
enriching the relatively simple paradigm
used in this study to include additional
cues that usually characterize naturalistic
social interactions. Here, not only well-
controlled full-body stimuli could be useful
([54_TD$DIFF][55_TD$DIFF]cf. [10]), but also approaches that mea-
sure and quantify freely forming social
interactions and allow for systematic
manipulation of the timing and reciprocity
of multiple actions. These future studies
will help to elucidate whether the results
observed in this study can, indeed, be
interpreted as evidence for ‘interaction
representation’ or whether additional
brain regions beyond the motor system
will also need to be considered.
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Forum
The Predictive Brain as
a Stubborn Scientist
Daniel Yon,1,*
Floris P. de Lange,2 and
Clare Press1

Bayesian theories of perception
have traditionally cast the brain
as an idealised scientist, refining
predictions about the outside
world based on evidence sampled
by the senses. However, recent
predictive coding models include
predictions that are resistant to
change, and these stubborn
predictions can be usefully
incorporated into cognitive
models.

There has been widespread interest in
predictive coding (PC) models of cogni-
tive functioning across the last decade [1].
Initial applications of these models to per-
ception suggest that we infer the most
likely state of the outside world by mini-
mising prediction errors about its con-
tents. More specifically, ‘higher’ neural
areas predict the activity of ‘lower’ areas,
e Coding and the Cognitive Sciences

ntion by many cognitive scientists partly due to differen
pectations that reflect the sampled statistics of our enviro
al can constitute a prediction in PC. This reasoning refle
ely distribution of environmental states, even if this distrib
tem are connected to shape detectors can be though
ers. Some stubborn predictions may be acquired throu
erature). However other stubborn predictions may eme
overshadow’ learning about other relationships and the w
[12].

1

and lower areas pass prediction error sig-
nals back up the hierarchy. Predictions
are constantly updated based on these
incoming error signals, and this iterative
message-passing process generates a
largely veridical model of the world. This
bidirectional message-passing process,
dubbed ‘perceptual inference’ (Figure 1),
likens perceptual processing to the scien-
tific process. In the same way that an
idealised scientist may develop hypothe-
ses about the outside world, compare
these [43_TD$DIFF]to collected evidence and adjust
their ideas accordingly, perceptual sys-
tems generate hypotheses about the
extracranial world, compare these to evi-
dence provided by the senses, and use
the discrepancy to refine their beliefs. The
top–down predictions in these schemes
provide an explanation for a range of neu-
roscientific phenomena, such as the find-
ing that units in low-level sensory regions
(e.g., primary visual cortex) can respond
to implied rather than actual properties of
the sensory input (e.g., illusory contours in
a Kanizsa triangle [2]).

The popularity of PC within the perceptual
domain has spurred recent enthusiastic
claims that the twin concepts of predic-
tion and prediction error may provide a
unifying basis for perception, cognition,
and action [1,3]. These PC models have
therefore been applied to a range of
topics in the cognitive and clinical scien-
ces, including language [4], theory of
mind [5], self-recognition [6], schizophre-
nia, and depression [7]. Such accounts
emphasise how the machinery of PC
t understandings of ‘prediction’ between disciplines.
nment [2], and these expectations will therefore tend

cts the fact that PC typically construes predictions as
utional information is not known to the animal [1]. For
t of as a stubborn structural prediction that certain
gh genetic ‘priors’ [11] embodying information about
rge via learning. For instance, learning about strong
eight we give to new evidence in updating our beliefs
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Figure 1. How Information Flows through the Cortical Hierarchy in Predictive Coding. Inperceptual
inference, sensory information (e.g., from the eyes) is conveyed up the hierarchy by prediction error units (red) to
adjust prediction signals (blue). Activity in the prediction units is adjusted based on signals from the error units to
minimisepredictionerror (i.e.,predictionactivityat timepoint t reflectspredictionsanderrorsignals fromtimepoint t-
1). Minimising prediction error generates veridical representations of the world. In active inference, the prediction
error is instead reducedbyperipheral reflexes (e.g., thatmove thehand) tochangestatesof thebodyand theworld
in line with predictions. This process involves assigning greater weight to top–down predictions (saturated blue
arrows), which is equivalent to reducing theweight given to incoming sensory evidence (unsaturated red arrows).
Therefore, predictions are resistant to revision through sensory evidence (i.e., activity at timepoint t is similar to t-1,
providing the intended state remains the same) and are therefore ‘stubborn’.
explains the flexibility of perception,
action, and cognition in a constantly
changing world. However, these models
that apply the PC concepts have given
little attention to a core assumption of PC
models: that not all predictions are flexi-
ble. Namely, the brain deploys certain
stubborn predictions (see Box 1 for dis-
cussion of the PCmeaning of ‘prediction’)
that are resistant to evidence-based
updating.

For example, PC accounts hypothesise
that actions are driven by strong sen-
sory predictions about the intended
state of one’s body. In this process,
known as ‘active inference’ (Figure 1),
agents do not update their predictions
based on ascending sensory signals,
but instead engage reflexes that ensure
the descending prediction comes true
[1]. For example, if I would like my hand
to grasp a cup (intended state) rather
than remain immobile (current state),
the prediction error generated by the
mismatch between predicted and cur-
rent states is resolved through reflexes
that reconfigure the body in line with the
predicted (intended) state. A conceptu-
ally identical scheme is thought to
underlie homeostatic control of visceral
body states (e.g., such that the body
remains at the predicted temperature of
[44_TD$DIFF]�37�C [8]). A key postulate in these
models is that for a top–down predic-
tion to change the state of the world by
driving action, it must be resistant to
revision by sensory evidence. In
computational terms, these neural pre-
dictions are assigned high ‘precision’,
which is equivalent to ignoring sensory
input (prediction errors) that could
update them. The possibility that certain
predictions are evidence-resistant
recasts the brain as sometimes operat-
ing like a ‘stubborn’ scientist, possess-
ing some hypotheses that evidence
cannot change [9]. This process is nec-
essary for active inference. It is not
necessary for perceptual inference,
but stubborn predictions are also pos-
sible in perceptual inference, where pre-
dictions are not updated on the basis of
evidence yet do not result in action [2].

Incorporating stubborn predictions into
cognitive theories could explain some
phenomena that currently elude accounts
which emphasise the ‘flexible’ nature of
predictive coding. For example, in
computational neuropsychiatry it is fre-
quently suggested that disorders which
arise through aberrant predictions could
be treated through behavioural and psy-
chotherapeutic interventions that provide
Tre
patients with the opportunity to learn the
‘right thing’ [10]. However, this approach
may need careful consideration if psycho-
pathologies arise due to aberrations in
stubborn predictions, which are, by defi-
nition, resistant to learning. For instance,
schizophrenia is frequently associated
with passivity experiences or delusions
of control, whereby patients report feeling
that their movements are in fact caused
by an external force [7]. If these delusions
arise due to an aberration in stubborn
predictions concerning whether sensory
events temporally contingent upon one’s
actions are caused by them, these
nds in Cognitive Sciences, January 2019, Vol. 23, No. 1 7



predictions may not be changed purely
through behavioural learning interven-
tions. Similarly, if depressive symptoms
arise due to atypical predictions about
the controllability of the external world
[7] and representations of agency emerge
through stubborn prediction mechanisms
that control these states through active
inference, these beliefs are unlikely to be
updated simply by providing new sensory
evidence.

Stubborn predictions could also be
incorporated into models of typical cog-
nitive functioning that are couched in PC
frameworks. For example, one recent
account [6] suggested that the hierarchi-
cal, belief-refining machinery of PC pro-
vides an ideal basis for understanding
how the brain generates deep multi-
modal representations required for self-
recognition. These models can accom-
modate the flexibility of self-representa-
tions (e.g., where a rubber hand is
incorporated into one’s body) through
the notion that predictions about what
constitutes ‘my body’ can be revised
on the basis of cooccurring visual, tactile,
and proprioceptive signals. However,
updating representations about which
sensory inputs belong to ‘my body’
may depend upon the stubborn predic-
tion that I only possess one body, with
the inputs belonging to it being spatially
and temporally coincident. If one allowed
these high-level predictions to change in
the face of sensory evidence (e.g., when
seeing four of one’s own hands while
standing next to a mirror), some peculiar
representations of the self would likely
emerge. Some other basic perceptual
beliefs may also be resistant to change
8 Trends in Cognitive Sciences, January 2019, Vol. 23, No.
(e.g., it may be difficult to change the
expectation that light comes from above
or that falling objects will accelerate at a
rate specified by gravity) [2]. These rep-
resent situations where the predictions
have generally always been true, both
for the individual’s ancestors and in their
own learning environment.

When incorporating these predictions, it
is important to consider the likely multiple
and interacting causes for stubbornness.
Some predictions are stubborn because
they are necessary for survival (e.g.,
adaptive body temperature). These pre-
dictions will likely have been established
phylogenetically, often through changes
to neural structure (e.g., relatively few
bottom–up projections in relevant neural
regions) and will be impossible to change.
Other predictions may become stubborn
through ontogenetic processes (Box 1),
which could provide a principled explana-
tion of ‘sensitive periods’ in development.
Understanding the cause of stubborn-
ness is especially important when
attempting to alter such predictions. For
example, drugs and psychotherapy fre-
quently have synergistic effects in treating
a variety of conditions. Given that many
disorders are associated with aberrant
neuromodulatory systems, and that PC
proposes that neuromodulators control
the relative weights given to top–down
predictions and bottom–up evidence
[10], pharmacological treatments are per-
haps best conceptualised as interven-
tions on the flexibility of beliefs (or
equivalently, on the weighting of evi-
dence) and indeed may be necessary if
some stubborn predictions are ever to be
altered.
1

In conclusion, the predictive brain may
often function as a stubborn, rather than
idealised scientist, failing to update pre-
dictions on the basis of sensory evi-
dence. This element of PC frameworks
has been largely overlooked within the
cognitive sciences but incorporating
stubborn predictions into cognitive mod-
els couched in hierarchical PC can aid
their explanation of cognitive function in
both health and disease.
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