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Human immunodeficiency virus type 1 (HIV-1) protease (PR)

plays an essential role in the life cycle of the virus.

Consequently, its inhibition can control acquired

immunodeficiency syndrome (AIDS). Any pharmacological

treatment targeting the active site of the protease is known to

generate escape mutants. On the other hand, if a drug targets a

site crucial for the correct folding of the protease, mutations

affecting this region would denaturate the protein and thus will

not be expressed. We review the progress in our understanding

of the folding of the protease, which has been instrumental in

the design of a (non-conventional) folding inhibitor. The

transferability of these results to other proteins testify to the

universality of the folding–inhibition scenario for the design of

leads of drugs which are unlikely to generate resistance.
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Introduction
Many proteins carry out their biological function as multi-

meric assemblies. In particular, in the form of dimers, that

is proteins whose native conformation is a globule built

out of two disjoint chains [1–6]. If they are equal, as in the

case of the HIV-1-PR, one has to do with a homodimer.

The HIV-1 PR has an important role in the maturation of

the virus and as such inhibiting its enzymatic activity is of

high interest. Beyond the design of inhibitors that block

the active site – very effective but of restricted efficacy

because of the insurgence of resistance [7–11] – novel

inhibition approaches have been proposed in recent years

aiming at destabilizing the dimeric [12–15,16��] or the

monomeric [16��,17��] forms of the HIV-1 protease

(Figure 1a).
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A dimerization inhibitor is based on a molecule that mimics

the intertwined interface of the protease [12,13]. While this

approach is particularly attractive, the large size of the

designed peptide makes it only partially effective. Alter-

natively, it has been recently proposed – although not yet

tested – the design of a small molecule that binds to regions

of the protease whose dynamics are correlated with the

opening motion of the flaps, so as to (allosterically) inhibit

substrate entry [18] (see also [19,20]). This opinion, how-

ever, focuses on another class of inhibitors that can regulate

the activity of the protease by inhibiting the folding of the

protease monomers [16��,17��], in particular through a

mechanism unlikely to create resistance [17��].

In neutral solution, the HIV-1 protease folds according to

a three state mechanism (2D$ 2N$ N2, [1–6]), popu-

lating consistently the monomeric native conformation, as

found in sedimentation equilibrium experiments [21].

This result is supported by NMR studies of mutants in

which the interaction across the interface is weakened

[22,23], by all-atom simulations of the monomer in expli-

cit solvent [24] and by perfectly funneled (Gō model4

[25,26]) energy landscape simulations of the dimer [16��].
The dimer dissociation constant (2N$ N2), is found to

be KD = 5.8 mM at 4 8C [21]: for instance, in a 30 mM

solution, 44% of the protein is in a monomeric form.

The above-mentioned results allow one to conclude that,

at neutral pH, each monomer of the protein folds5 (D$ N)

independently of each other, through the same folding

mechanism of single-domain (monomeric) proteins. After

the monomer has reached its native state N, it diffuses to

bind another folded chain (2N$ N2). The destabilization

of the monomer will thus lead to enzymatic inhibition.

Folding of single-domain (monomeric) proteins
Upon titration with denaturants like urea or guanidinium

chloride, small, single domain proteins typically display a

highly concerted transition between the denatured (D)
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Figure 1

(a) Four possible target sites for HIV-1 protease inhibition. The two

monomers of the homodimeric protease are colored white and light blue.

The LES are highlighted by green (23–33), yellow (74–78) and magenta

(84–92). (b) Schematic representation of a unimolecular protein folding

(e.g. the folding of protease monomer) highlighting the role of LES in

defining the TS). (c) Folding inhibition through a bimolecular docking of

the p-LES to the protease. Inhibition is carried out by trapping the

protein in a partially denatured state, D*, whose free energy is lower than

that of the native state, N.
and the native (N) state [30,31]. This all-or-none process,6

taking place in very short times, is consistent with a

funnel-shaped energy landscape, whose bottom corre-

sponds to the native state, and whose rational is related

to ‘minimal frustration’ [33,34]. In other words, evolution

has optimized protein sequence in such a way that

the native state has not to compete with denatured

conformations [35,36]. The funneled energy landscape

suggests that folding is not a random process but is guided

towards the folded state and may include several folding

routes. Furthermore, there is experimental evidence that

typical pathways in the energy landscape involve the

structuring of well-defined segments of the protein

[37–39]. The region around the transition state (TS)

can be characterized by f-value analysis,7 and usually

shows a small, well-defined set of native contacts, referred

to as (critical) folding nucleus (FN, [41,42,43��]). Also the

denatured state is far from a random coil and displays

elements of both native and non-native structure, as

shown by NMR [44–46] and fluorescence experiments

[47] (see also footnote 5). These findings are consistent

with the scenario emerged from simulations, which testify

to the fact that folding may proceed by the formation of

Local Elementary Structures (LES) that can be of various

stability and their assembly is closely related to the

transition state (TS) ensemble and to the folding nucleus

(FN).8

Dynamics simulations carried out on a lattice [48,49]

demonstrate that the folding of a small monomeric

protein, starting from an unfolded (random coil) confor-

mation, follows a hierarchical succession of events (cf.

Figure 1b; see also [50–53]): (1) formation of local

elementary structures (LES), hidden, incipient secondary

structures (see also [54��]) stabilized by few, highly con-

served, strongly interacting, hydrophobic (‘hot’) amino

acids lying close along the polypeptide chain9; (2) docking

of the LES into the (postcritical) FN (this structure is

similar to that associated with the FN, but is more

committed to folding. In other words, the (postcritical)
6 Note that some proteins are proposed to display downhill folding

mechanism in the absence of a significant free-energy barrier and are

therefore not consistent with the all-or-none scenario [32].
7 The quantitative measure of participation of an amino acid in a TS is

a parameter called f-value, which represents the ratio of the change in

activation free energy upon mutation to the change in the free energy of

protein stabilization. A low (high, close to 1) f-value suggests that the

corresponding residue does not (does) form its native contacts in the TS

[40��].
8 Transition state (TS) ensemble: the thermodynamic state associated

with the top of the main free energy barrier (FEB) that separates the

native from the denatured state. (Critical) folding nucleus (FN): the

ensemble of conformations of the protein chain at the transition state.

(Postcritical) FN: the minimal set of native contacts needed to overcome

FEB and insure folding [43��]. Local elementary structures (LES):

hidden, incipient secondary structures formed very early in the folding

process, stabilized by few, highly conserved, strongly interacting, hydro-

phobic amino acids. Their docking gives rise to the (postcritical) FN.
9 LES are likely to be related to the ‘foldons’ introduced in ref. [55].
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FN is ‘the minimal sized fragment of the native state

which inevitably grows to the native state’ [43��]) and (3)

relaxation of the remaining amino acids in the native

structure shortly after the formation of the (postcritical)

FN. Note that a hierarchical succession of events is not

incompatible with the cooperative, two-state folding

highlighted by calorimetry and kinetic measurements.

In fact, the large entropy of the denatured conformations

make them behave as a single thermodynamic state even

if they contain different degrees of native structure (see

the model of ref. [56]). Moreover, the exponential depen-

dence of the kinetic rates with the height of the free

energy barriers allow the experiments to describe only the

processes taking place on the longest timescale, hiding all

faster processes.
Current Opinion in Structural Biology 2008, 18:60–66
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Figure 2

A sketch of the effect of p-LES on the free-energy landscape of protein folding, plotted with respect to the fraction q of intra-molecular native contacts

and qp of inter-molecular contacts. Upon increase of the concentration of p-LES, the free energy of the state D* decreases and competes with the

state N.
The ‘hot’ sites, which stabilize the LES, are found to be

very sensitive to (nonconservative) point mutations [57].

Since most of the protein stabilization energy is concen-

trated in these sites, mutating one or two of them has a

high probability of denaturing the native state.10 On the

other hand, mutating any other site has in general little

effect on the stability of the protein [59]. With the

increased stability of the LES one can imagine a more

hierarchical folding similar to the diffusion–collision

mechanism. However, if the LES are of different stability

the nucleation–condensation might be a more likely

mechanism [30].

Folding inhibition
Intervening a folding reaction can, in principle, be

achieved by interacting the polypeptide chain with pep-

tides whose sequences are those of the LES that define

the (postcritical) FN of the studied protein. As the

concentration of the LES peptides increases, the protein

may nucleate by the assembly of the protein chain with

peptide LES, leading to a nonproductive folding. This

can be viewed as changing the folding from a unimole-

cular reaction to a bimolecular reaction (cf. Figure 1c).

Making use of lattice models, it has been shown that it is

possible to destabilize the native conformation of a
10 Because there exist quasi-degeneracies in the interaction between

amino acids, in particular in the case of hot amino acids, different

sequences folding to the same native conformation may do so with

the help of different sets of hot sites and thus of LES and of (postcritical)

FN, as shown by the existence of families of analogous sequences.

Evolutionary model studies [58] have shown that proteins cannot change

their FN through point mutations – as these mutations will eventually

lead to non-folding sequences – but through multiple co-ordinated

simultaneous mutations.

Current Opinion in Structural Biology 2008, 18:60–66
protein making use of peptides whose sequences are

identical to that of the LES [60]. Such peptides (p-

LES) interact with the protein (in particular with their

complementary LES) with the same energy that stabil-

izes the (postcritical) FN. If the concentration of p-LES is

large enough, the loss of entropy upon binding is smaller

than that associated with folding, and thus the free energy

of the partially unfolded state D* (see Figure 1c) is

stabilized (see Figure 2), thus inhibiting folding (within

this context, see also [54��,61]).

There are two important advantages of these folding

inhibitors with respect to conventional ones. First, their

molecular structure is suggested directly by the target

protein. One needs not to design or optimize anything,

just find the LES of the protein to be inhibited, because

the design has been performed by evolution through a

myriad of generations of the organism that expresses the

protein. Moreover, it is unlikely that the protein can

develop resistance through mutations. In fact, a folding

inhibitor binds to a LES, and a protein cannot mutate the

amino acids of a LES [57,59] – in any case not those ‘hot’

amino acids that are essential to stabilize it as well as to

bind to the other LES to form the (postcritical) FN -

under risk of denaturation. This does not mean that the

protein cannot decrease its affinity to p-LES. It only

means that non-conventional resistance is much less

likely than conventional one (see footnote 10).

Folding mechanism of the HIV-1 protease
monomer
Molecular dynamics, all-atom simulations with explicit

treatment of the solvent [24] have provided clear indica-

tion of the stability of the unbound folded monomer, but
www.sciencedirect.com
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Figure 3

The enzymatic kinetics of the protease alone (black curve), of the

protease inhibited with p-LES 83–92 (magenta curve) and of the

protease together with control peptides 61–70 (blue curve) and 9–19

(orange curve) not related to LES. In the insets we show the segments of

the monomer (with the same colors) and the Lineweaver–Burk plot

associated with the protease (filled squares) and the protease

complexed with the p-LES 83–93 at 3 mM (circles), 10 mM (diamonds)

and 20 mM (squares).

12 Modified Gō model dynamic simulations [17��] of the folding of the

HIV-1-PR dimer indicate that p-LES (83–92) may also be able to
are too computationally demanding for studying folding.

For this purpose, use can be made of the Gō model (see

footnote 4). Results of calculations obtained making use

of this model indicate that the group of amino acids 27–35

and 79–87 display relative high f-values (i.e. close to 1),

and are thus essential in the folding of the monomer

[16��].

A Gō model which accounts for some of the diversities

existing among the different amino acids can be devel-

oped by assigning to each native pair an interaction

energy obtained by averaging the force field associated

with the all-atom simulations around the native confor-

mation [17��] (see also [62]). These simulations indicate

that the LES of the monomer comprise residues 23–33,

74–78 and 83–92. The (postcritical) FN forms a spatially

closed unit of a helix (83–92) with sheet (74–78) above

and another beta-strand with sheet (24–34) perpendicular

to these elements11 (see Figure 1a). The LES and the

associated (postcritical) FN introduced above essentially

coincide with the highly protected structural units and the

stabilization core defined in [63��]. Aside from these

results, there exist a number of circumstantial evidences

which testify to the central role played by the groups of

amino acids belonging to the LES and the fact that sites

33, 75, 76, 85 and 89 can be identified as ‘hot’ sites, all

contained in the LES (see Figure 1a and ref. [64]). It is

then possible to identify the peptide displaying the same

sequence as the segment 83–92 of the wildtype protease

as the best candidate to play the role of folding inhibitor

(p-LES (83–92)). This choice was primarily made on the

basis of the fact that the other two LES are either too short

(74–78) to be specific or too little structured (23–33). This

last feature has been studied in detail with the help of all-

atom explicit-solvent molecular dynamics simulations,

which in the case of peptides containing about 10 amino

acids are within the possibilities of present day computing

facilities provided refined techniques like metadynamics,

parallel and solute tempering, etc. are used. The same

computational methods have been applied to the study of

the interaction of the two peptides. Their docking results

from the wrapping of a strongly fluctuating p-LES (23–33)

around a well-structured p-LES (83–92), and is stabilized

by three particular hydrogen bonds [65].

Folding inhibition of HIV-1 Protease:
experimental supports
Gō model simulations of the folding of the HIV-1 pro-

tease monomer in the presence of three copies of p-LES

(83–92), corresponding to concentration of 5 mM,

indicate that the native state equilibrium population

is reduced by as much as a factor of 4 as compared to

the result obtained in the case of the monomer by

itself [17��].
11 In hindsight, similar results could have been obtained making use of

the homogeneous Gō model [16��].

www.sciencedirect.com
Making use of spectrophotometric assays (Figure 3) it has

been measured that the inhibition constant associated

with the peptide p-LES (83–92) is KI = 7.72 � 2.34 mM

[66]. A strong decrease of the beta-sheet content between

these two cases was observed by circular dichroism (from

30% to 14%), indicating that the protein is, to a large

extent, in a non-folded conformation.12 In infected cells,

it was found that the peptide was able to readily cross the

cell membrane and was not toxic to peripheral blood

mononuclear cells [68]. Furthermore, it showed an excel-

lent therapeutic/toxic ratio, with antiviral levels well

below toxic concentration. Its IC50 (50% inhibitory con-

centration) was in the mM range (consistent with the

results of measurements carried out on the enzyme).

Even more promising, p-LES 83–92 inhibited a multi-

drug resistant HIV isolate, and was found to be more

effective than a conventional (active-site centered) drug

(Atazanavir) in a chronically infected cell line. This

difference is likely to be connected with the fact that

misfolded proteins within mammalian cells are usually

conveyed to the proteosome after ubiquitination leading

to their selective degradation, thus transforming a revers-

ible into a no-return process.
prevent, to some extent, dimerization. A systematic study of this possib-

ility has been carried out by means of calculations of the interaction of p-

LES (83–92) with the ensemble of folded and partially folded confor-

mations of the dimer [67].

Current Opinion in Structural Biology 2008, 18:60–66
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Folding inhibition: sequence-based method
From the above discussion, it emerges that the main task to

be carried out in designing a non-conventional inhibitor of

a chosen target protein is that of finding the LES of the

protein. This can be done, for example, as in the case of

HIV-1-PR, through a careful study of its folding mechan-

ism. In the case when the native structure of the target

protein is not available and therefore the LES cannot be

easily identified by simulations, one can scan all segments

of the protein sequence for eventual LES [69]. In fact,

whatever the size of a protein is, the associated LES must

be short, of the order of 5–15 residues long, so as to be able

to become structured in the early stages of the folding

process. Consequently, to individuate the LES of a protein

one has to test the inhibitory properties of a set of peptides

of length 5–15. Each of these peptides has a sequence

identical to a segment of the target protein, and displays a

consistent overlap (20–50%) with the neighboring pep-

tides. The full set of peptides covers the entire protein with

a consistent amount of redundancy. The (few) peptides

that mostly destabilize the protein, inhibiting its activity,

are likely to be the p-LES. This protocol can be imple-

mented equally well computationally or experimentally

(by means of enzymatic or structural assays). Typically, the

number of peptides to be tested is of the order of few tens.

This is indeed a much smaller effort than that used in

pharmaceutical high-throughput screening, where hun-

dreds of thousand molecules are usually tested.

The general method has been applied in silico and in vitro
to hen egg lysozyme [70]. Spectroscophotometric assays

showed that few of the peptides tested, each composed of

10 amino acids, are able to block the enzymatic activity of

the protein with mM efficiency. NMR, circular dichroism

and fluorescence measurements indicate that this inhi-

bition is because of the misfolding of the lysozyme.

Caveats
There are a number of questions that leap to mind from

the above narrative. Some of the points include: (a) How

specific is the p-LES effect with regards to other hom-

ologous proteins? (e.g. in the case of the HIV-1 protease,

to the human aspartic proteases [71]), (b) p-LES can be

marginally soluble since they are often highly hydro-

phobic: how easy is it to be delivered to the cell, achieving

therapeutic levels?, (c) Once delivered, how prone are p-

LES to hydrolization, (d) mutations will eventually occur

even in the most stable sequences. How would one deal

with the eventual insurgence of (non-conventional)

resistance? It is likely that one can find some of the

answers to these questions making use of molecules

mimetic to the p-LES, each representative of one of

the few different FN of the target protein.

Conclusions
Aside from the potential interest concerning the design of

drugs which do not create resistance, the study of folding
Current Opinion in Structural Biology 2008, 18:60–66
inhibitors will also shed light on the mechanism which is

at the basis of the folding of proteins. Concerning the first

point, there are still a number of questions in need of

answer. Only if these answers are found, could the p-LES

strategy of protein inhibition eventually display all its

potential clinical interest.
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