past years, we have tried to establish active 
inference (a corollary of the free energy principle) as a 
relatively straightforward and principled explanation for 
action, perception and cognition. Active inference can 
be summarised as self-evidencing (Hohwy 2016), in the 
sense that action and perception can be cast as maximising 

Bayesian model evidence, under generative models of the 
world. When this maximisation uses approximate Bayesian 
inference, this is equivalent to minimising variational free 
energy (Friston et al. 2006)—a form of bounded rational 
behaviour that minimises a variational bound on model 
evidence. Recently, we have migrated the basic idea from 
models that generate continuous sensations (like veloc-
ity and luminance contrast) (Brown and Friston 2012) to 
discrete state-space models, specifically Markov deci-
sion processes (Friston et al. 2017a). These models rep-
resent the world in terms of discrete states, like I am on 
this page and reading this word (Friston et al. 2017d). 
Discrete state-space models can be inferred using belief 
propagation (Yedidia et al. 2005) or variational message 
passing (Dauwels 2007; Winn 2004) schemes that have 
a degree of neuronal plausibility (Friston et al. 2017c). 
The resulting planning as inference scheme (Attias 2003; 
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Baker et al. 2009; Botvinick and Toussaint 2012; Verma 
and Rao 2006) has a pleasingly broad explanatory scope, 
accounting for a range of phenomena in cognitive neuro-
science, active vision and motor control (see Table 1). In 
this paper, we revisit the role of (expected) free energy 

in active inference and offer an alternative, simpler and 
more general formulation. This formulation does not sub-
stantially change the message passing or belief updating; 
however, it provides an interesting perspective on planning 
as inference and the way that we may perceive the future.

Table 1  Applications of active inference for Markov decision processes

Application Comment References

Decision making under uncertainty Initial formulation of active inference for 
Markov decision processes and sequential 
policy optimisation

Friston et al. (2012c)

Optimal control (the mountain car problem) Illustration of risk sensitive or KL control in 
an engineering benchmark

Friston et al. (2012a)

Evidence accumulation: Urns task Demonstration of how beliefs states are 
absorbed into a generative model

FitzGerald et al. (2015b, c)

Addiction Application to psychopathology Schwartenbeck et al. (2015c)
Dopaminergic responses Associating dopamine with the encoding of 

(expected) precision provides a plausible 
account of dopaminergic discharges

FitzGerald et al. (2015a), Friston et al. (2014)

Computational fMRI Using Bayes optimal precision to predict 
activity in dopaminergic areas

Schwartenbeck et al. (2015a)

Choice preferences and epistemics Empirical testing of the hypothesis that people 
prefer to keep options open

Schwartenbeck et al. (2015b)

Behavioural economics and trust games Examining the effects of prior beliefs about 
self and others

Moutoussis et al. (2014), Prosser et al. (2018)

Foraging and two-step mazes; navigation in 
deep mazes

Formulation of epistemic and pragmatic value 
in terms of expected free energy

Friston et al. (2015)

Habit learning, reversal learning and devalu-
ation

Learning as minimising variational free energy 
with respect to model parameters—and 
action selection as Bayesian model averag-
ing

FitzGerald et al. (2014), Friston et al. (2016)

Saccadic searches and scene construction Mean-field approximation for multifactorial 
hidden states, enabling high-dimensional 
beliefs and outcomes, c.f., functional segre-
gation

Friston and Buzsaki (2016), Mirza et al. (2016)

Electrophysiological responses: place-cell 
activity, omission-related responses, mis-
match negativity, P300, phase precession, 
theta–gamma coupling

Simulating neuronal processing with a gradi-
ent descent on variational free energy, c.f., 
dynamic Bayesian belief propagation based 
on marginal free energy

Friston et al. (2017a)

Structure learning, sleep and insight Inclusion of parameters into expected free 
energy to enable structure learning via 
Bayesian model reduction

Friston et al. (2017b)

Narrative construction and reading Hierarchical generalisation of generative 
model with deep temporal structure

Friston et al. (2017d), Parr and Friston (2017c)

Computational neuropsychology Simulation of visual neglect, hallucinations 
and prefrontal syndromes under alternative 
pathological priors

Benrimoh et al. (2018), Parr and Friston 
(2017a), Parr et al. (2018a, b, 2019)

Neuromodulation Use of precision parameters to manipulate 
exploration during saccadic searches; 
associating uncertainty with cholinergic and 
noradrenergic systems

Parr and Friston (2017b, 2019), Sales et al. 
(2018), Vincent et al. (2019)

Decisions to movements Hybrid continuous and discrete generative 
models to implement decisions through 
movement

Friston et al. (2017c), Parr and Friston (2018)

Planning, navigation and niche construction Agent-induced changes in environment (gen-
erative process); decomposition of goals into 
subgoals

Bruineberg et al. (2018), Kaplan and Friston 
(2018)
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In current descriptions of active inference, the basic argu-
ment goes as follows: active inference is based upon the 
maximisation of model evidence or minimisation of vari-
ational free energy in two complementary ways. First, one 
can update one’s beliefs about latent or hidden states of the 
world to make them consistent with observed evidence—or 
one can actively sample the world to make observations con-
sistent with beliefs about states of the world. The important 
thing here is that both action and perception are in game 
of minimising the same quantity, namely variational free 
energy. A key aspect of this formulation is that action (i.e. 
behaviour) is absorbed into inference, which means that 
agents have beliefs about what they are doing—and will 
do. This calls for prior beliefs about action or policies (i.e. 
sequences of actions). So where did these prior beliefs come 
from?

The answer obtains from a reductio ad absurdum argu-
ment: if action realises prior beliefs and minimises free 
energy, then the only tenable prior beliefs are that action 
will minimise free energy. If this were not the case, we reach 
the following absurd conclusion. If a free energy minimising 
creature did not have the prior belief that it selects policies 
that minimise (expected) free energy, it would infer (and 
therefore pursue) policies that were not free energy mini-
mising. As such, it would not be a free energy minimising 
creature, which is a contradiction. This leads to the prior 
belief that I will select policies that minimise the free energy 
expected under that policy. The endpoint of this argument 
is that action or policy selection becomes a form of Bayes-
ian model selection, where the evidence for a particular 
policy becomes the free energy expected in the future. This 
expected free energy is a slightly unusual objective func-
tion because it scores the evidence for plausible policies 
based on outcomes that have yet to be observed. This means 
that the expected free energy becomes the variational free 
energy expected under (posterior predictive) beliefs about 
outcomes. These priors are usually informed by prior beliefs 
about outcomes that play the role of prior preferences or 
utility functions in reinforcement learning and economics.

In summary, beliefs about states of the world and poli-
cies are continuously updated to minimise variational free 
energy, where posterior beliefs about policies (that prescribe 
action) are based upon expected free energy (that may or 
may not include prior preferences over future outcomes). 
This is the current story and leads to interesting issues that 
rest on the fact that expected free energy can be decomposed 
into epistemic and pragmatic parts (Friston et al. 2015). 
This decomposition provides a principled explanation for 
the epistemics of planning and inference that underwrite the 
exploitation and exploration dilemma, novelty, salience and 
so on. However, there is another way of telling this story 
that leads to a conceptually different sort of interpretation.

In what follows, we show that the same Bayesian policy 
(model) selection obtains from minimising variational free 
energy when future outcomes are treated as hidden or latent 
states of the world. In other words, we can regard active 
inference as minimising a generalised free energy under gen-
erative models that entertain the consequences of (policy-
dependent) hidden states of the world in the future. This 
simple generalisation induces posterior beliefs over future 
outcomes that now play the role of latent or hidden states. 
In this setting, the future is treated in exactly the same way 
as the hidden or unobservable states of the world generating 
observations in the past. On this view, one gets the expected 
free energy for free, because the variational free energy 
involves an expectation under posterior beliefs over future 
outcomes. In turn, this means that beliefs about states and 
policies can be simply and uniformly treated as minimising 
the same (generalised) free energy, without having to invoke 
any free energy minimising priors over policies.

Technically, this leads to the same form of belief updating 
and (Bayesian) policy selection but provides a different per-
spective on the free energy principle per se. This perspective 
says that self-evidencing and active inference both have one 
underlying imperative, namely to minimise generalised free 
energy or uncertainty. When this uncertainty is evaluated 
under models that generate outcomes in the future, future 
outcomes become hidden states that are only revealed by 
the passage of time. In this context, outcomes in the past 
become observations in standard variational inference, while 
outcomes in the future become posterior beliefs about latent 
observations that have yet to disclose themselves. In this 
way, the generalised free energy can be seen as compris-
ing variational free energy contributions from the past and 
future.

The current paper provides the formal basis for the above 
arguments. In brief, we will see that both the expected and 
generalised free energy formulations lead to the same 
update equations. However, there is a subtle difference. In 
the expected free energy formalism, prior preferences or 
beliefs about outcomes are used to specify the prior over 
policies. In the generalised formulation, prior beliefs about 
outcomes in the future inform posterior beliefs about the 
hidden states that cause them. Because of the implicit for-
ward and backward message passing in the belief propaga-
tion scheme obtained at the free energy minimum (Yedidia 
et al. 2005), these prior beliefs or preferences act to dis-
tort expected trajectories (into the future) towards prefer-
ences in an optimistic way (Sharot et al. 2012). Intuitively, 
the expected free energy contribution to generalised free 
energy evaluates the (complexity) cost of this distortion, 
thereby favouring policies that lead naturally to preferred 
outcomes—without violating beliefs about state transitions 
and the (likelihood) mapping between states and outcomes. 
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The implicit coupling between beliefs about the future and 
current actions means that, in one sense, the future can cause 
the past.

Framing probabilistic reasoning in terms of inferential 
message passing formalises several prominent concepts in 
the study of human decision making. The idea that prior 
beliefs distort beliefs about future and that this optimism 
about the future propagates backwards in time to influ-
ence behaviour in an adaptive way (McKay and Dennett 
2010; Sharot 2011), is highly consistent with an influence 
of beliefs about the future over beliefs about the present. 
Simplistically, the idea behind these accounts is that adap-
tive behaviour relies upon the (possibly false) belief that 
future events will accord with our preferences. It is only by 
believing that we will realise these goals that we act in a 
manner consistent with their realisation. Intuitively, without 
the belief that we will end up eating dinner, there would be 
no reason to shop for ingredients. The passing of messages 
from past to future resonates with the notion that work-
ing memory is vital for predicting the future and planning 
actions accordingly (Gilhooly 2005; Hikosaka et al. 2000), 
and underwrites research on episodic future thinking and 
counterfactual reasoning (Schacter et al. 2015). Appealing 
to bidirectional inferential message passing has enabled us 
to reproduce a range of behavioural and electrophysiologi-
cal phenomena through simulation (summarised in Table 1).

This paper comprises three sections. In the first, we out-
line the approach we have used to date (i.e. minimising the 
variational free energy under prior beliefs that policies with 
a low expected free energy are more probable). In the sec-
ond, we introduce a generalisation of the variational free 
energy that incorporates beliefs about future outcomes. The 
third section compares these two approaches conceptually 
and through illustrative simulations.

2  Active inference and variational free 
energy

The free energy principle is motivated by the defining char-
acteristic of living creatures, namely that they persist in 
the face of a changing world. In other words, their states 
occupy a small proportion of all possible states with a high 
probability. From the perspective of statistical physics, 
this means that they show a form of self-organised, non-
equilibrium steady-state that maintains a low entropy prob-
ability distribution over their states. In information theory, 
self-information or surprise (a.k.a. negative log model 
evidence) averaged over time is entropy. More generally, 
entropy is defined in terms of an ensemble average. How-
ever, under that assumption that a system has achieved its 
(non-equilibrium) steady state, the ensemble and time aver-
age are equivalent (under mild weakly mixing assumptions). 

This means, at any given time, all biological systems are 
compelled to minimise their surprise. While this may seem 
like a very bold statement, we do not intend to trivialise the 
many constraints that dictate behaviour. The point here is 
that when all these constraints are written into a generative 
model as prior beliefs, they all contribute to the same cost 
function: surprise. This reframes the problem of expressing 
the constraints biological systems must satisfy as a problem 
of specifying the right set of priors. Although the compu-
tation of surprise is often intractable, an approximation is 
simple to calculate. This is variational free energy (Beal 
2003; Dayan et al. 1995; Friston 2003) which depends upon 
specifying a generative model of how data are caused. This 
generative model comprises a series of conditional probabil-
ity distributions. For a Markov decision process, it assumes 
a series of states (s) that evolve through time. At each time 
step, the probability of transitioning from one state to the 
next depends upon a policy (π). Neither states nor policies 
are directly accessible to the creature in question. However, 
each state probabilistically generates an observable outcome 
(o). As Jensen’s inequality demonstrates, free energy is an 
upper bound on surprise.

In the equation above, P indicates a probability distribu-
tion over outcomes õ = (o1, o2,… , oT ) that are generated by 
hidden states of the world s̃ = (s1, s2,… , sT ) and policies, 
which define the generative model. The generative model is 
thus expressed as a joint probability distribution over out-
comes (i.e. consequences) and their causes (i.e. hidden states 
of the world and policies available to the agent). Marginalis-
ing (i.e. summing or integrating) over the states and policies 
gives the evidence (a.k.a., marginal likelihood). The log of 
this marginal likelihood is negative surprise. Q is a prob-
ability distribution over unobservable (hidden) states and 
policies—that becomes an approximate posterior distribu-
tion as free energy is minimised. The minimisation of free 
energy over time ensures entropy does not increase, thereby 
enabling biological systems to resist the second law of ther-
modynamics and their implicit dissipation or decay.

Note that the generative model is not a model of the bio-
logical system itself, but an implicit model of how the envi-
ronment generates its sensory data. The dynamics of infer-
ence and behaviour that we are interested in here emerge 
from minimising free energy under an appropriate choice of 
generative model. For readers with a physics background, 
and analogy would be that the free energy plays the role of a 

(1)

F
���
Free energy

= −EQ(s̃,𝜋)

[

ln
P(õ, s̃,𝜋)

Q(s̃,𝜋)

]

≥ − lnEQ(s̃,𝜋)

[

P(õ, s̃,𝜋)

Q(s̃,𝜋)

]

���������������������������������������������������������������������������
Jensen�s inequality

= − lnP(õ)
�����
Surprise



499Biological Cybernetics (2019) 113:495–513 

1 3

Lagrangian whose ‘potential energy’ component is given by 
the generative model. Just as a Lagrangian is used to recover 
the equations of motion for a physical system, we use the 
free energy to recover the belief updates that determine a 
biological system’s behaviour.

In the following, we begin by describing the form of the 
generative model we have used to date. We will then address 
the form of the approximate posterior distribution. To make 
inference tractable, this generally involves a mean-field 
approximation that factorises the approximate posterior dis-
tribution into independent factors or marginal distributions.

The generative models used in this paper are subtly differ-
ent for each free energy functional, but the variables them-
selves are the same. These are policies ( � ) and state trajecto-
ries ( ̃s ), all of which are latent (unknown random) variables 
that have to be inferred. States evolve as a discrete Markov 
chain, where the transition probabilities are functions of the 
policy. Likelihood distributions probabilistically map hid-
den states to observations ( ̃o ). Figure 1 (left) shows these 
dependencies as a graphical Bayesian network. This type of 
generative model has been used extensively in simulations of 

active inference (FitzGerald et al. 2014, 2015c; Friston et al. 
2015, 2017a, c, d; Schwartenbeck et al. 2015a), see Table 1.

The role of the generative model is simply to define 
the free energy functional which, as we will see in 
Sects. 2.3–2.5, gives rise to the belief update rules that we 
will employ for our simulations. However, it is helpful to 
imagine how we might generate data from such a model. We 
outline this process with the model on the left of Fig. 1 in 
mind. We could start at the first time step and sample a state 
from the categorical prior over initial states. The param-
eters of this prior (D) are simply a vector of probabilities 
for each alternative state. From this, we can now sample 
from the likelihood. This is formulated as a matrix (A), 
whose columns correspond to a state and whose rows are 
the alternative outcomes that may be generated. To generate 
an outcome, we would select the column of this matrix cor-
responding to the state we sampled and sample an outcome 
from this column-vector of probabilities. It is this outcome 
that would be available to a synthetic creature.

Taking a discrete time step into the future, we can sam-
ple a new state from the column of a transition matrix (B) 
associated with the state at the previous time. Crucially, the 

Fig. 1  Markov decision process. This shows the basic structure of 
the discrete state-space generative model used in this paper, assum-
ing the current time is t = τ. The factor graph on the left is the gen-
erative model we have used in previous work. Importantly, the prior 
belief about observations only enters this graph through the expected 
free energy, G (see main text), which enters the prior over policies. 
Policies index alternative trajectories, or sequences, of actions. In 
this sense, they are not time dependent, as each policy determines a 
sequence of actions for all time-points. Conversely, the actions (u) are 
time dependent. U is an array that specifies an action for each time 
step (rows) and each policy (columns). The selected action there-
fore depends upon the most likely policy and the action that policy 
implies for that time step. Action selection is technically not part of 
the generative model, as it relies upon the posterior distribution Q 
(please see main text for details), obtained by inverting the model. 
This is an important, aspect of active inference, as it underwrites the 
way in which the system performing inference may change the pro-

cess generating its observed data. The grey region of this graph indi-
cates that the observation at the next time step is not yet available, 
so cannot yet be incorporated into the graph. The right factor graph 
is the new version of the generative model considered in this paper. 
This generative model does not require an expected free energy, and 
the prior over outcomes enters the model directly as a constraint on 
outcomes. This also shows a time dependence, as future outcomes 
are treated as unobserved latent variables (indicated by an unfilled 
circle). Observed variables are shown as filled circles in both graphs 
and unobserved variables as unfilled circles. Factors of the genera-
tive model (i.e. conditional probability distributions and prior prob-
abilities) are shown as squares. These squares are connected to those 
circles containing variables that participate in the same factor. Please 
refer to the main text and Table 2 for a description of the variables. In 
the panel on the right, the definitions are given for each of the factors 
in blue squares. Here, Cat refers to the categorical distribution (color 
figure online)
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transition probabilities are conditioned upon the selected 
action. This means we have a separate B-matrix for each 
action. Action selection depends upon the policy, with 
each policy and time point associated with an action. For 
the model on the left of Fig. 1, this means we calculate the 
expected free energy (G) for each policy, which depends 
upon a vector of prior probabilities for outcomes under these 
policies (C). Combining these with a prior bias term (E)—
as set out in more detail in Sect. 2.4—we can construct a 
prior over policies. Sampling from this and selecting the 
action that corresponds to this policy, at this time, specify 
the B-matrix from which to sample the state for the current 
time step. We could then sample the outcome for this time 
from the relevant column of the A-matrix. This process can 
be repeated for a series of discrete time steps, generating a 
new outcome for each time. A similar approach could be 
taken to generate data from the model on the right of Fig. 1. 
However, note that the likelihood here comprises both A and 
C, and the policy prior only includes E (i.e. the expected free 
energy does not explicitly feature in this model). The pro-
cedure outlined above provides an intuition into the beliefs 
a creature has about how its sensory data are generated by 
acting on hidden states in the environment.

It is worth noting that the free energy is a functional of the 
distributions in the generative model and of the approximate 
posterior beliefs, but a function of observations. Continu-
ing with this free energy, we now consider the mean-field 
approximation in current implementations of active infer-
ence, and its consequences for the variational free energy. In 
the next few sections, we unpack the variational free energy, 
and its role in active inference based on Markov decision 
processes. The argument that follows is a little involved, but 
we summarise the key steps here, such that the agenda of 
each of the following sections is clear. In Sect. 2.1, we spec-
ify the form of the variational distribution we employ, and 
the free energy that results from this. In Sect. 2.2, we unpack 
the terms in the free energy as they pertain to the genera-
tive model. This depends upon having a prior belief about 
policies. Section 2.3 attempts to identify this prior, through 
finding the optimal posterior and extrapolating backwards in 
time. This highlights a shortcoming of this approach that is 
resolved in Sect. 2.4. In addition to providing a more appro-
priate prior for policy selection, Sect. 2.4 sets out the role of 
free energy in simulating behaviour. In brief, this involves 
finding the variational distribution over policies that mini-
mises free energy. As free energy is a function of sensory 
observations, this means we need to update these distribu-
tions following each new observation. Section 2.5 follows 
the same approach to find the free energy minima for beliefs 
about states, giving the fixed points to which these distribu-
tions must be updated following each new observation.

2.1  Definition of the mean‑field variational free 
energy

To define the variational free energy for the above genera-
tive model, we first need to specify the form of the approxi-
mate posterior distribution, Q . We do this via a mean-field 
approximation that treats the (policy dependent) state at each 
time step as approximately independent of the state at any 
other time step. We treat the distribution over the policy as 
a separate factor, which implies a set of (policy) models, � , 
over hidden variables s�:

Mean-field approximations originated in statistical phys-
ics, where they can be used to approximate Helmholtz 
free energy through appealing to an average with respect 
to a ‘reference’ Hamiltonian. This reference can be simply 
defined for a system with non-interacting components (or 
degrees of freedom). In virtue of the assumption that the sys-
tem’s degrees of freedom do not interact, their Hamiltonian 
(scaled negative log probability) may be expressed as a sum 
of contributions from each component. Exponentiating this 
sum, the probability density can be expressed as a product 
of marginal probabilities for each degree of freedom. The 
same idea has been employed extensively in statistical infer-
ence and machine learning, where a mean-field approxima-
tion refers to the use of a variational distribution comprising 
a product of marginals (Winn and Bishop 2005; Yedidia 
et al. 2005). The ‘mean field’ is the expected value of each 
(log) factor of the generative model (P), which include the 
interactions, under the fully factorised distribution (Q). The 
advantage to using a mean-field approximation is the compu-
tational tractability that comes from being able to separately 
optimise each marginal distribution. We can now substitute 
this factorised distribution into our definition for the vari-
ational free energy above:

In this form, the variational free energy is expressed 
in terms of policy-dependent terms (second equality) that 
bound the (negative log) evidence for each policy and a 
complexity cost or KL divergence1 (DKL) that scores the 

(2)Q(s̃,𝜋) = Q(𝜋)
∏

𝜏

Q(s𝜏 |𝜋)

(3)
F = EQ(𝜋)[F𝜋] + DKL[Q(𝜋)||P(𝜋)]

F𝜋 = −EQ(s̃|𝜋)[lnP(õ, s̃|𝜋) −
∑

𝜏

lnQ(s𝜏 |𝜋)]

1 The KL divergence (also known as relative entropy or information 
gain) is defined as follows: DKL[Q(x)||P(x)] ≜ EQ(x)[lnQ(x) − lnP(x)].
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departure of the posterior beliefs over policies from the cor-
responding prior beliefs.

2.2  Past and future

There is an important difference in how past and future 
outcomes are treated by the variational free energy. Note 
that—as a function of outcomes—the components of the 
free energy that depend on outcomes can only be evalu-
ated for the past and present. Hidden states, on the other 
hand, enter the expression as beliefs about states. In other 
words, the free energy is a functional of distributions over 
states, rather than a function, as in the case of outcomes. 
This means that free energy evaluation takes account of 
future states. We can express this explicitly by writing the 
variational free energy, at time t, as a sum over all time 
steps, factorising the generative distribution according to 
the conditional independencies expressed in Fig. 1:

In the above, the Iverson (square) brackets return 1 if 
the expression is true, and 0 otherwise. It is this condi-
tion that differentiates contributions from the past from the 
future. This equation is obtained in a straightforward way 
by factorising the generative model (joint distribution) in 
the second line of Eq. 3, in line with the generative model 
depicted in Fig. 1. Because the generative model does not 
include future observations as random variables (given 
that these data have yet to be collected), there are no 
accompanying likelihood factors. This reflects the fact that 
the only data that contribute to the free energy are those 
we currently have access to. Given the dependence of the 
right-hand side on the current time (t) the free energy 
should, strictly speaking, be written as a function of t and 
τ. As we are interested here in online inference, we will 
assume an implicit conditioning upon t for all free energies 
throughout this paper. The Iverson brackets above allow 
us to decompose the sum into past and future components:

In this decomposition, the contribution of beliefs about 
future states reduces to a complexity cost. This is the KL 
divergence between approximate posterior beliefs about 
states in the future and prior beliefs. The latter are based 
upon the (policy-specific) transition probabilities in the 
generative model.

(4)

F� =
∑

�

F��

F�� = −EQ(s� |�)Q(s�−1|�)
[[� ≤ t] ⋅ lnP(o� |s�)

+ lnP(s� |s�−1,�) − lnQ(s� |�)]

(5)

F𝜋 =
∑

𝜏≤t

F𝜋𝜏+
∑

𝜏>t

EQ(s𝜏−1|𝜋)
[DKL[Q(s𝜏 |𝜋)||P(s𝜏 |s𝜏−1,𝜋)]]

���������������������������������������������������������������
Complexity

2.3  Policy posteriors and priors

Using the full variational free energy (over all policies) 
from Eq. 3, we can evaluate posterior beliefs about poli-
cies. The variational derivative of the free energy with 
respect to these beliefs is (where we omit constants, and 
where �(⋅) is a softmax function—i.e. a normalised expo-
nential function):

The second line derives from the first through rearrang-
ing, exponentiating both sides of the equation, and nor-
malising to ensure the approximate posterior sums to one. 
This, together with Eq. 5, implies the belief prior to any 
observations (i.e. at t = 0 ), which is given by:

This is an unsatisfying result, in which it fails to accom-
modate our prior knowledge that outcomes will become 
available in the future. In other words, the posterior at each 
time step is calculated under a different model (see Fig. 2).

2.4  Expected free energy

To finesse this shortcoming, we can assume agents select 
the policy that they expect will lead to the lowest free 
energy (summed over time). This is motivated by the 
reductio ad absurdum in the introduction and is expressed 
mathematically as:

This replaces the expression for Qo(�) given in Sect. 2.3. 
(We retain the notation Qo(π) for the prior here to distin-
guish this from the fixed form prior P(π), which does not 
depend on the beliefs about states.) Gπ is the expected free 
energy, conditioned on a policy. It is defined as:

There is an apparent problem with this quantity: The 
first term within the expectation is a function of outcomes 
that have yet to be observed. To take this into account, we 
have defined an (approximate) joint distribution over states 
and outcomes: Q̃(o𝜏 , s𝜏 |𝜋) = P(o𝜏 |s𝜏)Q(s𝜏 |𝜋) , and take the 

(6)

�F

�Q(�)
= F� − lnP(�) + lnQ(�)

�F

�Q(�)
= 0 ⇔ Q(�) = �(lnP(�) − F�)

(7)

Qo(�) = �

(

lnP(�) −
∑

�

EQ(s�−1|�)

[

DKL[Q(s� |�)||P(s� |s�−1,�)]
]

)

(8)Qo(�) ≜ �
(

lnP(�) − G�

)

(9)
G𝜋 =

∑

𝜏>t

G𝜋𝜏

G𝜋𝜏 = −EQ̃(o𝜏 ,s𝜏 |𝜋)
[lnP(o𝜏 , s𝜏) − lnQ(s𝜏 |𝜋)]
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expectation with respect to this. This means that we can 
express a (posterior predictive) belief about the observa-
tions in the future based on (posterior predictive) beliefs 
about hidden states. One can obtain a useful form of the 
expected free energy by rearranging the above: if we fac-
torise the generative model, we obtain:

This form shows that policies that have a low expected 
free energy are those that resolve uncertainty, and that ful-
fil prior preferences about outcomes. It is the first of these 
terms that endorses the metaphor of the brain as a sci-
entist, performing experiments (i.e. actions with sensory 

(10)

G𝜋𝜏 = −EQ̃(o𝜏 ,s𝜏 |𝜋)
[lnP(s𝜏 |o𝜏) − lnQ(s𝜏 |𝜋)
�������������������������������

Epistemic value

+ lnP(o𝜏)
���

Extrinsic value

]

consequences) to verify or refute hypotheses about the 
world (Friston et al. 2012b; Gregory 1980). The second 
term speaks to the notion of a ‘crooked scientist’ (Bruin-
eberg et al. 2016), who designs experiments to confirm 
prior beliefs, i.e. preferred outcomes. This preference 
is the same as the evidence (a.k.a., marginal likelihood) 
associated with a given model. This means policies are 
selected such that the most probable outcomes under that 
policy match the most probable outcomes under prior pref-
erences (defined in terms of a marginal likelihood).

Treating Q(s� |�) as a prior, and P(s� |o�) as a posterior, 
we can directly substitute these into Bayes’ rule, which 
says that their ratio is equal to the ratio of the correspond-
ing likelihood ( Q(o� |s� ,�) ≈ P(o� |s�) ) and marginal likeli-
hood ( Q(o� |�)):

Fig. 2  Temporal progression of Markov decision process. The upper 
graphs shows the structure of the generative model implied using the 
variational free energy, equipped with a prior that the expected free 
energy will be minimised by policy selection. Observations are added 
to the model as they occur. The lower graphs show the structure of 
the generative model that explicitly represents future outcomes, and 
minimises a generalised free energy through policy selection. As 
observations are made, the outcome variables collapse to delta func-
tions. These graphics are intended to highlight two alternative con-
ceptions of a generative model employed in an online setting. The key 
problem here is how to deal with missing (future) outcomes. These 

could be omitted until such a time as they become available. Alterna-
tively, they could be treated as hidden variables about which we can 
hold beliefs. Please note that this graphic illustrates different ways of 
formulating the generative model used to calculate belief updates. 
It does not show belief updates, behaviour or any other free energy 
minimising process. These will be detailed in subsequent sections and 
figures. However, the reason for making this distinction is important 
for how we formulate the free energy. The key distinction between the 
free energies compared in this paper is which of the two perspectives 
on future outcomes we choose to adopt
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Due to the symmetry of Bayes’ rule, another perspec-
tive on this is that P(s� |o�) is a likelihood that generates 
states from observations. This view treats the right-hand 
side of the above as the ratio between a posterior and a 
prior. Using this relationship, we can express expected free 
energy in terms of risk and ambiguity:

In this equation, H is the Shannon entropy (i.e. nega-
tive expected log probability). This means that the prior 
belief about outcomes enters the generative model through 
the KL divergence between outcomes expected under any 
policy and prior preferences. This form also illustrates the 
correspondence between the expected free energy and the 
quantities ‘risk’ and ‘ambiguity’ from behavioural eco-
nomics (Ellsberg 1961; Ghirardato and Marinacci 2002). 
Risk quantifies the expected cost of a policy as a diver-
gence from preferred outcomes and is sometimes referred 
to as Bayesian risk or regret (Huggins and Tenenbaum 
2015), which underlies KL control and related Bayesian 
control rules (Kappen et al. 2012; Ortega and Braun 2010; 
Todorov 2008) and special cases that include Thompson 
sampling (Lloyd and Leslie 2013; Strens 2000). Ambigu-
ous states are those that have an uncertain mapping to 
observations. The greater these quantities, the less likely 
it is that the associated policy will be chosen.

Having identified a suitable prior belief for policies 
Qo(�) , we can calculate the fixed point of the free energy 
with respect to the variational posterior over policies and 
use this to update the posterior after each time step:

This highlights the way in which the expected free 
energy influences policy selection. Distributions over 
policies are updated at each time step to a fixed point that 
depends upon the expected free energy. The expected free 
energy is a functional of posterior beliefs about states. 
Section 2.5 sets out how these may be optimised in rela-
tion to sensory outcomes.

2.5  Hidden state updates

To complete our description of active inference, we derive 
the belief update equations for the hidden states:

(11)
P(s� |o�)

Q(s� |�)
=

Q(o� |s� ,�)

Q(o� |�)

G�� = DKL[Q(o� |�)||P(o�)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Risk

+EQ(s� |�)
[H[lnP(o� |s�)]]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ambiguity

(12)
�F

�Q(�)
= 0 ⇔ Q(�) = �(lnQ0(�) − F�(�))

= �(lnP(�) − G(�) − F�)

This result says that, to minimise free energy, we update 
beliefs about states under policies at each time step such 
that they are equal to a softmax function of a sum of 
expected log probabilities. These are the terms in the gen-
erative model that depend upon the state about which we 
optimise beliefs. Technically, these are the state’s Markov 
blanket (Pearl 1998). These comprise the constraints based 
upon beliefs about the previous state, the next state and 
the sensory outcome generated by the current state. The 
expectations here are simple to calculate, in virtue of the 
categorical distributions used to define the model and vari-
ational posterior. Practically, this means that the sufficient 
statistics of these are vectors (or matrices, for conditional 
distributions), where each element is the probability of 
each alternative value the state can take. (For conditional 
distributions, these are matrices where each column is a 
different value for the variable in the conditioning set.) 
Table 2 sets out the notation used for these sufficient sta-
tistics. Crucially, the linear algebraic expression of these 
statistics means expectations reduce to matrix–vector mul-
tiplications or dot products as set out in Fig. 3. Note that 
as we progress through time, new outcomes become avail-
able. As the free energy minima depend upon available 
outcomes, this means we need to update the variational 
posteriors following each new outcome.

2.6  Summary

In the above, we have provided an overview of our approach 
to date. This uses a variational free energy functional to 
derive belief updates, while policy selection is performed 
based on an expected free energy. The resulting update equa-
tions are shown in Fig. 3 (blue panels). This formulation has 
been very successful in explaining a range of cognitive func-
tions, as summarised in Table 1. In the following, we present 
an alternative line of reasoning. As indicated in Fig. 2, there 
is more than one way to think about the data assimilation 
and evidence accumulation implicit in this formulation. So 
far, we have considered the addition of new observations as 
time progresses. We now consider the case in which (future) 
outcomes are represented throughout time. This means that 
future or latent outcomes have the potential to influence 
beliefs about past states.

(13)

�F�

�Q(s� |�)
= − lnP(o� |s� ) − EQ(s�−1|�)

[lnP(s� |s�−1,�)]

− EQ(s�+1|�)
[lnP(s�+1|s� ,�)] + lnQ(s� |�)

�F�

�Q(s� |�)
= 0 ⇔ Q(s� |�) = �(lnP(o� |s� )

+ EQ(s�−1|�)
[lnP(s� |s�−1,�)] + EQ(s�+1|�)

[lnP(s�+1|s� ,�)])
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3  Active inference and generalised free 
energy

We define the generalised free energy as

where, as above, the expectation is with respect to 
Q(o� , s� |�) = Q(o� |s�)Q(s� |�) . However, we now distinguish 
the past and the future through the following:

The δ here is a Kronecker delta function (a discrete 
version of a Dirac delta) that is one when the arguments 
are equal, and zero otherwise. The starred (*) argument 
indicates the data we have actually observed. In the gen-
eralised free energy, the marginals of the joint distribu-
tion over outcomes and states define the entropy but the 
expectation is over the joint distribution. It is important 
to note that Q(o� , s� |�) ≠ Q(o� |�)Q(s� |�) . It is this ine-
quality that underlies the epistemic components of gen-
eralised free energy. Interestingly, if we assumed condi-
tional independence between outcomes and hidden states, 
Q(o� , s� |�) = Q(o� |�)Q(s� |�) , the resulting belief update 
equations would correspond exactly to a variational mes-
sage passing algorithm (Dauwels 2007) applied to a model 
with missing data.

(14)

F = EQ(�)[F�] + DKL[Q(�)||P(�)]

F� =
∑

�

F��

F�� = −EQ(o� ,s� |�)
[lnP(o� , s� |s�−1,�)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Energy

− lnQ(o� |�) − lnQ(s� |�)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Entropy

]

(15)Q
(

o𝜏 |s𝜏
)

=

{

P(o𝜏 |s𝜏) ∶ 𝜏 > t

𝛿(o𝜏 , o
∗
𝜏
) ∶ 𝜏 ≤ t

When the expectation is taken with respect to the approxi-
mate posteriors, the marginalisation implicit in this defini-
tion ensures that

If we write out the generative model in full and substitute 
this (omitting constants) into Eq. 14, we can use the same 
implicit marginalisation to write:

The implicit generative model now incorporates a prior 
over observations. This means that the generative model is 
replaced with that shown on the right of Fig. 1:

Here, we have defined the distribution over states and 
observations in terms of two independent factors, a likeli-
hood and a prior over observations, i.e. preferred observa-
tions conditioned on the model. For simplicity, we will omit 
the explicit conditioning on m , so that P(õ|m) = P(õ) . This 
quantity plays exactly the same role as that of the preferences 

(16)

−EQ(o� ,s� |�)
[lnQ(o� |�)] =

∑

o� ,s�

Q(o� , s� |�) lnQ(o� |�)

= −
∑

o�

Q(o� |�) lnQ(o� |�)

= H[Q(o� |�)]

(17)

F�� = −EQ(o� |s� )Q(s� |�)
[lnP(o� |s�)] − EQ(s� |�)Q(s�−1|�)

[lnP(s� |s�−1,�)]

+ EQ(o� |�)
[lnQ

(

o� |�
)

] + EQ(s� |�)
[lnQ

(

s� |�
)

] − EQ(o� |�)
[lnP(o�)]

Q
(

o� |�
)

= EQ(s� |�)
[Q(o� |s�)]

(18)

P(õ, s̃,𝜋|m) = P(õ|s̃,m)P(s̃|𝜋)P(𝜋)

P(õ|s̃,m) =
1

Z
P(õ|s̃)P(õ|m)

Z =
∑

õ

P(õ|s̃)P(õ|m)

Table 2  Variables in update 
equations

Variable Definition

� =
[

… ,F� ,…
]T Variational free energy

� = [… ,G� ,…]T Expected free energy
F = [… ,F� ,…]T Generalised free energy
�
�
;�

�i = Q0(� = i)

�;�i = Q(� = i)

Policy prior and posterior

��� ; ���i = Q(s� = i|�) State belief (for a given policy and time)
��� ; ���i = Q(o� = i|�) Outcome belief (for a given policy and time)
o� Outcome
�;�ij = P(o� = i|s� = j) Likelihood matrix (mapping states to outcomes)
�;���ij = P(s�+1 = i|s� = j,�) Transition matrix (mapping states to states)
�;��i = P(o� = i) Outcome prior
�;�i = P(� = i) Fixed form policy prior
�;�i =

∑

j

P(o� = j�s� = i) lnP(o� = j�s� = i) Entropy of the likelihood mapping
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in the formulation described in the previous section. However, 
while it has the same influence over policy selection, it can no 
longer be interpreted as model evidence. Instead, it is a policy-
independent prior that contributes to the evidence.

For past states, this distribution is flat. Crucially, this 
means the generalised free energy reduces to the variational 

free energy for outcomes that had been observed in the past. 
Separating out contributions from the past and the future, we 
are left with the following:

(19)F𝜋 =
∑

𝜏≤t

F𝜋𝜏 +
∑

𝜏>t

G𝜋𝜏

Fig. 3  Belief update equations. The blue panels show the update 
equations using the standard variational approach. The pink panels 
show the update equations when the generalised free energy is used. 
The equations in this figure show the fixed points for the sufficient 
statistics of each variational distribution. These are calculated as in 
the main text by finding the minima of each of the free energy func-
tionals. As such, updating the variational distributions (left-hand side 
of each equation) to their fixed points (right-hand side of each equa-
tion) following each new observation minimises the corresponding 
free energy. The dotted outline indicates the correspondence between 
the generalised free energy and the sum of the variational and 
expected free energies, and therefore the equivalence of the form of 
the posteriors over policies. However, it should be remembered that 

the variables within these equations are not identical, as the update 
equations demonstrate. See Table 2 for the definitions of the variables 
as they appear here. The equations used here are discrete updates. A 
more biologically plausible (gradient ascent) scheme is used in the 
simulations. These simply replace the updates with differential equa-
tions that have stationary points corresponding to the variational solu-
tions above. Because the belief updates specified in Fig. 3 take each 
belief distribution to its free energy minimum, the belief updates and 
corresponding policy choices necessarily minimise free energy. In 
the update equations shown here, oτ is treated as a binary vector with 
one in the element corresponding to the observed data, and zero for 
all other elements. This ensures consistency with the linear algebraic 
expression of the update equations (color figure online)
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Unlike G (the expected free energy), G is the free energy 
of the expected future. We can rearrange Eq. 17 (for future 
states) in several ways that offer some intuition for the prop-
erties of the generalised free energy.

To obtain the mutual information term, we have used 
the relationship lnP(o� |s�) = lnQ(o� |s�) = lnQ(o� , s� |�)

− lnQ(s� |�) . The imperative to maximise the mutual infor-
mation (Barlow 1961, 1974; Linsker 1990; Optican and 
Richmond 1987) can be interpreted as an epistemic drive 
(Denzler and Brown 2002). This is because policies that (are 
believed to) result in observations that are highly informative 
about the hidden states are associated with a lower general-
ised free energy. As a KL divergence is always greater than 
or equal to zero, the second equality indicates that the free 
energy of the expected future is an upper bound on expected 
surprise.

To find the belief update equations for the policies, we 
take the variational derivative of the generalised free energy 
with respect to the posterior over policies and set the result 
to zero in the usual way:

At time � = 0 , no observations have been made, and the 
distribution above becomes a prior. When this is the case, 
F� = G� , so the prior over policies is:

If we take the variational derivative of Eq. 17 with respect 
to the hidden states:

(20)

G�� = DKL[Q(s� |�)||EQ(s�−1|�)
[P(s� |s�−1,�)]]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Complexity

+ DKL[Q(o� |�)||P(o�)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Risk

+EQ(s� |�)
[H[P(o� |s�)]]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ambiguity

= DKL[Q(s� |�)||EQ(s�−1|�)
[P(s� |s�−1,�)]]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Complexity

− DKL[Q(o� , s� |�)||Q(s� |�)Q(o� |�)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Epistemic value(Mutual information)

− EQ(o� |�)
[lnP(o�)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Extrinsic value

(21)

�F

�Q(�)
= F� − lnP(�) + lnQ(�)

�F

�Q(�)
= 0 ⇔ Q(�) = �(lnP(�) − F�)

Qo(�) = �(lnP(�) − F
�=0
�

) = �(lnP(�) − G(�))

The derivative of EQ(o� |�)
[lnQ(o� |�)] is a little compli-

cated, so this is presented step by step in “Appendix B”. The 
hidden state update has a different interpretation in the past 
compared to the future:

The final term for future beliefs implies that future states 
are considered more probable if they are expected to be 
similar to those that generate preferred outcomes. In other 
words, there is an optimistic distortion of beliefs about the 
trajectory into the future.

3.1  Summary

We have introduced a generalised free energy functional 
that is expressed as a functional of beliefs about data. The 
variational free energy can be seen as a special case of this 
generalised functional, when beliefs about outcomes col-
lapse to delta functions. When we derive update equations 
(Fig. 3, pink panels) under this functional, the updates 
look very similar to those based on the variational free 
energy approach. An important difference between the two 
approaches is that we have now included the prior probabil-
ity of outcomes in the generative model. This has no influ-
ence over beliefs about the past, but distorts beliefs about 
the future in an optimistic fashion. This formulation gener-
alises not only the standard active inference formalism, but 
also active data selection or sensing approaches in machine 
learning (MacKay 1992) and computational neuroscience 
(Yang et al. 2016b). See “Appendix A” for a discussion of 
the relationship between these.

(22)

�F�

�Q(s� |�)
= lnQ(s� |�) − EP(o� |s� )

[lnP(o� |s�)]

− EQ(s�−1|�)
[lnP(s� |s�−1,�)]

− EQ(s�+1|�)
[lnP(s�+1|s� ,�)]

+ EP(o� |s� )
[lnQ

(

o� |�
)

− lnP(o�)]

�F�

�Q(s� |�)
= 0 ⇔ Q

(

s� |�
)

= �(EP(o� |s� )
[lnP(o� |s�)]

+ EQ(s�−1|�)
[lnP(s� |s�−1,�)]

+ EQ(s�+1|�)
[lnP(s�+1|s� ,�)]

− EP(o� |s� )
[lnQ

(

o� |�
)

− lnP(o�)])

(23)

∀𝜏 ≤ t∶ Q
(

s𝜏 |𝜋
)

= 𝜎(lnP(o𝜏 |s𝜏)

+ EQ(s𝜏−1|𝜋)
[lnP(s𝜏 |s𝜏−1,𝜋)]

+ EQ(s𝜏+1|𝜋)
[lnP(s𝜏+1|s𝜏 ,𝜋)])

∀𝜏 > t∶ Q
(

s𝜏 |𝜋
)

= 𝜎(−H[P(o𝜏 |s𝜏)]

+ EQ(s𝜏−1|𝜋)
[lnP(s𝜏 |s𝜏−1,𝜋)]

+ EQ(s𝜏+1|𝜋)
[lnP(s𝜏+1|s𝜏 ,𝜋)]

− EP(o𝜏 |s𝜏 )
[lnQ

(

o𝜏 |𝜋
)

− lnP(o𝜏)])
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4  Comparison of active inference 
under expected and generalised free 
energy

The generalised free energy has the appeal that belief updat-
ing and policy selection both minimise the same objective 
function. In contrast, formulations of active inference to date 
have required two different quantities (the variational free 
energy and the expected free energy, respectively) to derive 
these processes. Although the form of belief updating is the 
same, the belief updates resulting from the use of a general-
ised free energy are different in subtle ways. In this section, 
we will explore these differences and show how generalised 
active inference reproduces the behaviours illustrated in our 
earlier papers.

The notable differences between the updates are found in 
the policy prior, the treatment of outcomes and the future 
hidden state updates. The prior over policies is very simi-
lar in both formulations. The expected and generalised free 
energy (at � = 0 ) differ only in that there is an additional 
complexity term in the latter. This has a negligible influence 
on behaviour, as the first action is performed after observa-
tions have been made at the first time step. At this point, the 
posterior belief about policies is identical, as the variational 
free energy supplies the missing complexity term. Although 
the priors are different, in both form and motivation, the 
posterior beliefs turn out to be computed identically. Any 
difference in these can be attributed to the quantities used to 
calculate them, namely the outcomes and the hidden states.

Outcomes in the generalised formulation are represented 
explicitly as beliefs. This means that the prior over outcomes 
is incorporated explicitly in the generative model. There are 
two important consequences of this. The first is that the 
posterior beliefs about future outcomes (i.e. the probability 
of future outcomes given those already observed) can be 
derived in a parsimonious way, without the need to define 
additional prior distributions. The second is that hidden state 
beliefs in the future are biased towards these preferred out-
comes. A prior belief about an outcome at a particular time 
point thus distorts the trajectory of hidden states at each 
time point reaching back to the present. In addition to this, 
beliefs about hidden states in the future acquire an ‘ambigu-
ity’ term. This means that states associated with an impre-
cise mapping to sensory outcomes are believed less likely 
to be inferred. In summary, not only are belief trajectories 
drawn in optimistic directions, they also tend towards states 
that offer informative observations.

To make the abstract considerations above a little more 
concrete, we have employed an established generative model 
that has previously been used to demonstrate epistemic (i.e. 
information seeking) behaviours under active inference (Fris-
ton et al. 2015). This is a T-maze task (Fig. 4), in which an 

agent decides between (temporally deep) policies. Tempo-
ral depth here refers to the depth of the planning horizon. 
A temporally deep policy is one that considers sequences of 
actions, as opposed to only the next action. In one arm, there 
is an unconditioned2 (rewarding) stimulus. In another, there 
is no stimulus, and this condition is considered aversive. In 
the final arm, there is always an instructional or conditioned 
stimulus that indicates the arm that contains the reward. There 
are two possible contexts for the maze. The first is that where 
the unconditioned stimulus is in the left arm and the second 
where it is in the right arm. The starting location and the 
location of the conditioned stimulus are neither aversive nor 
rewarding. Under each of the schemes illustrated here, the 
degree to which a stimulus is rewarding is expressed in terms 
of the prior preference (i.e. C). In other words, we can think of 
reward as the log probability of a given observation. The more 
probable an outcome is considered to be, the more attractive it 
appears to be. This is because policies that do not lead to these 
outcomes violate prior beliefs and are unlikely to be selected 
a posteriori. Please see “Appendix A” (term 4) for an inter-
pretation of this that appeals to expected utility theory and 
risk aversion. There is an important distinction here between 
schemes based upon Bellman optimality and the scheme on 
offer here. This is that active inference depends upon proba-
bilistic beliefs and does not assume direct access to knowledge 
about states of the world. Practically, this means that the agent 
has no direct access to the hidden states, but must infer them 
based upon the (observable) outcomes. The importance of 
this is that the information gain associated with an explora-
tory behaviour can be quantified by the change in beliefs (or 
uncertainty reduction) that this behaviour facilitates.

As Fig. 4 shows, regardless of the active inference scheme 
we use, the agent first samples the unrewarding, but epis-
temically valuable, uncertainty resolving cue location. This 
entails moving from the initial location in the centre of the 
maze, where the agent is uncertain about the context, to the 
location with the conditioned stimulus. To have made the 
decision to make this move, the agent updated its beliefs 
about states of the world (sπτ) in relation to the outcomes 
(o1) available in the central location using the fixed-point 
solutions shown in the ‘hidden states’ panels of Fig. 3. It 
does so for beliefs about every time point from the start to 
the end of the (four step) planning horizon. As these belief 
updates were derived by finding the free energy minima, 
this means these belief updates necessarily minimise free 
energy. Once beliefs have been optimised, they may be used 
to compute the expected free energy (or the corresponding 
part of the generalised free energy) as in the ‘free energies’ 
panel of Fig. 3. These are then used to update beliefs about 

2 The terms conditioned stimulus and unconditioned stimulus are 
used in the sense of classical (Pavlovian) conditioning paradigms.
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policies as in the ‘policy selection’ panel. In computing 
these free energies, we required a posterior predictive belief 
about outcomes, which can be obtained using the likeli-
hood probabilities to project beliefs about states to beliefs 
about outcomes (‘outcomes’ panel of Fig. 3). Given that the 

context unambiguously determines the conditioned stimulus 
and that our agent is initially uncertain about the context, the 
greatest information gain (and therefore smallest expected 
or generalised free energy) is associated with policies that 
sample this cue location.

Fig. 4  T-maze simulation. The left part of this figure shows the struc-
ture of the generative model used to illustrate the behavioural conse-
quences of each set of update equations. We have previously used this 
generative model to address exploration and exploitation in two-step 
tasks; further details of which can be found in Friston et al. (2015). 
In brief, an agent can find itself in one of four different locations and 
can move among these locations. Locations 2 and 3 are absorbing 
states, so the agent is not able to leave these locations once they have 
been visited. The initial location is always 1. Policies define the pos-
sible sequences of movements the agent can take throughout the trial. 
For all ten available policies, after the second action, the agent stays 
where it is. There are two possible contexts: the unconditioned stim-
ulus (US) may be in the left or right arm of the maze. The context 
and location together give rise to observable outcomes. The first of 
these is the location, which is obtained through an identity mapping 
from the hidden state representing location. The second outcome is 
the cue that is observed. In location 1, a conditioned stimulus (CS) 
is observed, but there is a 50% chance of observing blue or green, 
regardless of the context, so this is uninformative (and ambiguous). 
Location 4 deterministically generates a CS based on the context, so 

visiting this location resolves uncertainty about the location of the 
US. The US observation is probabilistically dependent on the context. 
It is observed with a 90% chance in the left arm in context 1 and a 
90% chance in the right arm in context 2. The right part of this figure 
compares an agent that minimises its variational free energy (under 
the prior belief that it will select policies with a low expected free 
energy) with an agent that minimises its generalised free energy. The 
upper plots show the posterior beliefs about policies, where darker 
shades indicate more probable policies. Below these, the posterior 
beliefs about states (location and context) are shown, with blue dots 
superimposed to show the true states used to generate the data. The 
lower plots show the prior beliefs about outcomes (i.e. preferences), 
and the true outcomes (blue dots) the agent encountered. Note that a 
US is preferred to either CS, both of which are preferable to no stimu-
lus (NS). Outcomes are observed at each time step, depending upon 
actions selected at the previous step. The time steps shown here align 
with the sequence of events during a trial, such that a new outcome is 
available at each step. Actions induce transitions from one time step 
to the next (color figure online)
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On reaching the conditioned stimulus and observing the 
green conditioned stimulus (o2), the agent again updates 
beliefs about states to their new fixed point. Here, the free 
energy minimum corresponds to the belief that the second 
context (with the unconditioned stimulus in the right arm) is 
in play. Having resolved uncertainty about the context of the 
maze, the agent proceeds to maximise its extrinsic reward by 
moving to the reward location and finding the unconditioned 
stimulus (o3). This is consistent with the smaller expected 
and generalised free energies associated with policies that 
realise prior beliefs about outcomes (C in the ‘free energies’ 
panels of Fig. 3).

Although the most striking feature of these simulation 
results is their similarity, there are some interesting differ-
ences worth considering. These are primarily revealed by 
the beliefs about hidden states over time. Under each of the 
schemes presented here, for a hypothetical rat performing 
this task, there exist a set of (neuronal) units that encode 
beliefs about each possible state. For each state, there are 
units representing the configuration of that state in the past 
and future, in addition to the present. The activity in these 
units is shown in Fig. 5. The differences here are more 
dramatic than in the subsequent behaviours illustrated in 
Fig. 4. At the first time step (column 1), both agents infer 
that they will visit location 4 at the next time, resolving 
uncertainty about the context of the maze. From this future 
point onwards, however, the beliefs diverge. This can be seen 
clearly in the lower rows of column 1: the beliefs about the 
future at the first time step. The agent who employs expected 
free energy believes they will stay in the uncertainty resolv-
ing arm of the maze, while the generalised agent believes 
they will end up in one of the (potentially) rewarding arms. 
Despite a shared proximal belief trajectory, the distal ele-
ments of the two agents’ paths are pulled in opposite direc-
tions. As each future time point approaches, the beliefs 
about that time begin to converge—as observations become 
available.

Taken together, Figs. 4 and 5 illustrate an interesting 
feature of the generalised formulation. Although subtle, at 
t =1, beliefs about location at τ = 2 are different, as shown in 
Fig. 5. Specifically, locations 2 and 3 appear slightly more 
probable, at the expense of location 4. This illustrates that 
beliefs about the proximal future are distorted by beliefs 
about future outcomes. Similarly, at t =2, the generalised 
scheme considers it more likely that it will transition to loca-
tion 4 relative to the variational scheme. Referring back to 
Fig. 4, we see that this corresponds to an increased posterior 
probability for policy 10 at this time step. Here, beliefs about 
future states and outcomes have influenced beliefs about the 
plausibility of different behavioural options at the present. 
In this case, the agent believes that it will experience obser-
vations associated with states 2 and 3 in the distal future 
(τ = 4). This enhances the probability of being in states in 
the more proximal future that are consistent with transitions 
into states 2 or 3. As these are absorbing states (the probabil-
ity of staying in those states, once occupied, is one), these 
states are highly consistent with a transition to themselves. 
This induces a belief that states 2 and 3 are more probable 
at time τ = 3. Note that, as there are other plausible states 
that could have transitioned into 2 and 3 at τ = 4, the prob-
ability of states 2 and 3 at τ = 3 is less than at τ = 4. The 
same reasoning explains the higher probability of 2 and 3 
at τ = 2 (relative to the standard scheme), but with a lower 
probability relative to occupying these states at later times. 
If instead the agent believed there was a very low probability 
of ending up at the goal location, this would induce beliefs 
that those states that lead to these locations with high prob-
ability were themselves unlikely. Another way of putting this 
is that if I had strong beliefs about where I were to end up, I 
could infer where I might have been immediately before this. 
This will depend upon the relative probabilities of going 
from plausible penultimate locations to the goal location. 
By propagating these back to the present, I will infer that the 
most probable trajectory is the one that leads to this goal, 

Fig. 5  Optimistic distortions of 
future beliefs. These raster plots 
represent the (Bayesian model 
average of the) approximate 
posterior beliefs about states 
(specifically, those pertaining 
to location). At each time step t, 
there is a set of units encoding 
beliefs about every other time 
step τ in the past and future. 
The evolution of these beliefs is 
reflected the evidence accu-
mulation or belief updating of 
approximate posterior expecta-
tions, with lighter shades indi-
cating more probable states
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and will act to fulfil my beliefs about this trajectory. In the 
absence of, possibly false, beliefs about where I would end 
up, I would not end up acting to fulfil these beliefs.

5  Conclusion

The generalised free energy introduced in this paper pro-
vides a new perspective on active inference. It unifies the 
imperatives to minimise variational free energy with respect 
to data, and expected free energy through model selection, 
under a single objective function. Like the expected free 
energy, this generalised free energy can be decomposed in 
several ways, giving rise to familiar information theoretic 
measures and objective functions in Bayesian reinforcement 
learning. Generalised free energy minimisation replicates 
the epistemic and reward seeking behaviours induced in 
earlier active inference schemes, but prior preferences now 
induce an optimistic distortion of belief trajectories into 
the future. This allows beliefs about outcomes in the distal 
future to influence beliefs about states in the proximal future 
and present. That these beliefs then drive policy selection 
suggests that, under the generalised free energy formulation, 
(beliefs about) the future can indeed cause the past.
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Appendix A: Active data selection

Active data selection has been a topic of interest in both 
neuroscience and machine learning for a number of years 
(Krause 2008). Several different approaches have been taken 

to define the best data to sample (Settles 2010), and the 
optimal experiments to perform to do this (Daunizeau et al. 
2011). This appendix addresses the relationship between the 
future components of the expected free energy and estab-
lished methods. Writing in full, the (negative) free energy 
of the expected future is

Under active inference, the above functional is maximised. 
If we were to use only term 3, this maximisation reduces to 
‘uncertainty sampling’ (Hwa 2004; Lewis and Gale 1994; 
Shewry and Wynn 1987). This involves (as the name sug-
gests) selecting the data points about which uncertainty is 
highest. A problem with this approach is that it may favour 
the sampling of ambiguous (uninformative) data. This means 
that location 1 in our simulation would be very attractive, as 
there is always a 50% chance of observing each (uninforma-
tive) cue. A more sophisticated objective function includes 
both 3 and 5 (Denzler and Brown 2002; Lindley 1956; Mac-
Kay 1992; Yang et al. 2016a). This means that uncertain data 
points are more likely to be sampled, but only if there is an 
unambiguous mapping between the latent variable of interest 
and the data. This renders location 4 more attractive, as it ini-
tially associated with uncertain observations but also a precise 
likelihood mapping. If we were to use just term 5, location 
4 would continue to be attractive even after being observed. 
The contribution of term 3 is to implement a form of ‘inhi-
bition of return’. The relative influences of these terms are 
unpacked in greater detail in (Parr and Friston 2017b). Term 
4 is a homologue of expected utility (reward) in reinforcement 
learning (Sutton and Barto 1998) and is an important quantity 
in sequential statistical decision theory (El-Gamal 1991; Wald 
1947). On its own, this would not lead to any information 
seeking behaviour. Terms 1 and 2 together contribute to an 
‘Occam factor’ (Rasmussen and Ghahramani 2001), a com-
ponent of some previously used objective functions (MacKay 
1992). We have assumed here that active learning models are 
myopic, but this is not necessarily the case. On inclusion of 
an explicit transition model, these models implicitly acquire 
terms 1 and 2 in the evaluation of posterior beliefs.

Many of these schemes rely upon exact, as opposed to 
approximate, Bayesian inference. The former can be seen as 
a special case of the latter, in which the distributions Q are 
equal to the true posteriors. In some cases, this will violate 
the mean-field assumption used here, and such cases will 
factorise in a slightly more complicated way. However, it 
is still possible to represent the terms above in exactly the 
same way, as long as we introduce an additional corrective 

−G�� = H[Q(s� |�)]
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1
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(mutual information) term to account for pairwise inter-
actions in the marginal posterior distributions. This is the 
approach taken in the Bethe free energy that underwrites 
exact inference procedures such as belief propagation (Pearl 
2014; Yedidia et al. 2005).

All of these quantities are emergent properties of a sys-
tem that minimises its expected free energy. In the schemes 
mentioned above, the quantities were pragmatically selected 
to sample data efficiently. Here, they can be seen as special 
cases of the free energy functional used to define the active 
inference or sensing that underwrites perception (Friston 
et al. 2012b; Gregory 1980).

Appendix B: Variational derivative 
of expected marginal

Below are the steps taken to obtain the variational derivative 
of an expected marginal. This is needed for the hidden state 
update equations under the generalised free energy. For those 
unfamiliar with variational calculus, “Appendix C” provides 
a brief introduction.

In the update equations, we can omit the constant 1.

Appendix C: A primer on variational calculus

This appendix offers a brief introduction to variational calcu-
lus, with a focus on the notion of a functional (or variational) 
derivative. Variational calculus deals with the problem of find-
ing a function (f) that extremises a functional (a function of a 
function). Formally, this means we try to find:

We can solve this problem by parameterising our function 
in terms of a second (arbitrary) function (g) and a scalar (u):

�
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f̃ (x) = argmin
f

S[f (x)]

S[f (x)] ≜
∑

x

L(f (x), x)

When u is zero, f = f̃  and the functional is minimised. This 
implies:

As g may be any arbitrary function, the only way that the 
expression above will always hold is if the partial derivative 
of L with respect to f is zero for all x. This tells us (using δ to 
indicate a variational derivative with respect to a function):

Note that had we assumed that L was also a function 
of the gradient of f, we would instead have recovered the 
Euler–Lagrange equation used in analytical mechanics, for 
which L is referred to as a Lagrangian. In the main text of 
this paper, the functional (S) is typically a free energy, the 
function (f) is an approximate posterior distribution, and x 
are hidden states. For example:

This says that, to minimise a free energy functional with 
respect to a probability distribution, we need to find the point 
at which the partial derivative of the term inside the sum, 
with respect to this distribution, is zero.

We hope that this appendix is sufficient for readers not 
familiar with this style of mathematics to gain some intuition 
for the variational derivatives used throughout this paper. 
For interested readers, a more comprehensive introduction 
to this field can be found in (Moiseiwitsch 2013). For appli-
cations in the context of variational inference, please see 
(Beal 2003).
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