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Abstract

The ability of protein chains to spontaneously form their spatial structures is a long-standing puzzle in molecular biology. Ex-
perimentally measured folding times of single-domain globular proteins range from microseconds to hours: the difference (10–11 
orders of magnitude) is the same as that between the life span of a mosquito and the age of the universe. This review describes 
physical theories of rates of overcoming the free-energy barrier separating the natively folded (N) and unfolded (U) states of protein 
chains in both directions: “U-to-N” and “N-to-U”. In the theory of protein folding rates a special role is played by the point of 
thermodynamic (and kinetic) equilibrium between the native and unfolded state of the chain; here, the theory obtains the simplest 
form. Paradoxically, a theoretical estimate of the folding time is easier to get from consideration of protein unfolding (the “N-to-U” 
transition) rather than folding, because it is easier to outline a good unfolding pathway of any structure than a good folding pathway 
that leads to the stable fold, which is yet unknown to the folding protein chain. And since the rates of direct and reverse reactions are 
equal at the equilibrium point (as follows from the physical “detailed balance” principle), the estimated folding time can be derived 
from the estimated unfolding time. Theoretical analysis of the “N-to-U” transition outlines the range of protein folding rates in a 
good agreement with experiment. Theoretical analysis of folding (the “U-to-N” transition), performed at the level of formation and 
assembly of protein secondary structures, outlines the upper limit of protein folding times (i.e., of the time of search for the most 
stable fold). Both theories come to essentially the same results; this is not a surprise, because they describe overcoming one and 
the same free-energy barrier, although the way to the top of this barrier from the side of the unfolded state is very different from 
the way from the side of the native state; and both theories agree with experiment. In addition, they predict the maximal size of 
protein domains that fold under solely thermodynamic (rather than kinetic) control and explain the observed maximal size of the 
“foldable” protein domains.
© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The ability of proteins to fold spontaneously puzzled protein science for a long time (see, e.g., [16,20,50,55,81,98,
102]). Our previous review published in PLREV [26] encompassed fundamental experimental facts forming a physical 
basis of this process and protein physics in general. An updated and extended overview of these facts one can find in 
a book [30].

It is well known that a protein chain (actually, the chain of a globular protein) can spontaneously fold into its 
unique native 3D structure [2,3]. In doing so, the protein chain has to find its native (and seemingly the most stable) 
fold among zillions of others within only minutes or seconds given for its folding.

Indeed, the number of alternatives is vast [62,63]: it is at least 2100 but may be 3100 or even 10100 (or 100100) for 
a 100-residue chain, because at least 2 (“right” and “wrong”), but more likely 3 (α, β , “coil”) or 10 [76] (or even 100 
[63]) conformations are possible for each residue. Since the chain cannot pass from one conformation to another faster 
than within a picosecond (the time of a thermal vibration), the exhaustive search would take at least ∼2100 picoseconds 
(or 3100 or even 10100 or 100100), that is, ∼1010 (or 1025 or even 1080 or 10180) years. And it looks like the sampling 
has to be really exhaustive, because the protein can “feel” that it has come to the stable structure only when it hits it 
precisely, while even a 1 Å deviation can strongly increase the chain energy in the closely packed globule.

Then, how does the protein choose its native structure among zillions of possible others, asked Levinthal [62,63]
(who first noticed this paradox), and answered: It seems that the protein folding follows some specific pathway, and 
the native fold is simply the end of this pathway, no matter if it is the most stable chain fold or not. In other words, 
Levinthal suggested that the native protein structure is determined by kinetics rather than stability and corresponds to 
the easily accessible local free energy minimum rather than the global one.

However, computer experiments with lattice models of protein chains strongly suggest that the chains fold to 
their stable structure, i.e., that the “native protein structure” is the lowest-energy one, and protein folding is under 
thermodynamic rather than kinetic control [1,83].

Nevertheless, most of hypotheses on protein folding are based on the “kinetic control assumption”.
Ahead of Levinthal, Phillips [73] proposed that the protein folding nucleus is formed near the N-end of the nascent 

protein chain, and the remaining chain wraps around it. However, successful in vitro folding of many single-domain 
proteins and protein domains does not begin from the N-end [48,49,60].

Wetlaufer [100] hypothesized formation of the folding nucleus by adjacent residues of the protein chain. However, 
in vitro experiments show that this is not always so [38,99].

Ptitsyn [77] proposed a model of hierarchical folding, i.e., a stepwise involvement of different interactions and 
formation of different folding intermediate states.

More recently, various “folding funnel” models [4,15,61,98,103] have become popular for illustrating and describ-
ing fast folding processes.

The difficulty of the “kinetics vs. stability” problem is that it hardly can be solved by direct experiment. Indeed, 
suppose that a protein has some structure that is more stable than the native one. How can we find it if the protein does 
not do so itself? Shall we wait for ∼1010 (or even ∼10180) years?

On the other hand, the question as to whether the protein structure is controlled by kinetics or stability arises again 
and again when one has to solve practical problems of protein physics and engineering. For example, in predicting a 
protein’s structure from its sequence, what should we look for? The most stable or the most rapidly folding structure? 
In designing a protein de novo, should we maximize stability of the desired fold, or create a rapid pathway to this 
fold?

However, is there a real contradiction between “the most stable” and the “rapidly folding” structure? Maybe, the 
stable structure automatically forms a focus for the “rapid” folding pathways, and therefore it is automatically capable 
of fast folding?

Before considering these questions, i.e., before considering the kinetic aspects of protein folding, let us recall some 
basic experimental facts concerning protein thermodynamics (as usual, we will consider single-domain proteins only, 
i.e., chains of ∼100 residues). These facts will help us to understand what chains and what folding conditions we have 
to consider. The facts are as follows:

1. The denatured state of proteins, at least that of small proteins treated with a strong denaturant, is often the unfolded 
random coil [93].
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Fig. 1. Schematic illustration of basic models of the energy landscape of protein chains. (a) The “golf course” model of the protein potential energy 
landscape. (b) The “funnel” model of the protein potential energy landscape. The funnel is centered in the lowest-energy (“native”) structure. (c) In 
more detail: the bumpy potential energy landscape of a protein chain. A wide (of many kBTmelt, where kB is Boltzmann’s constant and Tmelt is 
protein melting temperature) energy gap between the global and other energy minima is necessary to provide the “all-or-none” type of decay of 
the stable protein structure. Only two coordinates (q1 and q2) can be shown in the figures, while the protein chain conformation is determined by 
hundreds of coordinates.

2. Protein unfolding is reversible [3]; moreover, the denatured and native states of a protein can be in a kinetic 
equilibrium [12]; and there is an “all-or-none” transition between them [76]. The latter means that only two 
states of the protein molecule, native and denatured, are present (close to the mid-point of the folding–unfolding 
equilibrium) in a visible quantity, while all others, “semi-native” or misfolded, are virtually absent. (Notes: (i) the 
“all-or-none” transition makes the protein function reliable: like a light bulb, the protein either works or not; 
(ii) the physical theory shows that such a transition requires the amino acid sequence that provides a large “energy 
gap” between the most stable structure and the bulk of misfolded ones [39,51,83,87,88].)

3. Even under normal physiological conditions the native (i.e., the lowest-energy) state of a protein is only more 
stable than its unfolded (i.e., the highest-entropy) state by a few kilocalories per mole [76] (and these two states 
have equal stability at mid-transition, naturally).

(For the below theoretical analysis, it is essential to note that (i) as is customary in the literature on this subject, 
the term “entropy” as applied to protein folding means only conformational entropy of the chain without solvent 
entropy; (ii) accordingly, the term “energy” actually implies “free energy of interactions” (often called the “mean 
force potential”), so that hydrophobic and other solvent-mediated forces, with all their solvent entropy [93], come 
within “energy”. This terminology is commonly used to concentrate on the main problem of sampling the protein 
chain conformations.)

The above mentioned “all-or-none” transition means that the native (N) and denatured (U) states are separated by 
a high free-energy barrier. It is the height of this barrier that limits kinetics of this transition, and just this height is to 
be estimated to solve the Levinthal’s paradox.

However, to begin with, it is not out of place considering whether the “Levinthal’s paradox” is a paradox indeed. 
Bryngelson and Wolynes [7] mentioned that this “paradox” is based on the absolutely flat (and therefore unrealistic) 
“golf course” model of the protein potential energy surface (Fig. 1a), and somewhat later Leopold et al. [61], following 
the line of Go and Abe [47], considered more realistic (tilted and biased to the protein’s native structure) energy 
surfaces and introduced the “folding funnels” (Fig. 1b), which seemingly eliminate the “paradox” at all.

It’s not as simple as that, though. . .
The problem of huge sampling does exist even for realistic energy surfaces. It has been mathematically proven that, 

despite the folding funnels and all that, finding the lowest free-energy conformation of a protein chain is the so-called 
“NP-hard” problem [70,96], which, loosely speaking, requires an exponentially large time to be solved (by a folding 
chain or by a man).

Anyhow, various “folding funnel” models became popular for explaining and illustrating protein folding [58,71,
102,103]. In the funnel, the lowest-energy structure (formed, thus, by a set of most powerful interactions) is the center 
surrounded by higher-energy structures containing only a part of these interactions. The “energy funnels” are not 
perfectly smooth due to some “frustrations”, i.e., contradictions between optimal interactions for different links of 
a heteropolymer forming the protein globule, but a stable protein structure is distinguished by minimal frustrations 
(that is, most of its elements have enhanced stability) [6–8,31]. Anyhow, the “energy funnel” can direct movement 
towards the lowest-energy structure, which seems to help the protein chains to avoid the “Levinthal’s” sampling of all 
conformations.
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However, it can be shown that the energy funnels per se do not solve the Levinthal’s paradox. Strict analysis [5] of 
the straightforwardly presented funnel models [4,105] shows that close to the mid-point of the folding–unfolding 
equilibrium they cannot simultaneously explain the both major features observed in protein folding: (i) its non-
astronomical time, and (ii) the “all-or-none” transition, i.e., co-existence of native and unfolded protein molecules 
during the folding process. The latter requires a “volcano-shaped” free-energy folding landscape (see Fig. 5 be-
low), the uphill rim of which creates an enormously high free-energy barrier at the folding pathway in the case of 
non-nucleated structuration assumed by [4,105] (and earlier considered by [85]; see discussion of the free-energy 
landscapes below).

By the way, the stepwise mechanism of protein folding [77], taken per se, also cannot [21] simultaneously ex-
plain these two major features observed in protein folding. The key folding-accelerating feature of the “stepwise 
mechanism” is that the most stable structures formed at the first its step serve as building blocks for the next step of 
folding, and then the most stable structures obtained at this second step serve as the building blocks for the next step, 
etc. In principle, this can help to avoid sampling of all the huge conformational space. But such a mechanism implies 
that the once found structures preserve their form (and do not decay back) until the next step, which means that they 
must be thermodynamically more stable than their more disordered precursors. The structures formed at the next step 
also must be thermodynamically more stable than their precursors, etc. Thus, such a mechanism can work only when 
the native structure is much more stable than the disordered one, and it cannot work when protein folding occurs near 
the point of thermodynamic equilibrium between the native and disordered states of the protein.

Thus, neither stepwise nor simple funnel mechanisms solve the Levinthal’s problem, although they give a hint as 
to what accelerates protein folding.

The basic solution of the paradox is provided by special nucleation funnels [23,24] considering the separation of 
the unfolded and native phases within the folding chain (called the “capillarity theory” [101]).

It will be described in the next part of this review.

2. Physical estimate of the height of free-energy barrier between the folded and unfolded states: view at the 
barrier from the side of the folded state

To solve the “Levinthal’s paradox” and to show that the most stable chain fold can be found within a reasonable 
time, we could, to a first approximation, consider only the rate of the “all-or-none” transition between the coil and 
the most stable structure. And we may consider this transition only for the crucial case when the most stable fold 
is as stable as (or only a little more stable than) the coil, with all other states of the chain being unstable, i.e., close 
to the “all-or-none” transition midpoint. Here the analysis can be made in the simplest form, without accounting for 
accumulating intermediates. True, the maximum folding rate is achieved when the native fold is considerably more 
stable than the coil [12,19], and then observable intermediates often arise; but let us consider not the fastest but the 
simplest case. . .

Since the “all-or-none” transition requires a large energy gap between the most stable structure and misfolded ones 
(Fig. 1c), we will assume that the considered amino acid sequence provides such a gap. Our aim is to estimate the rate 
of the “all-or-none” transition and to prove (if possible) that the most stable structure of a normal size domain (∼100 
residues) can fold within minutes or seconds (and sometimes even much faster).

To prove that the most stable chain structure is capable of rapid folding, it is sufficient to prove that at least one
rapid folding pathway (i.e., passing the low-free-energy barrier) leads to this structure. Additional pathways can only 
accelerate the folding since the rates of parallel reactions are additive. And we can avoid considering folding of other, 
non-native structures. They have high energy because of the “energy gap”, and, near the point of the “all-or-none” 
transition between the most stable globule and the unfolded chain, they are unstable even taken together, and therefore, 
they cannot serve as “folding traps” that absorb folding chains. (One can imagine water leaking from a full pool to 
an empty one through cracks in the wall between them: when the cracks cannot absorb all the water, each additional 
crack accelerates filling of the empty pool.)

To be rapid, the pathway must consist of not too many steps, and most importantly, it must not require overcoming 
of a too high free energy barrier.

An L-residue chain can, in principle, attain its lowest-energy fold in L steps, each adding one fixed residue to 
the growing structure (Fig. 2). If the free energy went downhill along the entire pathway, a 100-residue chain would 



60 A.V. Finkelstein et al. / Physics of Life Reviews 21 (2017) 56–71
Fig. 2. A scheme [24] of a sequential folding pathway of some globular structure (it is the sequential unfolding pathway of this structure passed 
in the opposite direction). At each step of sequential folding one residue leaves the coil and takes its final position in the structure. The folded 
part (shaded) of semi-folded intermediates on the optimal (low-free-energy) pathway is compact (having a small boundary between the folded and 
unfolded phases). The bold lines and strips show the backbone fixed in the already folded part; fixed side chains are not shown for the sake of 
simplicity (the volume that they occupy is shaded). The broken line shows the yet unfolded chain.

fold in ∼100–1000 ns, since the growth of a structure (e.g., an α-helix) by one residue is known to take a few 
nanoseconds [104].

Protein folding takes minutes or seconds or even milliseconds rather than a fraction of a microsecond because of 
the free energy barrier: most of the folding time is spent on climbing up this barrier and falling back, rather than on 
moving along the folding pathway.

The key role in this process is played by the transition state [20], i.e., the least stable (“barrier”) state on the 
reaction pathway. According to the conventional transition state theory [17,18,75], the time of the multi-step process 
of overcoming the barrier is estimated as

TIME ∼ τ × exp
(+�F #/RT

)
(1)

where τ is the time of one elementary step, and �F # is the height of the free energy barrier.
As for �F #, this is our main question: how high is the free energy barrier F # on the pathway leading to the 

lowest-energy structure? Formation of this structure decreases both the chain entropy (because of an increase in the 
chain’s ordering) and its energy (due to formation of contacts stabilizing the lowest-energy fold). The former increases 
and the latter decreases free energy of the chain.

If fold-stabilizing contacts start to arise only when the chain comes very close to its final structure (i.e., if the chain 
has to lose almost all its entropy before the energy starts to decrease), the initial free energy increase would form a 
very high free energy barrier (proportional to the total chain entropy loss). The Levinthal’s paradox claiming that the 
lowest-energy fold cannot be found within any reasonable time since this involves exhaustive sampling of all chain 
conformations originates exactly from this picture (loss of the entire entropy before the energy gain).

However, this paradox can be avoided if there is a folding pathway where the entropy decrease is immediately or 
nearly immediately compensated for by the energy decrease [47].

Let us consider a sequential [100] folding pathway (Fig. 2). More specifically, we will consider a process at each 
step of which one residue leaves the coil and takes its final position in the lowest-energy 3D structure. True, this 
pathway may look a bit artificial, but actually the outlined pathway is exactly the pathway that one expects to see 
watching the movie on unfolding, but in the opposite direction.

According to the well-known in physics detailed balance law [59], the direct and reverse reactions follow the same 
pathway and have equal rates when the both end-states have equal stability. (This law follows from the second law 
of thermodynamics. It proved by contradiction: if, in thermodynamic equilibrium ambient conditions, the pathway 
A → 1 → B is faster than A → 2 → B for the A → B reaction, while the pathway A ← 2 ← B is faster than A ←
1 ← B for the reciprocal A ← B reaction under the same conditions, one obtains a permanent flow A

→ 1 →
← 2 ← B, 

which contradicts to the second law of thermodynamics.)
Thus, one can use the detailed balance law to find the transition state for folding by finding the optimal transition 

state for unfolding! An advantage of analysis of the unfolding pathway is that it is much easier: for any final globular 
structure, one can easily figure out its sequential unfolding passing through the least unstable semi-unfolded states, 
i.e., those where the compact globular phase is separated from the unfolded one (Fig. 2) [23,24,40,46].

(In this connection, it is not out of place mentioning that, odd enough, protein unfolding, in contrast to folding, has 
never been treated as a “puzzle”, although it is well known for a long time that these two states, unfolded and folded, 
can be in kinetic equilibrium! Despite all that, nobody asked a question complementary to Levithal’s, that is, how the 
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Fig. 3. Schematic illustration of sequential folding/unfolding with compact (a) and non-compact (b) semi-folded intermediates and the change of 
energy (c), entropy (d) and free energy (e) along these sequential folding/unfolding pathways close to the point of thermodynamic equilibrium 
between the coil (n = 0) and the final structure (n = L: all the L chain residues are folded). The full energy and entropy changes, �E(L) and 
�S(L), are approximately proportional to L. The straight blue lines show the linear (proportional to the number of already folded residues n) 
parts of �E(n) and �S(n). The non-linear parts of �E(n) and �S(n) result mainly from the surface of the folded part of the molecule (solid 
lines: for a pathway with compact intermediate structures; dotted lines: for that with non-compact intermediates). The maximal deviations of the 
�E(n) and �S(n) values from linear dependences are proportional to only L2/3. As a result, �F(n) = �E(n) − T �S(n) also deviates from 
the linear dependence (straight blue line) by a value of only ∼L2/3 for compact intermediate structures (while for non-compact intermediates, the 
deviations are greater). Thus, at the equilibrium point (where �F(0) = �F(L)), the maximal on this pathway free energy excess �F # over the 
blue free energy baseline (the barrier) is also proportional to only L2/3 for compact intermediate structures. The change �F(n) on the pathway 
to other structures looks similar (see Inset in panel (e)), but these pathways can be neglected, because all these structures are unstable with 
�F(n = 0) < �F(L) in the presence of the energy gap and the “all-or-none” transition between the unfolded and the most stable globular state of 
the chain. Adapted from [23,24]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

protein gains a huge energy required for unfolding. . . This shows that it is easier to imagine how to unfold any protein 
structure then how to fold it.)

Thus, let us consider the energy change �E, the entropy change �S and the resultant free energy change �F =
�E − T �S along the sequential (Fig. 2) folding pathway (reconstructed from the way of sequential unfolding).

When a piece of the final globule grows sequentially, the interactions that stabilize its final fold are restored se-
quentially as well. If the folded piece remains compact, as in Figs. 2, 3a, the number of restored interactions grows 
(and their total energy decreases, see Fig. 3c) approximately in proportion to the number n of residues that have taken 
their final positions.

Approximately in proportion – but with one significant deviation: At the beginning of folding, the energy decrease 
is a little slower, since the contact of a newly joined residue with the surface of a small globule is, on average, 
smaller than its contact with the surface of a large globule. This results in a non-linear surface term (the surface being 
proportional to ≈n2/3) in the energy �E of the growing globule. Thus, the maximal deviation from the linear energy 
decrease is proportional to L2/3, while the total energy decrease is proportional to the total number L of residues. The 
deviation is still greater, see Fig. 3c, if the folded parts do not form a compact piece, as in Fig. 3b.

The entropy decrease is also approximately proportional to the number n of residues that have taken their final 
positions (Fig. 3d). At the beginning of folding, though, the entropy decrease can be a little faster owing to disordered 
but closed loops protruding from the growing globule (Figs. 2 and 4). The maximal number of such loops is propor-
tional to the interface between the folded and unfolded phases, and the free energy of a loop is known [36,56] to have 
a very slow, logarithmic dependence on its length. This again results in a non-linear surface term in the entropy �S

of the growing globule. The overall entropy decrease is proportional to L again, and the maximal deviation from the 
linear entropy decrease again is proportional to L2/3 (actually, it is proportional to ∼L2/3 × ln(L1/3) at the most, but 
the multiplier ln(L1/3) is insignificant, about 1–2 when L is 10–1000) [23]; see also the later rigorous mathematical 
papers [37,91].

Here, it is not out of place mentioning that a separation of the folded and unfolded phases in the transition state of 
protein folding is very clearly seen in computer simulations of protein folding (see, e.g., [89]).
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Fig. 4. (a) A compact semi-folded intermediate with protruding unfolded loops. Its growth corresponds to a shift of the boundary between the 
folded (globular) and unfolded parts. Successful folding requires correct knotting of loops: the structure with incorrect knotting (b) cannot change 
directly to the correct final structure: first it has to unfold and achieve the correct knotting. However, since a chain of ∼100 residues can only form 
one or two knots, the search for correct knotting can only slow down the folding two-fold or at most four-fold; thus, the search for correct chain 
knotting does not limit the folding rate of normal size protein chains. Adapted from [25].

Fig. 5. This purely illustrative drawing shows how entropy converts the energy funnel (illustrated in Fig. 1b) into a “volcano-shaped” (as it is called 
now [82]) free-energy folding landscape with free-energy barriers (Fig. 3e) on each pathway leading from an unfolded conformation to the native 
fold. Any pathway from the unfolded state to the native one first goes uphill, and only then, from the barrier (i.e., crater edge), descends into the 
“free-energy funnel”. The smooth free energy landscape corresponds to compact semi-folded intermediate structures (shown in Fig. 3a), the rocks 
(denoted by dotted lines) present a landscape including non-compact semi-folded intermediate structures (shown in Fig. 3b). More accurate but 
less beautiful scheme of a free-energy landscape is shown in Fig. 2 in [40].

Both linear and surface constituents of �S and �E enter the free energy �F = �E − T �S of the growing (or 
unfolding) globule. However, when the final globule is in thermodynamic equilibrium with the coil, the large linear 
terms annihilate each other in the difference �E −T �S (since �F = 0 both in the coil (i.e., at n = 0) and in the final 
globule (at n = L)), and only the surface terms remain: �F(n) would be zero all along the pathway in the absence of 
surface terms.

Thus, the free energy barrier (Figs. 3e, 5) on a sequential folding pathway with compact semi-folded structures 
depends only on relatively small globule surface effects, and its height is proportional not to L (as Levinthal’s estimate 
implies), but to L2/3 only.

In the most simplified form (for details, see [23–25,46]), free energy of the barrier is estimated as follows.
The fastest folding pathway is that having the lowest free energy barrier; the barrier, on a given pathway, corre-

sponds to the intermediate with the highest free energy, that is, the maximal for this pathway interface between the 
folded and unfolded phases; this interface contains about L2/3 residues.

The energy constituent �E# of the barrier free energy results from interactions lost by the interface residues; it is 
about

L2/3 · ε1
/

4 (2)

where ε ≈ 1.3 kcal/mol ≈ 2kBTmel is the average heat of protein melting per residue [76] (this is the first empirical 
parameter used by the theory), and ≈1

/
4 is the fraction of interactions lost by an interface residue. Thus,

�E#//kBTmel ≈ 0.5L2/3 (2a)

The entropy constituent �S# of the barrier free energy is caused by entropy loss in closed loops protruding from 
the globular into the unfolded phase (see Fig. 4).

The upper limit of �S# is zero (when the interface contains no such loops).
The lower limit of �S# is about

(
�S#)

lower = 1
/

6L2/3 · [−5
/

2kB ln
(
3L1/3)], (3)

where 1
/

6L2/3 corresponds to the maximal number of closed loops protruding from the optimal (minimally covered 
by loops) globule/coil interface (actually, this is the average number for one globule cross section (Fig. 4), since the 
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Fig. 6. Main panel: Experimentally measured in vitro folding rate constants in water (under approximately “biological” conditions) and at mid-
transition for 107 single-domain proteins (or separate domains) without SS bonds and covalently bound ligands (though the rates for proteins with 
and without SS bonds are principally the same [43]). Triangle: the region allowed by physics; its golden part (with the bronze belt) corresponds 
to biologically-reasonable folding times (≤10 min); the larger folding times (i.e., the smaller folding rates) are observed (for some proteins) only 
under mid-transition, i.e., non-biological conditions. Yellow dashed line limits the area allowed only for oblate (1:2) and oblong (2:1) globules at 
mid-transition; bronze dashed line means the same for “biologically normal” conditions. L is the number of amino acid residues in the protein 
chain under study. �F is the free energy difference between the native and unfolded states of the chain. Adapted from [46]. Supplementary panels: 
Typical forms of “chevron plots” for the folding/unfolding kinetics of proteins that fold without and with folding intermediates (after [19]).

interface residue can have 6 directions – 4 along the surface, 1 inside, and only 1 outside; and the folding-involved 
interface must be covered by a minimal, never exceeding the average, number of loops). 3L1/3 ≡ (L/2)/(1

/
6L2/3)

is the average number of residues in such a loop (equal to the number of unfolded residues divided by the number 
of loops), and −5

/
2kB ln(3L1/3) is entropy lost by such a closed loop (the interior parts of which do not penetrate 

inside the globule; this changes the conventional Flory’s coefficient, 3
/

2, to 5
/

2). Having L ∼ 100 (actually, this 
approximation is good for the whole range of L = 10–1000), we obtain

(
�S#)

lower ≈ −kBL2/3 (3a)

As a result, the time of both folding and unfolding of the most stable chain structure grows with the number of 
chain residues L not “according to Levinthal” (i.e., not as 2L, or 10L, or any exponent of L), but, in mid-transition 
conditions, as

TIME ∼ τ × exp
[
(1 ± 0.5)L2/3] (4)

where τ ≈ 10 ns [104] (this is the second and the last empirical parameter used in the theory).
The physical reason for this “non-Levinthal” estimate is that (i) during folding, the entropy decrease is almost 

immediately and almost completely compensated for by an energy decrease along the sequential folding pathway 
(and, likewise, the energy increase is almost immediately and almost completely compensated for by an entropy 
increase along the same sequential unfolding pathway), and (ii) the free energy results only from surface effects 
which are relatively weak.

The observed protein folding times span (Fig. 6) 11 orders of magnitude (which is akin to the difference between 
the life span of a mosquito and the age of the universe). The range of folding times at mid-transition (where �F = 0) 
is from 10 ns × exp(0.5L2/3) to 10 ns × exp(1.5L2/3), in accordance with the estimate obtained. Under more physi-
ological conditions (“in water”, where �F < 0), L2/3 is replaced by L2/3 + 0.4�F/RT (see Discussion), but in all 
other respects the range remains the same.

It is noteworthy that the outlined sequential folding pathways do not require any rearrangement of the dense glob-
ular part (which could take a lot of time): all rearrangements occur in the coil.

Anyhow, the obtained eq. (4) illustrated in Fig. 6 shows that a chain of L � 80–90 residues will find its most stable 
fold within minutes (or faster) even under “non-biological” mid-transition conditions, where folding is known [12,19]
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to be the slowest. Native structures of such relatively small proteins are under thermodynamic control: they are the 
most stable among all structures of these chains. Native structures of larger proteins (of ≈90–400 residues) are, in 
addition, under a “structural control”, in a sense that too entangled folds of their long chains cannot be achieved within 
days or weeks even if they are thermodynamically stable; and indeed, greatly entangled folds of long protein chains 
have been never observed [46]: they seem to be excluded from the repertoire of existing protein structures. This also 
explains why larger proteins should be far from spherical or consist (according to the “divide and rule” principle) of 
separately folding domains: otherwise, chains of more than 400 residues would fold too slowly. This is a “structural 
control” again. Its effect, in some sense, resembles that of Levinthal’s “kinetic control”, though at another level and 
only for large proteins. The above estimates (80–90 and ≈400 residues) are somewhat elevated when the native fold 
free energy �F is lower than that of the unfolded chain (see below), but essentially they remain the same [46].

One thing is left to be said here:
The “quasi-Levinthal” search over intermediates with different chain knotting (Fig. 4) can, in principle, be a rate-

limiting factor, since knotting cannot be changed without a decay of the globular part. However, since the computer 
experiments show that one knot involves about a hundred residues, the search for correct knotting can only be rate-
limiting for extremely long chains [25] which cannot fold within a reasonable time (according to eq. (4)) in any case.

It should be added that above we focused on stability (or rather, instability) of transition states and paid virtually no 
attention to folding intermediates, because they – in a contrast to transition states – do not determine the rate of folding 
of native structures [19,20]. We also did not pay attention to structures of folding nuclei, being interested in their size 
(and, the main, their instability) only. However, there is ample evidence that transition states are well-organized and 
possess specific structural features in some cases (see [19,20,45,89]), and are poorly organized (“diffused nuclei”) in 
the others (see [34,35,50] and literature therein). The latter, together with the observed sensitivity of positions and 
shapes of the folding nuclei to mutations, led to a conclusion that a “nucleus” is an ensemble of structures rather than 
a single structure, and that the folding nucleus and folding pathway are much less resistant to amino acid sequence 
mutations and change of ambient conditions than the native protein structure.

3. Estimating dependence of the sampling volume on protein size: view at the barrier from the side of 
unfolded state

The above given estimate of the folding time is based on consideration of protein unfolding rather than folding. 
We have considered unfolding because it is easier to outline a good unfolding pathway of any structure than a good 
folding pathway leading to the lowest-energy fold, while the free energy barrier at both pathways is the same. In other 
words, we considered the free energy barrier between the unfolded and folded states (Figs. 4, 5) with the focus on 
its unfolding side (connected with energy increase on the pathway from the volcano throat to the crater edge) and 
did not consider its folding side (connected with entropy loss on the pathway from the unfolded state to the crater 
edge). Since the rates of direct and reverse reactions are equal under mid-transition conditions (as follows from the 
physical “detailed balance” principle), here the “unfolding” and “folding” sides of the barrier are of equal heights, and 
therefore, examination of only one (“unfolding”) side is sufficient to estimate the barrier height.

However, a complete analysis of folding urges us to look at the barrier from its folding (connected with entropy 
loss) side, which is most interesting for the audience, and obtain the second view on the protein folding puzzle.

To analyze folding, we have to analyze sampling of conformations of the protein chain.
The total volume of the protein conformation space estimated at the level of amino acid residues by Levinthal [63]

is huge indeed: as many as 100100 conformations for a 100-residue chain.
However, should the chain sample all these conformations in search for its most stable fold? No: the conformation 

space is covered by local energy minima, each surrounded by a local energy funnel (Fig. 1b) providing fast downhill 
decent to this local minimum.

Actually, the folding protein chain has to sample not all its possible conformations, but only various ways of 
packing the chain in the compact protein globule.

Therefore, to estimate the actual volume of sampling, one has to estimate the number of local energy minima (and 
also the time taken by jumping from one energy minimum to another). In some sense, this is similar to the idea to 
enumerate possible “topomers” that a protein chain can form [14,65], but our aim now is not to calculate the protein 
folding rate, but to estimate its lower limit only (which is very different from the somewhat contradictive [97] theory 
of the native-like topomer search by simulation).
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Fig. 7. A scheme of estimate of the conformation space volume at the level of secondary structure assembly. Adapted from Supplement to [27].

An overview of protein structures shows that interactions occurring in the chains are mainly connected with sec-
ondary structures [9,29,64]. Thus, a question arises as to how large the total number of energy minima is, if considered 
at the level of formation and assembly of secondary structures into a globule, that is, at the level considered by Ptitsyn 
[77] in his model of stepwise protein folding.

It turns out that this number is by many orders of magnitude smaller than that of conformations of amino acid 
residues [27]: the latter, according to Levinthal’s estimate, scales up as something like 100L or 10L or 3L with the 
number L of residues in the chain, while the former scales up not faster (see below) than ∼LN with L and the number 
N of the secondary structure elements. N is much less than L, and this is the main reason for the drastic decrease of 
the conformation space.

The estimate LN was obtained as follows (see Fig. 7).
The number of architectures (i.e., types of dense stacks of secondary structures) is small (cf. [9,64,69]), usually 

∼10 or less for a given set of secondary structures (Fig. 7a), since the architectures are packings of a few secondary 
structure layers (each containing several secondary structures), and therefore combinatorics of the layers is very small 
as compared to combinatorics of much more numerous secondary structure elements, which is described below.

The maximal number of packings, i.e., all combinations of positions of N elements in the given protein architecture 
is shown in Fig. 7b.

The maximal number of topologies, i.e., all combinations of directions of these elements cannot exceed 2N

(Fig. 7c).
Transverse shifts and tilts of an element within each dense packing are prohibited (Fig. 7d).
Shifts and turns of secondary structure elements within a dense packing are coupled (this is shown in Fig. 7e using 

a β-sheet as the best illustrative example, but this is also true for α-helices – remember “knobs in the holes” close 
packings by Crick [13]); as a result, each α or β element can have about L/N (that is, about the element’s mean 
length) possible shift/turns in the globule formed by N secondary structures of the L-residue chain.

All this limits the number of energy minima in the conformational space to ∼10 × (L/N)N × 2N × N ! conforma-
tions; this (using Stirling’s approximation N ! ∼ (N/e)N ) gives

NUMBER of energy minima to be sampled ∼ LN (5)

in the main term (if L 	 N 	 1) [27,28].
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This number can be reduced by symmetry of the globule; also, no α-helix can take the place of a β-strand without 
rearrangement of other elements, and vice versa, because the β-strand needs a partner to form hydrogen bonds, while 
the α-helix avoids such a partnership. Further, short or crossing loops between secondary structures can prevent these 
from taking arbitrary positions and directions in the globule, etc. [79]. However, this reduction is not important to us, 
because our aim now is to estimate the upper limit of the number of conformations.

Here, a question may arise as to how the chain knows where to form a secondary structure and what secondary 
structure is to be formed there. The answer is as follows. First of all, our aim now is not to model the folding process, 
but to estimate the number of conformations at the level of formation and assembly of secondary structures into 
a globule. Second, most of secondary structures are determined by local amino acid sequences [10,32,57,77,78,80,
84], although some of them depend on their environment in the globule. Third, the optimal position of ends of the 
secondary structures in each ensemble can be rapidly found by descent in energy funnels, independent for each side of 
packing of the secondary structures. Fourthly, the choice “α or β” for all N secondary structure elements multiplies 
the estimate given by eq. (5) by 2N at most, but in fact much less, because intrusion of an α-helix into a β-sheet (or 
of a β-strand between α-helices) is so energetically unfavorable, that it is never observed in proteins [29,30]. And, 
at last, the choice of “to be or not to be” for a secondary structure element adds only 1 state to the number L/N

of the possible shift/turn states of this element (already taken into account), which is not significant (see Supporting 
Information to [27]). Thus, the number of energy minima to be sampled can be, rather roughly, estimated as LN .

In a compact globule of not too small size, the length of a secondary structure element should be proportional to the 
globule’s diameter, i.e., to ∼L1/3. More specifically, the globule’s volume is about 150 Å

3 × L (and thus its diameter 
is ≈5 Å × L1/3), while the shift per residue is about 1.5 Å in a helix and 3 Å in an extended strand [29]. Therefore, 
a helix consists of ≈3L1/3 residues, while a β-strand, as well as a loop, comprises ≈1.5L1/3 residues. Thus,

NUMBER of “secondary structure + loop” elements N ≈ L2/3/4.5 − L2/3/3, (6)

and the value LN should be expected to come within the range

∼ LL2/3/4.5 ≡ exp
([

ln(L)/4.5
] × L2/3)− ∼ LL2/3/3 ≡ exp

([
ln(L)/3

] × L2/3) (7)

Analogous scaling of LN looks like that obtained by [37,91] from mathematical consideration of the problem 
complexity.

One can see that, since ln(L)/4.5 ≈ 1 and ln(L)/3 ≈ 1.5 for L ≈ 80–90 residues, the above obtained limits are 
close to the upper limit outlined by eq. (4).

On the other hand, the value of L/N (i.e., the number of residues per secondary structure element plus accom-
panying loops) is 15 ± 5, according to protein statistics [82]; this, eventually, results in an estimate of LN , which is 
numerically more or less close to the above given values.

Taking, from experiments on folding of the smallest proteins [42,66,67], a few microseconds as a rough estimate 
of the time necessary to sample one conformation and the value L/N = 15 ± 5 from protein statistics, we see that 
the time theoretically needed to sample the whole conformation space at the level of secondary structure formation 
and assembly closely approaches (Fig. 8) the upper limit of experimental folding times (that is, the lower limit of 
experimental folding rates) observed for small (L � 80–90 residues) proteins. It is also close to the upper limit of the 
folding time estimate given by eq. (4), earlier obtained from consideration of unfolding and illustrated in Fig. 6; note 
that folding of these small proteins is, according to eq. (4), under complete thermodynamic control.

The above consideration does not mean, of course, that a folding protein samples the entire conformation space at 
the level of secondary structure formation and packings (though a chain of 80–90 residues or less can do this within 
minutes (or faster), as Fig. 8 shows for some proteins). It means only that the native fold-leading “energy funnel”, 
working at the level of secondary structures, has to accelerate folding by several orders of magnitude (as Fig. 8 shows 
for the majority of proteins), rather than by many tens or hundreds of orders, which would have been the case if the 
funnel were to start working from the level of amino acid residues (cf. with the theory of searching for topomers 
[14,65]). Fig. 8 shows that “funnel-due” acceleration is pronounced for chains of >100 residues, but even then the 
main work is done by secondary structures.

Bird’s-eye view of the obtained estimates (4)–(7) of the number of chain conformations (or rather, of all kinds 
of chain packing in a compact globule), which have to be enumerated when searching for the most stable protein 
structure is as follows. This number scales, in the main term, in proportion to the globule’s surface, i.e., to the number 
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Fig. 8. Sampling rate and folding rate. Folding rates (circles and squares) are shown for proteins experimentally studied at mid-transition (i.e., at 
equal stability of their folded and unfolded states); the golden/white triangle shows the predicted (from consideration of unfolding!) range of these 
rates (cf. Fig. 6). The netted shading shows a theoretical estimate of the minimal rate of exhaustive sampling, at folding, of all possible packings of 
protein secondary elements (helices and strands). The maximal “Levinthal-like” sampling rate (1012 s−1/3L , allowing for 3 possible states: α, β , 
coil) is shown by the double dashed line; the lines for “Levinthal-like” sampling rates with 10 or 100 possible states of a residue would have been 
much below (in the dark-gray zone). Adapted from [22].

of surface residues or to the number of the secondary structures N , which are both proportional to L2/3. The physical 
reason is that in a dense globule all independent degrees of freedom are connected only with its surface, because 
the globule’s density prohibits independent rearrangements of residues in its interior [86,88], just like the secondary 
structure prohibits independent movements of residue backbones inside it. From this point of view, the used secondary 
structure elements are not necessary for estimating the scaling law (estimates by Fu and Wang [37] and Steinhofel et 
al. [91], as well as our estimates [23,24,40,46], did not use secondary structures), though these structures do form the 
protein core, and they are useful for refinement of the principal law.

4. Discussion and conclusion

We have viewed the pathways through the “volcano-shaped” (illustrated in Fig. 5) folding landscape both from 
outside, i.e., from the “volcano” foot, and from inside, that is, from its crater. In this way we investigated the free 
energy barrier separating the folded and unfolded states of a protein chain from its both sides. We have passed it there 
and back again and obtained two views on the protein folding puzzle; these two views solve the Levinthal’s paradox.

The barrier side facing the folded state is easier for investigation because it is easier to outline a reasonable 
unfolding pathway from any given fold than a good folding pathway to a fold that is still unknown for the chain. 
The view from inside of the folding funnel gave us an estimate of the range of unfolding times, and then we used the 
detailed balance principle to find the folding time.

The view from outside of the folding funnel gave us only the upper limit of the folding time.
It is worth mentioning that the unfolding-based estimate gives both the upper and lower estimates of the folding 

time, while the folding-based estimate gives its upper limit only.
The same scheme can be applicable to formation of the native protein structure not only from the coil (which we 

used in this study for simplicity) but also from the molten globule or from another intermediate. However, for these 
scenarios, all the estimates would be much more cumbersome due to more complicated nature of the denatured state of 
the protein, while these processes do not demonstrate (in experiment, see Fig. 6) any drastic advantage in the folding 
rate. Therefore, we now will not go beyond the simplest case of the coil-to-native globule transition.

It is not out of place mentioning that something similar to the Levinthal’s problem must exist in crystallization 
(which resembles protein folding, because atoms of a few sorts have to acquire a particular conformation among 
plentiful others in “yet unknown” for them crystal); though, to our best knowledge, it did not attract there as much 
attention as in the protein science (cf. [90,95]).
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A few more things remain to be said:
1. Our estimate of the number of energy minima to be sampled, eqs. (5)–(6), is the upper estimate, which does not 

take into account that some of these minima can have very high energy and therefore will be practically inaccessible 
for the folding protein chain.

2. This estimate of the number of energy minima is independent of stability of the native state under physiological 
conditions. The influence of this stability is considered below.

3. Our basic estimate of the folding time, eq. (4), refers to �F = 0, i.e., to the point of equilibrium between the 
unfolded and native states – here the observed folding time is at a maximum and can exceed by orders of magnitude 
the folding time under native conditions [19].

How will the folding time change when the native state becomes somewhat more stable than the coil (that is, 
�F < 0)? In accordance with experiment (see [19]), the theoretical analysis [24,26,29,30] shows that as long as 
−�F is small, about a few kBT , so that no stable intermediates arise, the folding time decreases with increasing 
stability, and, theoretically, it can be estimated [46] as

TIME ∼ τ × exp
[
(1 ± 0.5) × (

L2/3 + 0.4 × �F/RT
)]; (8)

the multiplier 0.4 corresponds to the approximate theoretical estimate of the average fraction of a chain involved in 
the folding nucleus, so that 0.4 × �F is the approximate change of the nucleus free energy. (The overview of other 
details of folding nuclei is out of the scope of this paper; one can find them in [19,26,29,30,40].) Equation (8) gives a 
unified approximate estimate of folding rates occurring under various conditions (see Fig. 6).

For the case of a very high native fold stability (−�F 	 kBT ), another but similar to eq. (4) scaling law 
(ln(TIME) ∼ L1/2) was obtained [92]. Then protein folding is the fastest, because it essentially goes “downhill” 
in energy all the way; but the “downhill slope” has (due to protein heterogeneity) random bumps, whose energy is 
proportional to L1/2. However, numerical experiments with lattice protein chains have shown [52,88] that, at the 
temperature providing the fastest folding, the folding time grows with the chain length as ln(TIME) ∼ A × ln(L), 
where the coefficient A equals to 6 for chains with “random” sequences and 4 for sequences selected to fold most 
rapidly (i.e., for chains having a large energy gap between the most stable fold and other ones). This emphasizes once 
again the dependence of the folding rate on experimental conditions and on the difference in stability between the 
lowest-energy fold and its competitors [39,101].

4. Here, it is worth mentioning that some, quite rare proteins are “metamorphic” [68]: they are observed in two 
or more distinct folds. Of interest for us are those very few in number (e.g., serpin) that first obtain some “native”, 
that is, working structure, work in the cell or a test-tube for an hour or so, and then acquire another, non-working but 
more stable structure [94]. Significantly, this transition is not connected with a change in the protein’s environment 
(aggregation, as in amyloids, or formation of some complexes). Thus, the chain of such a protein has two stable folds: 
one of them folds faster, the other is more stable. It seems, though, that such “metamorphic” (or “polymorphous”) 
proteins are and must be very rare: theoretical estimates [29] show that the amino acid sequence coding for one stable 
chain fold (i.e., whose energy is separated by a wide gap from energies of others) is a kind of wonder by itself, but the 
sequence coding for two stable folds is a squared wonder. . .

5. Equations (4), (8) estimate the range of possible folding rates rather than folding rates of an individual protein, 
which, even for proteins of the same size, may differ (Fig. 6) from one another by orders of magnitude. The influence of 
a particular protein chain fold shape upon the folding rate can be estimated using a phenomenological “contact order” 
parameter (CO%) [74]. CO% is equal to the average distance along the chain between residues that are in contact in 
the native protein fold divided by the chain length (see also [71,72]). A high CO% value reflects the presence of many 
long closed loops in the protein fold, while a high value of (1 ± 0.5) factor in eqs. (4), (8) reflects their presence in a 
semi-folded globule (Fig. 4). Therefore, CO% is more or less proportional to this factor (1 ± 0.5) [53]. CO% by itself 
is a good predictor of folding rates of proteins equal in size, but it fails to compare folding rates of small proteins 
with those of large ones, because CO% decreases approximately in proportion to L−1/3 with increasing protein size 
L [46,53,54] (which reflects a low entangling of chains forming large domains), – while the folding rate decreases, on 
the average, with increasing protein size (Fig. 6).

Therefore, a really good predictor of protein folding rates is AbsCO = CO% × L, which scales as L2/3 [53] and 
combines the effect of protein fold shape [54] with the main effect of protein (and thus also nucleus) size [41,44]. The 
attempts to use machine learning and information provided by protein sequences to raise the quality of predictions 
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over the level achieved with AbsCO (or ln(AbsCO) [33]) were not quite successful up to now [11, for more details, 
see references therein].

Coming back to the Levinthal’s paradox, we can conclude that it is solved for protein chains of less than 100 
amino acid residues (provided sequences of these chains ensure a significant stability to only one of their folds); this 
is because (i) these chains can overcome free energy barriers at the pathway to their most stable folds, independently 
of their complexity (Fig. 6), and (ii) they are able to sample all their folds at the level of secondary structure formation 
and assembly (Fig. 8) and find the most stable one. As to the chains of larger proteins, they can sample only relatively 
simple (not too entangled) folds, and it remains a question whether some another fold can be more stable than the 
native one (which is indeed observed for some “exceptional” proteins like serpin, having a 400-residue chain).
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