
Molecular	dynamics	simulation

CS/CME/BioE/Biophys/BMI	279	
Oct.	5	and	10,	2017	

Ron	Dror

1

Outline

• Molecular dynamics (MD): The basic idea
• Equations of motion
• Key properties of MD simulations
• Sample applications
• Limitations of MD simulations
• Software packages and force fields
• Accelerating MD simulations
• Monte Carlo simulation

2

We	cover	molecular	dynamics	first	because	it	is	an	approach	that	attempts	to	implement	all	the	physics	we	
just	discussed	in	order	to	simulate	and	track	the	movement	of	all	atoms	in	a	system.	In	many	cases,	this	is	not	
the	best	approach	(and	it	is	useful	to	consider	why),	but	serves	as	a	good	working	example.

Molecular dynamics: The basic idea

3

The idea
• Mimic what atoms do in real life, assuming a

given potential energy function
– The energy function allows us to calculate the force

experienced by any atom given the positions of the
other atoms

– Newton’s laws tell us how those forces will affect the
motions of the atoms

4

E
ne

rg
y

(U
)

PositionPosition

This	is	like	rolling	a	ball	on	the	(friction-less)	surface	of	the	
energy	function.	Like	a	real	ball,	it	wouldn’t	just	find	the	
minimum	energy	position	—	it	will	have	momentum	and	
explore	many	states.

Basic algorithm

• Divide time into discrete time steps, no more than
a few femtoseconds (10–15 s) each

• At each time step:
– Compute the forces acting on each atom, using a

molecular mechanics force field
– Move the atoms a little bit: update position and velocity

of each atom using Newton’s laws of motion

5

Molecular dynamics movie

Equations of motion

7

Equations of motion

• Newton’s second law: F = ma
– where F is force on an atom, m is mass of the atom, and a is the

atom’s acceleration
• Recall that:

– where x represents coordinates of all atoms, and U is the
potential energy function

• Velocity is the derivative of position, and acceleration is
the derivative of velocity.

• We can thus write the equations of motion as:

8

F(x) = −∇U(x)

dx
dt

= v

dv
dt

=
F x()
m

<—	see	lecture	3

This	equals	acceleration,	by	Newton’s	
second	law.

Solving the equations of motion

• This is a system of ordinary differential equations
– For n atoms, we have 3n position coordinates and 3n

velocity coordinates
• “Analytical” (algebraic) solution is impossible
• Numerical solution is straightforward

– where δt is the time step
9

dx
dt

= v

dv
dt

=
F x()
m

vi+1 = vi +δ t F(xi) m
xi+1 = xi +δ tvi
vi+1 = vi +δ t F(xi) m
xi+1 = xi +δ tvi

Clarification:	the	mass	m	is	written	as	a	vector	
because	it	records	the	mass	of	every	atom.

Solving	analytically	for	even	
three	atoms	is	difficult!	
(“Three	body	problem”)Position	of	atom	x	at	time	(i+1)	is	

its	position	at	time	i	plus	how	much	
it	moves	during	the	time	step.

In	practice,	this	is	very	computationally	expensive!	Typically	have	~10,000s	of	atoms	and	
millions	of	time	steps.	But	you	can	do	a	lot	of	useful	simulations	with	modern	GPUs.

Solving the equations of motion

• Straightforward numerical solution:

• In practice, people use “time symmetric”
integration methods such as “Leapfrog Verlet”

– This gives more accuracy
– You’re not responsible for this

10

vi+1 2 = vi−1 2 +δ t F(xi) m

xi+1 = xi +δ tvi+1 2

vi+1 = vi +δ t F(xi) m
xi+1 = xi +δ tvi
vi+1 = vi +δ t F(xi) m
xi+1 = xi +δ tvi

vi+1 2 = vi−1 2 +δ t F(xi) m

xi+1 = xi +δ tvi+1 2

i.e.	the	times	at	which	position	and	
velocity	are	computed	are	offset	from	
each	other	by	1/2	of	a	time	step.	

This	is	more	accurate	because	of	“rounding	error”	—	the	error	that	accumulates	because	
computers	can	only	represent	a	limited	number	of	digits	when	performing	calculations.	Time	
symmetry	helps	reduce	this	error.

Key properties of MD simulations

11

Atoms never stop jiggling
• In real life, and in an MD simulation, atoms are in constant

motion.
– They will not go to an energy minimum and stay there.

• Given enough time, the simulation samples the Boltzmann
distribution
– That is, the probability of observing a particular arrangement of atoms is

a function of the potential energy
– In reality, one often does not simulate long enough to reach all

energetically favorable arrangements
– This is not the only way to explore the energy surface (i.e., sample the

Boltzmann distribution), but it’s a pretty effective way to do so

12

E
ne

rg
y

(U
)

PositionPosition

Energy conservation

• Total energy (potential + kinetic) should be
conserved

– In atomic arrangements with lower potential energy,
atoms move faster

– In practice, total energy tends to grow slowly with time
due to numerical errors (rounding errors)

– In many simulations, one adds a mechanism to keep
the temperature roughly constant (a “thermostat”)

13

Same	as	in	isolated	systems	in	high	school	physics.	There	is	no	equivalent	
of	“friction”	in	these	simulations,	since	you	are	including	all	atoms

The	thermostat	will	dampen	the	increase	in	energy	over	time.	This	is	
similar	to	how,	in	the	native	protein	context,	the	surrounding	atoms	will	
absorb	energy	from	the	system	if	the	system	increases	in	energy.

Water is important
• Ignoring the solvent (the molecules surrounding the

molecule of interest) leads to major artifacts
– Water, salt ions (e.g., sodium, chloride), lipids of the cell membrane

• Two options for taking solvent into account
– Explicitly represent solvent molecules

• High computational expense but more accurate
• Usually assume periodic boundary conditions (a water molecule that

goes off the left side of the simulation box will come back in the right
side, like in PacMan)

– Implicit solvent
• Mathematical model to approximate average effects of solvent
• Less accurate but faster
• 14

Typically,	around	90%	of	the	atoms	in	
the	simulation	will	be	from	the	solvent!

Periodic	boundaries	is	like	pretending	you	have	another	copy	of	the	whole	system	at	each	edge	of	your	
system	(usually	cube	shaped).	You	can’t	just	assume	that	there’s	a	vacuum	outside	the	system,	because	
water	molecules	at	the	boundary	will	line	up	in	an	orderly	manner.

This	method	is	also	limited	because	sometimes	the	position	of	a	single	water	molecule	can	be	important,	
especially	within	or	immediately	surrounding	the	protein.	(e.g.	specifically	positioned	water	molecules	can	
stabilize	a	conformation	by	forming	hydrogen	bonds.)

Also	need	to	implicitly	account	for	the	effect	of	salt	ions	in	the	solvent.	

Explicit	solvent

Water	(and	ions)

Protein

Cell	membrane	(lipids)

Sample applications

16

Determining where drug molecules
bind, and how they exert their effects

We used simulations to
determine where this

molecule binds to its receptor,
and how it changes the

binding strength of molecules
that bind elsewhere (in part by

changing the protein’s
structure). We then used that

information to alter the
molecule such that it has a

different effect.

Dror et al., Nature 2013

In	simulations,	you	can	watch	the	molecule	bind	to	the	protein	and	observe	the	
structural	effect	on	the	protein.	Using	this	information,	you	can	then	design	new	
molecule	variants	that	bind	and	produce	a	different	effect.

Determining functional mechanisms of
proteins

Simulation started from active structure vs.
Inactive structure

Rosenbaum et al., Nature 2010; Dror et al., PNAS 2011

• We performed simulations in which a receptor protein transitions
spontaneously from its active structure to its inactive structure

• We used these to describe the mechanism by which drugs binding to
one end of the receptor cause the other end of the receptor to
change shape (activate)

This	receptor	is	similar	to	the	one	on	the	previous	slide	
—	both	are	GPCRs.	This	view	is	from	the	inside	of	the	
cell	(bottom	side	in	the	previous	slide).	The	structure	of	
the	receptor	in	its	inactive	and	active	conformations	
have	been	solved	experimentally.

Understanding the process of protein
folding

• For example, in what order do secondary structure elements form?
• But note that MD is generally not the best way to predict the folded

structure

Lindorff-Larsen et al., Science 2011

This	is	often	not	the	most	accurate	nor	the	most	computationally	
efficient	way	to	predict	protein	structure.	However,	you	can	watch	the	
folding	of	the	protein,	which	can	be	informative.	

Question:	how	do	we	know	if	the	order	of	domain	folding	is	right?	
A:	In	general,	you	can	compare	simulations	to	known	experimental	
data	to	validate	it,	and	then	use	the	simulations	to	understand	things	
that	you	can’t	understand	via	experiment.		

Question:	do	proteins	start	folding	during	translation	as	they	exit	
from	the	ribosome?	
A:	Experiments	show	that	if	you	completely	unfold	a	protein	
(denature)	by	putting	it	in	a	bad	solvent,	and	then	refold	it	by	putting	
it	in	a	better	solvent,	then	it	will	spontaneously	fold	back.	In	practice,	
it	is	thought	that	order	of	translation	doesn’t	matter	too	much.

Limitations of MD simulations

20

Timescales

• Simulations require short time steps for numerical stability
– 1 time step ≈ 2 fs (2×10–15 s)

• Structural changes in proteins can take nanoseconds (10–9 s),
microseconds (10–6 s), milliseconds (10–3 s), or longer
– Millions to trillions of sequential time steps for nanosecond to

millisecond events (and even more for slower ones)
• Until recently, simulations of 1 microsecond were rare
• Advances in computer power have enabled microsecond

simulations, but simulation timescales remain a challenge
• Enabling longer-timescale simulations is an active research

area, involving:
– Algorithmic improvements
– Parallel computing
– Hardware: GPUs, specialized hardware 21

This	is	because	certain	bonds	have	modes	of	vibration	that	
are	~10s	of	fs,	so	your	time	step	has	to	be	shorter	than	this.

Some	proteins	fold	in	microseconds,	but	many	require	milliseconds	
or	seconds.

Force field accuracy
• Molecular mechanics force fields are inherently

approximations
• They have improved substantially over the last

decade, but many limitations remain

• In practice, one needs some experience to know
what to trust in a simulation

22

Here	force	fields	with	lower	scores	
are	better,	as	assessed	by	
agreement	between	simulations	
and	experimental	data.		Even	the	
force	fields	with	scores	of	zero	are	
imperfect,	however!	

Lindorff-Larsen	et	al.,	PLOS	One,	2012

Experimental	data	are	from	NMR,	which	measures	rapid	
protein	dynamics.

Covalent bonds cannot break or form
during (standard) MD simulations

• Once a protein is created, most of its covalent
bonds do not break or form during typical
function.

• A few covalent bonds do form and break more
frequently (in real life):
– Disulfide bonds between cysteines
– Acidic or basic amino acid residues can lose or gain a

hydrogen (i.e., a proton)

23

For	many	applications,	this	limitation	is	not	too	bad.	e.g.	if	you	are	focusing	on	how	a	drug	binds	to	a	protein	target.	

Note:	there	are	people	working	on	special	MD	simulations	that	allow	bonds	to	form/break	during	simulation.

Software packages and force fields
(These topics are not required material for this class,

 but they’ll be useful if you want to do MD simulations)

24

Software packages

• Multiple molecular dynamics software packages
are available; their core functionality is similar
– AMBER, NAMD, GROMACS, Desmond, OpenMM,

CHARMM
• Dominant package for visualizing results of

simulations: VMD (“Visual Molecular Dynamics”)

25

All	of	these	are	good,	although	CHARMM	was	one	of	the	first	and	its	code	is	outdated.	
AMBER	was	also	one	of	the	first,	but	its	code	was	completely	rewritten.

Force fields for molecular dynamics

• Three major force fields are used for MD
– CHARMM, AMBER, OPLS-AA
– Do not confuse CHARMM and AMBER force fields

with CHARMM and AMBER software packages
• They all use strikingly similar functional forms

– Common heritage: Lifson’s “Consistent force field”
from mid-20th-century

26

It	used	to	be	that	MD	software	packages	used	only	built-in	force	fields.	These	days,	most	MD	software	supports	a	
variety	of	force	fields.	

Note	that	CHARMM	and	AMBER	refer	to	both	MD	software	packages	and	force	fields!

Accelerating MD simulations

27

Why is MD so computationally intensive?

• Many time steps (millions to trillions)
• Substantial amount of computation at every time

step
– Dominated by non-bonded interactions, as these act

between every pair of atoms.
• In a system of N atoms, the number of non-bonded

terms is proportional to N2
– Can we ignore interactions beyond atoms separated

by more than some fixed cutoff distance?
• For van der Waals interactions, yes. These forces fall

off quickly with distance.
• For electrostatics, no. These forces fall off slowly with

distance. 28

e.g.	van	der	Waals	or	electrostatics

How can one speed up MD simulations?

• Reduce the amount of computation per time step
• Reduce the number of time steps required to simulate

a certain amount of physical time
• Reduce the amount of physical time that must be

simulated
• Parallelize the simulation across multiple computers
• Redesign computer chips to make this computation

run faster

29

I	want	you	to	understand	why	simulations	are	computationally	expensive	and	
slow,	and	to	have	a	sense	of	the	types	of	things	people	try	to	speed	them	up.		
You	are	not	responsible	for	the	details	of	these	speed-up	methods.	

How can one speed up MD simulations?
• Reduce the amount of computation per time step

– Faster algorithms
– Example: fast approximate methods to compute electrostatic

interactions, or methods that allow you to evaluate some force field terms
every other time step.

• Reduce the number of time steps required to simulate a certain
amount of physical time
– One can increase the time step several fold by freezing out some very

fast motions (e.g., certain bond lengths).
• Reduce the amount of physical time that must be simulated

– A major research area involves making events of interest take place
more quickly in simulation, or making the simulation reach all low-energy
conformational states more quickly.

– For example, one might apply artificial forces to pull a drug molecule off a
protein, or push the simulation away from states it has already visited.

– Each of these methods is effective in certain specific cases. 30

e.g.	you	can	“coarse	grain”	by	grouping	atoms	as	“super-atoms”	and	computing	
their	interactions	with	other	super-atoms

Current	algorithms	use	Fourier	transform	and	achieve	~	n	log(n)	time.

e.g.	if	you	freeze	bonds	to	hydrogens,	which	have	the	fastest	fluctuations,	you	
can	increase	the	time	step	by	4-5x

But	so	far	no	general	methods,	there’s	still	a	tradeoff.

Parallelize the simulation across
multiple computers

• Splitting the computation associated with a single time step
across multiple processors requires communication between
processors.

– Usually each processor takes responsibility for atoms in one spatial
region.

– Algorithmic improvements can reduce communication requirements.
• Alternative approach: perform many short simulations.

– One research goal is to use short simulations to predict what would
have happened in a longer simulation. 31

Sometimes	adding	too	many	compute	
nodes	actually	slows	things	down,	
because	of	the	overhead	for	each	
machine	to	communicate.	You	can	
improve	the	parallelization	algorithm	to	a	
certain	extent,	to	spend	less	time	doing	
communication.	

Number	of	atoms	per	unit	volume	in	a	
system	is	roughly	constant,	which	makes	
this	load	balancing	easier	in	most	cases.

The	Pande	group	at	Stanford	has	done	a	lot	of	work	
in	this	area.	

Redesign computer chips to make this
computation run faster

• GPUs (graphics processor units) are now widely used for
MD simulations. They pack more arithmetic logic on a chip
than traditional CPUs, and give a substantial speedup.

– Parallelizing across multiple GPUs is difficult.
• Several projects have designed chips especially for MD

simulation
– These pack even more arithmetic logic onto a chip, and allow for

parallelization across multiple chips.

32GPU Specialized	chip

GPUs	started	off	as	highly	specialized	
chips	for	graphics	(i.e.,	rendering	what’s	
on	your	monitor	—	computer	games	
benefit	tremendously	from	GPUs!).	Over	
time,	companies	making	GPUs	added	
flexibility	to	the	kinds	of	computation	
they	can	perform.	People	realized	how	to	
map	MD	computations	to	the	kinds	of	
computations	GPUs	are	really	good	at.	
They’re	also	now	very	widely	used	for	
machine	learning.	A	single	GPU	can	now	
get	you	the	same	kind	of	processing	you’d	
get	out	of	a	mid-size	cluster	of	CPUs.	

Professor	Dror	worked	at	DE	Shaw	
Research	before	coming	to	Stanford,	
designing	specialized	chips	for	MD.	At	
least	half	a	dozen	such	projects	preceded	
Anton,	but	Anton	has	been	especially	
successful.		

Monte Carlo simulation

33

Monte Carlo simulation

• An alternative method to discover low-energy
regions of the space of atomic arrangements

• Instead of using Newton’s laws to move atoms,
consider random moves
– For example, consider changes to a randomly selected

dihedral angle, or to multiple dihedral angles
simultaneously

– Examine energy associated with resulting atom
positions to decide whether or not to “accept” (i.e.,
make) each move you consider

34

Big	idea:	Start	with	a	MD	force	field.	For	some	applications,	we	don’t	care	EXACTLY	how	atoms	
move	as	a	function	of	time.	We’re	more	interested	in	finding	the	low	energy	regions	of	the	
Boltzmann	distribution.

You	get	to	choose	the	rules	
that	specify	the	“random	
move”

If	you	don’t	accept	the	move,	you	just	throw	it	out	and	
continue	to	use	your	last	accepted	configuration.	

Metropolis criterion ensures that simulation
will sample the Boltzmann distribution

• The Metropolis criterion for accepting a move is:
– Compute the potential energy difference (∆U) between the pre-

move and post-move position
• ∆U < 0 if the move would decrease the energy

– If ∆U ≤ 0, accept the move

– If ∆U > 0, accept the move with probability

• After you run such a simulation for long enough, the probability of
observing a particular arrangement of atoms is given by the
Boltzmann distribution

• If one gradually reduces the temperature T during the simulation,
this becomes a minimization strategy (“simulated annealing”). 35

e
−ΔU

kBT

p(x)∝ exp −U x()
kBT

⎛
⎝⎜

⎞
⎠⎟

This	should	make	sense	—	you’ve	made	a	move	that	made	the	
potential	energy	more	favorable,	so	why	wouldn’t	you	accept?

Intuition	here:	if	you	ONLY	accepted	moves	when	U	decreases,	you’ll	shoot	into	the	nearest	local	minimum	and	stay	there.	But	
that’s	not	what	you	want	—	you	want	to	explore	the	full	energy	space.	To	do	that,	sometimes	you	have	to	“move	uphill.”	

Note	the	similarity	between	this	formula	and	
the	formula	used	in	the	Metropolis	criterion	
—	this	is	not	an	accident.	

When	you	get	to	very	low	temperatures,	you’re	no	longer	good	at	jumping	out	of	local	minima.	But	this	turns	out	to	be	a	good	
way	to	do	global	minimization.	

