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Lattice models have been used extensively over the past thirty years to examine the principles
of protein folding and design. These models can be used to determine the conformation of the
lowest energy fold out of a large number of possible conformations. However, due to the size of the
conformational space, new algorithms are required for folding longer proteins sequences. Preliminary
work was performed by Babbush et al. [3] to fold a small peptide on a planar lattice using a quantum
annealing device. We extend this work by providing improved Ising-type Hamiltonian encodings
for the problem of finding the lowest energy conformation of a lattice protein. We demonstrate a
decrease in quantum circuit complexity from quadratic to quasilinear in certain cases. Additionally,
we generalize to three spatial dimensions in order to obtain results with higher correlation to the
actual atomistic 3D structure of the protein and outline our heuristic approach for splitting large
problem instances into smaller subproblems that can be directly solved with the current D-Wave
2000Q architecture. To the best of our knowledge, this work sets a new record for lattice protein
folding on a quantum annealer by folding Chignolin (10 residues) on a planar lattice and Trp-Cage
(8 residues) on a cubic lattice.
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I. INTRODUCTION

Protein folding is an essential biological process
wherein an extended protein chain spontaneously self-
assembles into a three dimensional structure. Folding
typically involves a large-scale conformational change
that is challenging to predict from the sequence of amino
acids alone. For this reason, researchers employ simpli-
fied representations of proteins and folding. These meth-
ods enable the study of general properties of protein fold-
ing to verify analytical models, and are computationally
tractable. Lattice models are a simplified folding model
which represents protein chains as self-avoiding walks on
a grid. This is a discrete, coarse-grained representation
of the protein where each grid intersection can be oc-
cupied by a single amino acid, and the angle between
consecutive amino acids is determined by the grid type
(typically planar or cubic). Lattice models were first em-
ployed in the context of protein folding by Dill [6], Lau
and Dill [13]. The hydrophobic-polar (HP) model distin-
guishes between two classes of amino acids, hydrophobic
(H) and polar (P), and was designed to capture that the
hydrophobic effect is the main driving force for folding.
An alternative lattice model was proposed by Miyazawa
and Jernigan [16], the MJ model, which distinguishes be-
tween all twenty naturally occurring amino acids. This
model assigns different interactions strengths to each pos-
sible amino acid pair using a statistical potential obtained
by the quasi-chemical approximation.

∗ All correspondence to tomas@proteinqure.com

Improvements in computing power has made it possi-
ble for researchers to leverage the power of supercomput-
ers such as Cray Titan [18] or Sunway TaihuLight [11] to
build high-accuracy atomistic models of proteins. All-
atom computational methods, including physics-based
and knowledge-based approaches, have provided useful
insights into protein folding and design, but these models
are still too computationally costly for high-throughput
folding studies. Molecular dynamics (MD) simulations
are very resource intensive, and have only been uti-
lized to fold small fast-folding proteins. Knowledge-based
methods, such as those utilizing fragment-based assem-
bly or heuristic algorithms, cannot be used to recover a
folding pathway and may require the ranking of thou-
sands of candidate protein folds to determine the native
state. Lattice folding offers complimentary data to high-
resolution models, which may assist in accelerating pro-
tein structure determination. Specifically, a multiscale
algorithm capturing both the high-level features of the
folding energy landscape, such as preferred amino acid
contacts near the native state, and the low-level capabil-
ity of state-of-the-art physics and knowledge-based meth-
ods for refinement, may offer significant performance in-
creases over high-resolution methods alone at a fraction
of the computational cost.

Despite the advances seen in supercomputing hard-
ware, such performance increases are not sufficient to
overcome the scaling complexity of lattice protein fold-
ing. Finding the minimum energy conformation of a lat-
tice protein is a hard problem. Even for the case of the
two class HP model, researchers have shown that the
problem of finding a minimum energy conformation of a
lattice protein is NP-complete [4, 9, 21]. Unless P=NP,
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this implies that there exists no classical algorithm that
can find the lowest energy state of a lattice protein in
polynomial time, and may restrict the use of lattice fold-
ing to small protein lengths (less than 100 amino acids).

In recent years, quantum annealers have been shown
to be able to solve certain NP-hard problems more ef-
ficiently than classical computers [5, 12, 14]. For this
reason, quantum annealing performed on real-world ex-
perimental devices might provide solutions to the prob-
lem of finding the lowest energy conformation for lattice
proteins of sizes unreachable for classical hardware. In
order to solve a problem on a quantum annealing device,
the problem first needs to be encoded as an Ising-type
Hamiltonian, whose ground state corresponds to the so-
lution of the given problem. Since the encoding deter-
mines the number of required variables as well as the
connectivity between them, it is important to investigate
different ways of encoding the problem. Perdomo et al.
[19] were first to develop a Hamiltonian encoding based
on a binary grid coordinate system. Subsequently, Bab-
bush et al. [2] developed three novel ways of mapping
lattice heteropolymer models into Ising-type Hamiltoni-
ans. Finally, Perdomo-Ortiz et al. [20] picked the most
resource efficient mapping (for the given protein length)
and established a proof-of-concept by folding the protein
PSVKMA on the D-Wave One processor.

In summary, to facilitate the construction of a hybrid
algorithm for protein folding, we require the use of a
quantum processor to obtain the lowest energy confor-
mation of the lattice protein, circumventing the need to
explore this vast conformational space classically. Amino
acid contacts from lattice folds are then provided as ad-
ditional input for high accuracy atomistic modeling using
classical computers. For this, we employ restraint-based
MD simulations in order enable faster simulation. In this
work, we focus on the problem of mapping the lattice pro-
tein models onto existing quantum annealing hardware
and the application of these methods for folding proteins
on the D-Wave 2000Q quantum annealer.

II. MAPPING PROTEINS ONTO DISCRETE
LATTICES

In this work, we build upon the methodology described
by Babbush et al. [2] to encode the lattice folding problem
into an Ising-type Hamiltonian. Due to their low corre-
lation with actual protein structure, we move away from
planar lattices and instead derive encodings for cubic lat-
tices for three different mappings of the lattice protein
folding problem.

Specifically, for the coarse-grained lattice models dis-
cussed in this paper we define the lattice protein fold as
a path in the graph of a given grid, which does not visit
any vertex twice and assigns an amino acid type to each
visited vertex. The energy of the protein fold can be cal-
culated as the sum of interaction energies between adja-
cent non-covalently bound amino acids defined by a con-

tact potential. Multiple contact potentials are described
in the literature. Two of the most commonly used po-
tentials are the HP and the MJ interaction potentials.
The HP potential only differentiates between two types
of amino acids, hydrophobic (H) and polar (P), and it
assigns a negative (favorable) weight to interactions be-
tween two adjacent, non-covalently bound hydrophobic
residues. The MJ potential differentiates between all 20
naturally occurring amino acids, assigning varying nega-
tive (favorable) weights to interactions between adjacent
amino acids.

In order to solve the lattice protein folding problem on
a quantum annealing device which leverages Ising-type
Hamiltonians, such as the D-Wave 2000Q, we first need
to construct an injective mapping between the set of all
possible lattice protein folds and the set of binary strings,
represented by a sequence of qubits in the machine. This
allows us to uniquely decode a given solution string into
a lattice protein fold. Two different approaches are out-
lined in sections II A and II B.

The next step is to construct the energy landscape of
for the Ising system such that the valid, lowest energy
conformation of the lattice protein corresponds to the
ground state of the system. On the hardware level, this
is realized by introducing couplings between Ising vari-
ables. On the logical level, we use pseudo-boolean ex-
pressions that are subsequently reduced to 2-local inter-
actions implementable on the device. They encode the
interaction potential (HP or MJ) and they prevent non-
physical solutions such as overlapping or disconnected
amino acid sequences. There can be different ways of
generating these pseudo-boolean expressions even using
the same lattice fold encoding. Each has its own advan-
tages and disadvantages which will be discussed in their
respective sections, see II A 1, II A 2 and II B 1.

A. Binary encoding of lattice folding into turns

The most straightforward way of mapping lattice pro-
teins to binary is to impose a binary coordinate system
onto the cubic 3D lattice as it was first discussed by Per-
domo et al. [19]. However, in three dimensions this en-
coding is fairly inefficient, requiring Ω(N logN) qubits
to encode a lattice protein of length N . Given the small
size of today’s quantum processing units one wants to be
as efficient as possible when it comes to resources and
for this reason we will not further discuss this encoding
strategy in this whitepaper. A more compact way of en-
coding lattice proteins on a cubic lattice is using globally
defined directions called turns. Since a lattice protein is
a path in the lattice graph, it is also specified as a se-
quence of edge directions, given that we fix the initial
point as the point of origin. Fig. 1 shows a binary map-
ping that encodes each of the six spatial directions on a
cubic lattice as 3 qubits, which requires a total of Ω(N)
qubits. Note that the bit strings for the directions have
been carefully chosen in order to optimize the localility
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of pseudo-boolean expressions.
To decrease the number of required qubits even further,

we fix the first three qubits to enforce a ’right’ move and
due to rotational symmetry we can fix two additional
qubits in the second turn. The solution bit string is then
given by:

q = 101︸︷︷︸
turn 0

q001︸︷︷︸
turn 1

q1q2q3︸ ︷︷ ︸
turn 2

... q(3N−11)q(3N−10)q(3N−9)︸ ︷︷ ︸
turn N − 2

. (1)

This binary encoding scheme is used for the turn an-
cilla as well as the turn circuit encoding in the following
two sections.
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FIG. 1. Instead of using absolute coordinates, we define lat-
tice proteins in binary through globally defined turns. On a
cubic lattice every possible turn can be encoded into 3 binary
bits as shown in the top left corner.

1. Turn ancilla encoding

This encoding introduces ancillary qubits into the
Hamiltonian to encode information about amino acid in-
teractions. This ensures that the k-locality of the result-
ing Hamiltonian is bounded, unlike in the case of the turn
circuit encoding (see Section II A 2). Restricting the k-
locality is critical, since all experimental devices, includ-
ing D-Wave’s quantum annealer only allow for 2-local
interactions, and conversion of the Hamiltonian from k-
local to 2-local comes at the cost of introducing addi-
tional ancilla qubits. More specifically, the turn ancilla
mapping requires:

(3N − 8) +

N−5∑
i=0

N−1∑
j=i+4

d2 log2(i− j)e
{

(1 + i− j) mod 2
}

+

N−4∑
j=0

N−1∑
k=j+3

[
(j − k) mod 2

]
(2)

qubits for a protein of length N.

The Hamiltonian constructed with the turn ancilla
scheme consists of the following four subcomponents,

H(q) = Hback(q)+Hredun(q)+Holap(q)+Hpair(q). (3)

The first component, Hback penalizes lattice protein
folds in which two consecutive edges go between the same
pair of vertices, that is, edge (v1, v2) followed by the edge
(v2, v1). This fold is not valid since the protein goes back
on itself which is, therefore, penalized to ensure that the
ground state solution does not have this property. The
second component Hredun penalizes the occurence of the
two redundant 3-bit strings (which do not encode any
valid direction on the grid). The third component Holap

penalizes folds in which any residues i and j with j > i+3
occupy the same grid point, complementing Hback. All
penalties in the first three terms are adding large positive
numbers to the overall energy such that these solutions do
not lie close to the ground state. The components Hback

and Holap could technically be expressed as one compo-
nent, but treating them separately reduces the number
of required ancillary qubits. The last component Hpair

accounts for the interaction between non-bonded amino
acids that are adjacent on the lattice using the HP or MJ
interaction potential. Moving away from planar lattices
[2], all of our derivations are performed for the case of
cubic lattices which are much better suited given their
higher correlation to the atomistic tertiary structure.
Construction of Hback. For the construction of

the pseudo-boolean expression we need to derive helper
boolean logic circuits. More specifically, to correctly
parse every possible turn in the bit string, we need to
construct boolean circuits that yield TRUE given exactly
one of the valid 3-bit strings that encode directions, and
FALSE otherwise. For example, the bit string 001 corre-
sponds to an ’up’ (+y) move on the cubic lattice and the
boolean circuit that yields TRUE for this input is shown
in Fig. 2. Note that any other input to this circuit will
output FALSE.

Using these boolean circuits as building blocks, we ar-
rive at six closed-form expressions for the six spatial di-
rections ’right’ (+x), ’left’ (−x), ’up’ (+y), ’down’ (−y),
’in’ (−z) and ’out’ (+z). From there, it is straightforward
to derive six functions that evaluate to TRUE if and only
if the j-th turn goes into the respective direction:

dj+x = (1− q2+φ)q1+φq3+φ, (4)

dj−x = (1− q3+φ)q1+φq2+φ, (5)

dj+y = (1− q1+φ)(1− q2+φ)q3+φ, (6)

dj−y = (1− q1+φ)(1− q3+φ)q2+φ, (7)

dj+z = q1+φq2+φq3+φ, (8)

dj−z = (1− q2+φ)(1− q3+φ)q1+φ, (9)

where φ = 3(j − 2) for the sake of simplicity. Even
though there are only six spatial directions on a cubic
lattice, there is eight unique 3-bit strings. Since we en-
code the turns of the protein into 3-bit strings these two
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x0 x1 x2

(1− x0)(1− x1)x2

FIG. 2. Classical boolean circuit representing an ’up’ move on the cubic lattice. The circuit evaluates to TRUE (equals to 1)
if and only if x0x1x2 = 001

additional 3-bit strings will unavoidably be part of the
solution space as well, even though they do not corre-
spond to any move. In order to penalize the occurence
of the these strings later on, we derive the two functions
that check if the j-th move is described by one of the two
invalid bit strings 000 or 011:

dj000 = (1− q1+φ)(1− q2+φ)(1− q3+φ), (10)

dj011 = (1− q1+φ)q2+φq3+φ. (11)

The resulting subcomponent is then given as:

Hback(q) = λback

{
(q0 ∧ d 2

−x) + ((1− q0) ∧ d 2
−y)

+

N−3∑
j=2

[
(dj+x ∧ d

j+1
−x ) + (dj−x ∧ d

j+1
+x )

+ (dj+y ∧ d
j+1
−y ) + (dj−y ∧ d

j+1
+y )

+ (dj+z ∧ d
j+1
−z ) + (dj−z ∧ d

j+1
+z )

]}
. (12)

Construction of Hredun. This part of the Hamil-
tonian imposes an energy penalty λredun in case one of
the two invalid 3-bit strings, 000 or 011, occurs in a turn
since these two strings do not encode any direction on
the cubic lattice. Eq. 10 and 11 are functions that equal
to TRUE when the j-th turn is an invalid move. The way
the first two turns are constructed in Eq. 1 (containing
explictly fixed qubits) do not allow for an invalid move
so Hredun does only apply starting from turn 2. Thus,
Hredun can be written as,

Hredun = λredun

N−2∑
j=2

(
dj000 + dj011

)
. (13)

Construction of Holap. In order to to penalize more
complex overlaps e.g. the i-th amino acid overlapping
with the (i+6)-th amino acid, one needs to be able to de-
rive the coordinates of the respective amino acids relative
to the first amino acid in the chain from the information
about the turns. Since Eq. 4-9 keep track of the direction
at each turn, the following three position functions can

be constructed:

xm =

{
0, if m=0,

1 + q0 +
∑m−1
j=2

(
dj+x − d

j
−x
)
, otherwise,

(14)

ym =

{
0, if m=0,

1− q0 +
∑m−1
j=2

(
dj+y − d

j
−y
)
, otherwise,

(15)

zm =

m−1∑
j=2

(
dj+z − d

j
−z
)
. (16)

Note, that the we needed two cases since the zero-th
amino acid constitutes a special case - it occupies the
origin. Furthermore, the first terms in xm and ym with
m > 0 are due to the fixed qubits defined in q from
Eq. 1. In order to determine the distance between any
two amino acids we define the squared distance on a cubic
lattice as,

Djk = (xj − xk)2 + (yj − yk)2 + (zj − zk)2. (17)

Djk is zero if the j-th and k-th amino acid occupy the
same point on the lattice and positive otherwise. Fur-
thermore, due to the way we mapped the 3-bit strings
onto the six directions Djk has the beneficial property of
being at most 4-local. As given in [2], the bounds of Djk

are

0 ≤ Djk ≤ (j − k)2. (18)

In Holap we want to penalize non-trivial overlaps and,
therefore, ensure that Djk 6= 0, j > k + 3. This means,
we want to enforce the inequality constraint Djk ≥ 1.
In order to transform an inequality into an equality we
introduce the slack variable αjk:

0 ≤ αjk ≤ (j − k)2 − 1. (19)

From this,

∀Djk ≥ 1 ∃αjk : (j − k)2 −Djk − αjk = 0, (20)

follows immediately. And we observe that in the case
Djk = 0 the following holds true,

(j − k)2 −Djk − αjk ≥ 1∀αjk. (21)
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The important step in the turn ancilla encoding is how
this slack variable is entering the Hamiltonian. First
proposed in [2], we will encode the value of αjk in bi-
nary using ancillary qubits. Ancilla qubits are additional
unconstrained qubits that are used for intermediate com-
putations but ultimately disregarded in the final solution
string.

The number of amino acid pairs that require a slack
variable is given by,

Npairs =

N−5∑
i=0

N−1∑
j=i+4

[
(1 + i− j) mod 2

]
. (22)

Each slack variable αjk requires µjk ancillas to be
stored. The expression for µjk can be written as,

µjk = d2 log2(j − k)e
{

(1 + j − k) mod 2
}
. (23)

Thus, we can compute the total number of required
ancillary qubits as,

Nancilla =

N−5∑
i=0

N−1∑
j=i+4

µij (24)

Finally, using big-endian format we can obtain the
value of the slack variable αjk as,

αjk =

µjk−1∑
k=0

qpjk+k2µjk−1−k , (25)

where pjk is a pointer that yields the index of the first
ancilla encoding αjk. In our case, we chose to attach the
ancilla register to the end of the solution string q (Eq. 1)
and thus the pointer is given by,

pjk = (3N − 8) +

j∑
u=0

N−1∑
n=u+4

µun −
N−1∑
m=k

µjm. (26)

As shown in [2], the value of the slack variable does not
fall within the range defined in Eq. 19 but rather into the
range,

0 ≤ αjk ≤ 2µjk − 1. (27)

Therefore, we need to adjust Eq. 20 and 21 accordingly,

∀Djk ≥ 1 ∃ αjk : 2µjk −Djk − αjk = 0, (28)

2µjk −Djk − αjk ≥ 1 ∀ αjk. (29)

We want to ensure that αjk takes the correct value such
that Eq. 28 equals to 0 if Djk ≥ 1. Additionally, we want
to avoid αjk from taking negative values since this would
lead to a decrease in energy and, thus, favour overlaps.
For this reason, we square the expression to ensure the
correct behaviour and multiply it with a penalty λolap:

γjk = λolap
[
2µjk −Djk − αjk

]2
. (30)

Now everything is in place to construct the expression,

Holap(q) =

N−5∑
i=0

N−1∑
j=i+4

[
(1 + i− j) mod 2

]
γij (31)

where the term
[
(1+i−j) mod 2

]
eliminates unneccessary

terms since only amino acids that are an even number of
turns away from each other can overlap.

Construction of Hpair. This final component of the
turn ancilla encoded Hamiltonian models the interac-
tion between non-covalently bonded neighbouring amino
acids on the lattice. In order to do so, we need to con-
struct an interaction matrix P using either the HP model
by Lau and Dill [13] or the MJ potential by Miyazawa
and Jernigan [16]. The HP model is rather simple - the
only interaction coefficient is −1 in the case of two adja-
cent hydrophobic amino acids. For this reason, it yields
slightly smaller Hamiltonians which - in some cases - can
enable solving larger problem instances. The MJ model
assigns different interaction strengths to each pairwise
interaction of all 20 amino acids and hence models pro-
tein folding much more accurately. Note that P differs
from protein to protein and is not equal to the MJ matrix
even though it is constructed using its elements. Given
the fact that a lot of amino acids will not be able to in-
teract with each other due to parity reasons, P is rather
sparse. For each possible interaction between residues we
need to add one ancillary qubit flag ωjk that is equal to
1 if and only if the j-th and k-th amino acid interact and
0 otherwise:

ωjk =

{
1, if Djk = 1.

0, otherwise.
(32)

From this follows the interaction term,

ϑjk = ωjkPjk(2−Djk). (33)

Summing over all possible interactions yields the final
expression,

Hpair(q) =

N−4∑
j=0

N−1∑
k=j+3

[
(j − k) mod 2

]
ωjkPjk(2−Djk),

(34)
where we refined the approach by including the term[

(j−k) mod 2
]
. This keeps the number of required ancil-

las as low as possible since amino acids that are separated
by an even number of turns can not interact.

2. Turn circuit encoding

This encoding is the most qubit efficient mapping since
it requires only 3N−8 ∈ O(N) qubits (and no additional
ancilla qubits) to encode a protein of length N. However,
it comes at the disadvantage of containing many-body
terms (involving more than two variables). This poses a
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difficulty for the problem to be embedded on an experi-
mental device, since those usually implement only 2-body
interactions.

The k-body Hamiltonian can be reduced to a 2-body
Hamiltonian with equivalent ground state by introducing
ancilla qubits as resource efficient gadgets [1], hence, re-
ducing the k-locality of the terms at the cost of increasing
the size of the problem graph. Yet, on small problem in-
stances this encoding is more resource efficient than the
other encodings described in this paper. Below we give
an asymptotically more efficient implementation of the
turn circuit encoding of the cubic lattice protein folding
problem than previously published in the literature [2].

The turn circuit encoded Hamiltonian consists of two
main terms,

H(q) = Holap(q) +Hpair(q). (35)

Sum strings. Both subcomponents in the turn cir-
cuit encoded Hamiltonian, require us to introduce the
notion of a ’sum string’. In this case, the i, j-th +x di-
rection sum string represents the sum of the directional
+x-strings (Eq. 4) from the i-th to the j-th amino acid.
By constructing sum strings for every pair of amino acids,
we can keep track of the position of every amino acid on
the lattice, which will enable us to test for possible over-
laps or interactions of residues.

The sum strings are computed using half-adder cir-
cuits. A half-adder circuit is shown in Fig. 3. It takes
two binary numbers x and y as input and outputs two
bits, the first one representing the carry bit c = x∧y and
the second one being the sum s = x ⊕ y which is equiv-
alent to computing (x+ y) mod 2. Hence, the half-adder
results in the two-bit sum of x and y. As outlined in
[2], larger half-adder circuits can be constructed to sum
multiple input bits.

Half-adder circuit can used to add up the directional
bit strings between amino acid i and j in the ±k direction
as shown in Fig. 4. However, this approach of building
the circuit is inefficient in the number of half-adders re-
quired. Below we propose a better circuit design that
reduces the number of terms in the Hamiltonian.

The critical realization is that a binary sum string for
two amino acids j and k requires at most of dlog2(j−k)e
bits to encode the resulting value, where 1 ≤ j < k ≤ N
and j + 1 < k. This is important to note because the
circuit shown in Fig 4 contains (j − k) input as well as
output bits. Since a binary representation of n uses at

HA

x

y

x ∧ y

x⊕ y

FIG. 3. A simple half adder circuit that takes two binary
numbers x and y as input and results in their addition (mod
2) and the carry bit.

FIG. 4. Inefficient concatenation of half-adders to sum a se-
quence of bits [2].

most dlog2 ne bits, it follows that n−dlog2 ne bits are not
required to represent the sum string. Using this insight
we remove half-adders from the upper right section of the
circuit once their information content is fully propagated
to layers below as shown in Fig. 5. By not adding these
empty bits using superfluous half-adders we avoid infla-
tion of the overall Hamiltonian which would be due to
each half-adder introducing new high-order terms.

The half-adder circuit results in a sum string s that
contains the number of turns the protein has taken in the
±k direction between any two residues. In our notation,
it holds that,

sr±k(i, j) = rth digit of

j−1∑
p=i

dp±k. (36)

Analysis of the circuit complexity. Using the tech-
nique outlined in the previous subsection, we obtained a
significant quadratic to quasilinear improvement in cir-
cuit complexity for sum strings, which are basic build-
ing blocks for the subcomponents of the Hamiltonian,
therefore, propagating through all subsequent expres-
sions. This section derives and proves this bound.

The total number of half-adders htotal(n) in the sum
string circuit of n bits is (counting half-adders from bot-
tom up),

htotal = 1 + 2 + · · ·+ n =
n(n+ 1)

2
. (37)

The circuit complexity in terms of number of half-
adders involved is then O(n2). However, since the sum of
n bits only needs dlog2(n + 1)e output bits, the number
of bits nredun not containing any information output is,

nredun = n− dlog2(n+ 1)e. (38)

The number of associated half-adders that cannot
propagate any information to output bits is equal to
htotal(nredun), by isomorphism to the sum string circuit
of nredun binary variables (see Fig. 5).

The necessary number of half-adders himprov in the im-
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proved circuit for addition of n binary variables is then,

himprov(n) = htotal(n)− htotal(nredun)

=
n2 + n

2
− n2redun + nredun

2

=
n2 + n

2
− (n− dlog2(n+ 1)e)2 + n− dlog2(n+ 1)e

2

=
2ndlog2(n+ 1)e − dlog2(n+ 1)e2 + dlog2(n+ 1)e

2
.

(39)

It follows that himprov(n) ∈ O(n log n), hence, provid-
ing a significant decrease in the circuit complexity, from
quadratic to quasilinear.

Construction of Holap. With the construction of
the sum strings we have already done the majority of
the work needed for the construction of Holap. The sum
strings tell us the exact number of turns that the protein
chain has taken into the ±k direction. Thus, two residues
overlap if and only if all corresponding ±k sum strings
sum to zero. We can test if two sum bits are different
using an XNOR function,

XNOR(p, q) = 1− p− q + 2pq. (40)

To test if two residues overlap we compare each bit in
the two sum strings using the XNOR function and take
the product over all the respective XNOR results and
over all dimensions:

Holap(i, j) =

3∏
k=1

( dlog2(j−i)e∏
r=1

XNOR(sr+k(i, j), sr−k(i, j))
)
.

(41)

From the definition of the XNOR function it follows
that Holap(i, j) = 1 if and only if amino acid pair (i, j)
overlaps. To penalize any overlap, we take the double
summation over all possible amino acid pairs that could
possibly overlap and compare their sum strings using
Eq. 41,

Holap = λolap

N−2∑
i=1

b(N−i)/2c∑
j=1

Holap(i, i+ 2j). (42)

Construction of Hpair. To construct this subcompo-
nent we again leverage the previously defined sum strings
(see Section II A 2). Two residues interact with each
other, that is have lattice distance of 1, if and only if
exactly one ±k (direction) pair of sum strings sum to 1
and both of the other direction sum strings pairs sum ex-
actly to 0. The following adjacency function [2] captures

the condition above:

ak(i, j) =

[ ∏
w 6=k

( dlog2(j−i)e∏
r=1

XNOR(sr+w(i, j), sr−w(i, j))
)]

∗

[
XOR(s1+k(i, j), s1−k(i, j))

∗
dlog2(j−i)e∏

r=2

XNOR(sr+k(i, j), sr−k(i, j))

+

dlog2(j−i)e∑
p=2

(
XOR(sp−1+k (i, j), sp+k(i, j))

∗
p−2∏
r=1

XNOR(sr+k(i, j), sr+1
+k (i, j))

∗
p∏
r=1

XOR(sr+k(i, j), sr−k(i, j))

∗
dlog2(j−i)e∏
r=p+1

XNOR(sr+k(i, j), sr−k(i, j))
)]
.

(43)

This function evaluates to 1 if two sum strings differ
by exactly 1 and 0 otherwise. Thus, to determine if two
amino acids interact we need to sum the adjacency func-
tion over all three dimensions for this amino acid pair,

Hpair(i, j) = Pij

3∑
k=1

ak(i, j), (44)

where Pij is again the interaction matrix obtained us-
ing either the HP or the MJ potential. The expression
is multiplied with the i, j-th matrix element to favour
residue interaction by effectively lowering the overall en-
ergy of the problem Hamiltonian if two strongly interact-
ing amino acids are adjacent on the lattice.

Finally, we sum over all amino acid pairs that can pos-
sibly interact with each other:

Hpair =

n−3∑
i=1

(N−i−1)/2∑
j=1

Hpair(i, 1 + i+ 2j). (45)

B. Binary flag based encoding

As an alternative approach to encoding coordinates of
the vertices of the lattice protein fold, or encoding its
edges we can populate the lattice grid space with labels,
each associated with every possible position of the given
amino acid. While this requires an exponential number
of qubits, the size of the lattice space can be bounded by
the radius, hence, providing a linear mapping in terms of
the number of qubits, as implemented in Section II B 1.
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FIG. 5. Circuit diagram demonstrating the quadratic to quasilinear improvement in circuit complexity outlined in this paper.
Most output bits on the right side are zeros since the sum of (j−k) input bits only requires dlog2(j−k)e output bits. Therefore,
all half-adders coloured in red are superfluous and can be omitted, which reduces the number of half-adders from quadratic to
quasilinear.

1. Nested shell encoding

The nested shell encoding is based on two fundamental
ideas. First, it enforces an arbitrary, pre-selected bound
on the radius of the cubic lattice space we allow the lattice
fold to explore. Second, it does not use qubits to directly
encode the information about the position of the amino
acids, but rather uses them as binary flags signalling the
presence of the given amino acid at a particular position
in a cubic grid. These ideas were first used by Babbush
et al. [2] to formulate the diamond encoding, which was
designed for planar lattices.

Although using fairly large number of qubits to repre-
sent each amino acid, this encoding has the advantage of
being 2-local and quite sparse, hence, avoiding two ma-
jor hidden costs of the previous encodings, namely the
ancilla introduction due to conversion from k-local to 2-
local Hamiltonian and it significantly reduces the over-
head in the minor embedding to the hardware Chimera
architecture of the quantum processing unit.

First we define necessary concepts in order to introduce
the nested shell encoding, which partitions the cubic grid
space into a set of nested vertex shells. Consider a cubic
grid graph G = (V,E) with a point of origin O ∈ V . We
define nested shell S0 as S0 = O and nested shell Si, i > 0
as,

Si = {v | v is adjacent to w,w ∈ Si−1}. (46)

Let p be a lattice protein of length n. Next we define
the amino acid vertex set Vi as the union of all nested

shells that amino acid on the i-th position can occupy,
i ≤ n.

Vi =
⋃
j∈J

Sj , (47)

where,

J =


{i} if i ≤ 2,

{1, 3, . . . , i} if i > 2 and i is odd,

{2, 4, . . . , i} if i > 2 and i is even.

(48)

Each vertex in the vertex set Vi represents a possible
position of the i-th amino acid and hence, it gets assigned
one binary qubit flag. We define the amino acid qubitset
Qi, set of all flags corresponding to the i-th amino acid
as,

Qi = {qγ(i), . . . , qγ(i+1)−1}, (49)

where,

γ(i) =

i−1∑
j=0

|Vj |. (50)

With the definitions above in place, we can now pro-
ceed to the derivation of the Hamiltonian for the nested
shell encoding:

H = Hone +Hconn +Hpair +Holap (51)

Each subcomponent of the Hamiltonian serves a crit-
ical function. Hone ensures that no two qubits from the
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same amino acid qubitset are signalling at the same time.
Given a lattice protein of length n, it holds that,

Hone = λone

n−1∑
i=0

∑
qa,qb∈Qi,a<b

qaqb. (52)

To ensure that the protein is connected, we need to
favour adjacent grid positions for qubit sets of subsequent
amino acids. This is the purpose of the Hconn:

Hconn = λconn

(
n−1−

n−1∑
i=0

∑
qd∈Qi

∑
qu∈η(q)∩Qi+1

qdqu

)
. (53)

where η(q) denotes the set of all qubits assigned to a
vertex adjacent to the vertex assigned to qubit q.

The Holap part of the Hamiltonian introduces the con-
straints necessary to prevent two qubits from different
amino acids claiming their assigned vertex as occupied
by their amino acid at the same time. Let θ(v) be a set
of all qubits occupying a given grid vertex v ∈ V of the
lattice grid graph G = (V,E). Then Holap is given as

Holap = λolap
∑
v∈V

∑
qa,qb∈θ(v),a<b

qaqb (54)

As in the previous encodings, to properly assess the
interaction between the i-th and j-th amino acid we con-
struct the interaction matrix P that contains interaction
strengths between all amino acids that can possibly in-
teract on the given cubic lattice grid, restricted by parity
and distance (amino acids vertices need to be at least
3 edges apart to interact). Let ω be a mapping from a
qubit to the position of its amino acid in the sequence.
Then Hpair is defined as,

Hpair =
1

2

n−1∑
i=0

∑
qa∈Qi

∑
qb∈η(qa

Pω(qa),ω(qb)qaqb. (55)

III. RESULTS & DISCUSSION

For our experimental implementations, we chose two
well-studied proteins, Chignolin for the planar lattice and
Trp-Cage for the cubic lattice. Fig. 7A and 7C show the
molecular structures, solved using experimentally pro-
vided contact restraints from nuclear magnetic resonance
(NMR) of the Trp-Cage fragment (blue) and Chignolin,
respectively. First, we will discuss the results for fold-
ing Chignolin with 10 residues on a planar square lattice
using the D-Wave 2000Q quantum processing unit.

In previous work, Perdomo-Ortiz et al. [20] achieved
folding of a protein with 6 residues (PSVKMA) on a pla-
nar lattice. Chignolin is a well-studied artificial mini-
protein with 10 residues that has been shown to fold
into a β-hairpin structure in water [10]. The advances
in quantum hardware alone would have not sufficed to
fold lattice proteins of this size, hence, our algorithmic

improvements were crucial in the ability to surpass the
state-of-the-art. To perform the experiments, we used
D-Wave’s newest chip generation 2000Q with 2048 su-
perconducting qubits arranged in a Chimera graph with
sparse connectivity [22].

For the folding of Chignolin we generated the Hamilto-
nian with the turn ancilla encoding locally on our server.
We then split the large Hamiltonian into 1024 subprob-
lems and requested ten batches of 10000 samples each
from the quantum processor. We made use of spin re-
versal transforms in order to increase the quality of our
solutions and we additionally performed single-flip gra-
dient descent to drive solutions of Hamming distance 1
to the ground state. For verification purposes we used a
straightforward Monte-Carlo solver on classical hardware
to find the correct ground state of Chignolin.

The most important measure to evaluate stochastic al-
gorithms is the time-to-solution (TTS) metric. In most
studies of this kind, the number of repetitions R99 re-
quired in order to obtain the solution at least once with
99% certainty is computed in order to evaluate the TTS.
The expression for R99 is given by,

R99 = d log(1− 0.99)

log(1− ps)
e, (56)

where ps is the success probability of obtaining the cor-
rect solution with only one execution of the solver.

The correct Chignolin lattice fold and ground state
energy that we obtained from the QPU are shown in
Fig. 6. In our experiment, we collected a total of 102 400
000 samples from the quantum processing unit (QPU)
of which 24950 samples were found to be the correct
ground state. This implies a success probability of
ps = 0.000244. However, note that only one out of the
210 subproblems actually included the correct solution
in its solution space. For each subproblem we requested
100.000 samples which means that within this subprob-
lem we had a success probability of psubs = 0.2495. It is,
of course, impossible to know beforehand which subprob-
lem will contain the correct solution and, thus, we will
only use ps for further analysis. Folding Chignolin on
the 2D lattice in this experimental setup would require
R99 = 190262 samples to be drawn in order to obtain
the correct solution at least once. We used an annealing
schedule with an annealing time of tsample = 20µs which
leads to a time-to-solution of TTS = 0.377s.

Fig. 7D shows the experimentally determined structure
of Chignolin with its C-alpha atoms discretized onto a
cubic lattice, where CA-CA distance was fixed to be 3.8
Angstroms. This discretization was performed by doing
a global optimization of CA positions to the grid using
the LatFit algorithm [15]. Specifically, this algorithm
minimizes the distance RMSD between the original and
the produced lattice protein. The C-alpha atom RMSD
between the discretized and real space positions is 0.85
Angstroms only for Chignolin. It is particularly interest-
ing to examine the similarity between the square lattice
fold from the QPU in Fig. 6B and the discretized version
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of the real structure in Fig. 7D. Most noticeable is the
contact between the two Y residues at the two ends and
the next pair between a Y and a W residue of the protein.
It is exactly this kind of contact information that can be
retrieved from lattice folds and subsequently be used to
speed up classical molecular dynamics simulations.

DAYAQWLK 5 contacts

4 contactsYYDPETGTWY

D

Y

K
L

A

Q
W

D

Y

K
L

A

Q
W D-A

pair score

D-K
A-L
Y-W
K-Q

-1.70
-1.68
-4.91
-4.66
-1.29

-14.24

Y-Y
pair score

Y-W
Y-E
T-W

-4.17
-4.66
-2.79
-3.22

-14.84

Y

Y

Y

D

T

W

E

P

G

T

D

T

P

G

A

B

Y

Y

Y

W

E

T

FIG. 6. Visualization of the ground state lattice folds for
A) the 8 residue Trp-Cage snippet (DAYAQWLK) on a cubic
lattice and B) the 10 residue Chignolin (YYDPETGTWY)
on a square lattice. Both lattice folds were obtained with the
D-Wave 2000Q quantum annealer. The tables on the right
show the MJ interaction strengths for the interacting amino
acid pairs in the depicted lattice folds and the obtained total
ground state energy.

For the 3D lattice folding experiment, we used an 8
amino acid snippet of Trp-Cage, another well-studied
mini-protein with interesting secondary structure such
as an α-helical component [17]. For this amino acid se-
quence (DAYAQWLK) we again generated the Hamilto-
nian using the turn ancilla encoding locally on our server.
However, this time we split the large Hamiltonian into
212 subproblems and requested only five batches of 10000
readouts each from the quantum processor via cloud ac-
cess. Again for verification purposes, the correct lattice
fold was obtained with a classical Monte-Carlo solver on
classical hardware.

The 3D lattice fold and ground state energy we ob-
tained for this protein are shown in Fig. 6A. It is impor-
tant to highlight, that this is the first time that a three
dimensional lattice protein has been folded on quantum
computing hardware. Interestingly, the obtained ground
state lattice fold looks a lot like the beginning of an α-
helix which matches up with the real structure. Fig. 7B
shows the Trp-Cage structure with C-alpha atoms dis-
cretized onto a cubic lattice, where the CA-CA distance
was again fixed to be 3.8 Angstroms. This discretiza-

tion was also performed using the LatFit algorithm [15].
Specifically, this algorithm minimizes the distance RMSD
between the original and the produced lattice protein.
The C-alpha atom RMSD between the discretized and
real space positions is only 0.83 Angstroms for Trp-Cage.
This RMSD value suggests that the cubic lattice dis-
cretization error is small enough such that moderately
accurate atomistic models may be reconstructed from
single-point residue lattice folds. Comparing the 3D lat-
tice fold from the QPU and the actual structure shows
strong similarity since we can clearly see the first D
residue interacting with the second A residue which are
exactly one helix turn away from each other. Addition-
ally, the Q and K residue interaction can clearly be seen
in the experimentally determined structure.

For the Trp-Cage fragment we requested a total of 204
800 000 samples from the QPU of which 4957 samples
represented the correct lattice fold. Therefore, the suc-
cess probability within the subproblem that contained
the correct solution is psubs = 0.099. The overall success
probability is ps = 2.42× 10−5 and, thus, R99 = 190262
samples are needed in order to have 99% confidence that
we obtained the solution at least once. Using an anneal-
ing time of tsample = 20µs results in a time-to-solution
of TTS = 3.805s.

A B

DAYAQWLKDGGPSSGRPPPS

YYDPETGTWY

C D

D
A
Y

A
Q

W

L
K

Y Y D
P

E

T

G

TWY

FIG. 7. Molecular representation of Trp-Cage and Chignolin.
On the left, the NMR structures of Trp-Cage (Fig. A, PDB:
2JOF) and Chignolin (Fig. C, PDB: 2RVD) are shown. In
both representations, only backbone atoms are shown and C-
alpha atoms are highlighted as white spheres. On the right,
Trp-Cage (Fig. B) and Chignolin (Fig. D) are shown with
C-alpha atoms discretized onto a cubic lattice, where CA-CA
distance was fixed to be 3.8 Angstroms.

In order to improve the TTS in both experiments we
could further decrease the number of subproblems since
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for now we only used roughly 200 qubits of the quantum
processor for each run in order to enable fast embeddings
onto the Chimera graph. In the near future, we will try to
push the limits by decreasing the number of subproblems
and maximizing the use of the hardware. Another pos-
sibility for improvement is better postprocessing of solu-
tions such as implementing multi spin flips instead of sin-
gle spin flips in the postprocessing step. Even though cur-
rently not practically implementable, it should be noted
that our current folding algorithm is parallelizable over
multiple QPUs since the subproblems do not need to be
executed sequentially.

IV. CONCLUSIONS AND FUTURE WORK

Lattice models are powerful tools to investigate the
fundamental principles of protein folding. The represen-
tation of proteins on a discrete lattice enables compu-
tationally rigorous investigation of protein sequence and
structure relationships. In this work, we describe ad-
vances to lattice folding algorithms on quantum anneal-
ing devices that may extend the capability of these mod-
els to challenging problems in structural biology and drug
design that are currently computationally intractable.
Specifically, we generalize the work of Babbush et al. [2]
and Perdomo-Ortiz et al. [20] to enable the folding of
proteins on a cubic lattice, and demonstrate significant
improvements in circuit complexity in the turn circuit
encoding. Advances in quantum hardware and our al-
gorithmic improvements have enabled us to surpass the
state-of-the-art on planar lattices by folding Chignolin
(10 amino acids) using the D-Wave 2000Q quantum an-
nealer with a time-to-solution of 0.377s. Furthermore,
we have folded the first protein on a cubic lattice using a
quantum computer, demonstrating that quantum anneal-

ers can reliably fold a fragment of the Trp-Cage protein
(8 amino acids) with a time-to-solution of 3.805s.

Our work provides the foundation for constructing
higher complexity lattice folding models on quantum de-
vices. These models may support multi-atom representa-
tions of amino acids (backbone or sidechain), alternative
lattices (body-centered cubic, face-centered cubic, and
hexagonal centered cubic), and many-body energy func-
tions. These advances will ultimately facilitate higher ac-
curacy representation of protein secondary and tertiary
structure, and ultimately result in greater utility of lat-
tice models to the problems faced in modern protein de-
sign.

In a future study, we will provide empirical scaling
comparisons with protein length for the three encodings
described in this work and show how the new reverse
annealing feature, recently released by D-Wave Systems,
can help in decreasing the TTS metric. Furthermore,
we will demonstrate how the ground states of Ising-type
Hamiltonians can be obtained using the quantum approx-
imate optimization algorithm (QAOA) by Farhi et al. [7]
with hard and soft constraints [8] running on a universal
gate-based quantum computer.
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