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We build a minimal extension of General Relativity in which Newton’s gravitational coupling, G,

the speed of light, c, and the cosmological constant, Λ, are spacetime variables. This is done while
satisfying the contracted Bianchi identity as well as the local conservation of energy momentum
tensor. A dynamical constraint is derived, which shows that variations of G and c are coupled
to the local matter-energy physical content, while variation of Λ is coupled to the local geometry.
This constraint presents a natural cosmological screening mechanism that brings new perspective
concerning the current observations of a cosmological constant, Λ0, in cosmological observations. We
also explore early universe background cosmology and show that the proposal provides alternatives
to obtain an accelerated expansion, similar to those coming from Varying Speed of Light theories.

I. INTRODUCTION

Fundamental constants have played an important role
in physics since their very first appearance in Newton’s
theory of gravity, where he introduced the gravitational
constant, G. Usually, they are directly connected to the
strength of a particular interaction that happens in na-
ture, but also can be used to define regimes for which a
particular theory will remain valid, as it is the case for
Planck’s constant, h, and the speed of light1, c.

Looking at the history of physics, we have seen dif-
ferent examples of dimension-ful and -less constants that
ended up not being constants after all. An example of the
former is the acceleration due to gravity on the Earth’s
surface, g ≃ 9.8m/s2, which was thought to be a con-
stant before Newtonian gravity, while an example of the
latter is the fine structure constant, α ≡ e2/4πε0~c, e is
the electric charge and ε0 is permittivity of free space,
which is actually a function of the energy scale being
considered.

Therefore, it is not a surprise that even before the
1900’s Kelvin and Tait [2] were already considering vari-
ations of the speed of light. Later, Dirac [3] considered
cosmological variations of G, opening room for other ap-
proaches that resulted in the Jordan-Brans-Dicke theo-
ries [4–6]. It is also important to mention that even the
electric charge has been considered to be varying, a pro-
posal first accounted by Bekenstein [7], after considering
an α-varying theory. Therefore, we can already appreci-
ate the relevance of inquiring about the constancy of the

1 Throughout this paper, we will refer to c as the speed of light,
which is the common terminology when talking about the vari-
ation of fundamental constants. However, for this work, one
should actually think of it as the “spacetime speed”, in the sense
discussed by Ellis and Uzan [1]. In light of their work, here we
are considering the spacetime speed, the speed that appears in
the metric, and the Einstein’s speed, the speed that appears in
Einstein’s equations, to be the same, i.e., cST = cE = c (xα),
and being spacetime variables.

fundamental constants considered today in our theories.

Epistemologically, we can observe that a fundamental
constant remains to be so until we figure out a more fun-
damental model in which the aforementioned constant
becomes actually a variable that assumes a particular
value for the regime so far considered. A very clear ex-
ample to illustrate this is the compactification procedure
for extra dimensions in String Theory, which makes the
Newtonian coupling dependent on the moduli fields [8],
so G is only effectively a constant. Another one encom-
passes a large set of models commonly referred to Vary-
ing Speed of Light (VSL) theories [9], which are generally
concerned with variations of the speed of light in the his-
tory of the universe.

In this work we will be interested in promotingG, c and
Λ, the cosmological constant, to be functions of the space-
time coordinates. All these quantities are dimensionful
and it is an important matter to distinguish if their varia-
tions will be physical in any sense. In fact, there has been
an extensive debate over the years regarding the mean-
ing of considering a dimensionful fundamental constant
to be varying. This debate has orbited much more the
VSL theories, since these are the ones that became more
popular after solving some of the early universe puzzles
without invoking an inflationary phase [9]. The main
topic of the discussion has been the physical relevance
of considering a dimensionful constant to vary, once we
can always choose a different system of units in which
this variable would be a constant again, so that its vari-
ation would merely be a unit system artifact. For people
who are more concerned with the conservative side of the
question, we recommend [1, 10] and, in particular, [11];
for the liberal counterpart, it is worth checking [9, 12, 13].
Our position on this issue will be addressed later.

Regardless of the political orientation on this matter,
it is fundamental to consider what the experimental con-
straints concerning variations of the fundamental con-
stants are. The most interesting result allowing for a
significant variation is related to the fine structure con-
stant. In the work of Webb et al. [14], they seemed
to have found evidence for a slow increase of α in time
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for redshifts between 0.5 and 3.5. These results have been
questioned and an update on this discussion can be found
in [15]. For the other constants, most of the constraints
come from experiments using atomic clocks, the Oklo
phenomenon, Solar System observations, meteorites dat-
ing, quasar absorption spectra, stellar physics, pulsar
timing, the Cosmic Microwave Background (CMB) and
big bang nucleosynthesis (see [16, 17]). Although most
of these experiments have left little room for considering
variation of the fundamental constants, they are redshift
and spatially constrained [18], not to mention that the in-
terpretation of the results might be changed if someone
had considered a model in which these constants would
be varying as a prior. One thing is certain: if we keep
ourselves to the early universe, varying fundamental con-
stants has not been ruled out.
The proposal presented here is an extension of Gen-

eral Relativity (GR) in which G, c and Λ are allowed to
vary, while preserving the two fundamental ingredients
that were considered by Einstein: the underlying geo-
metrical structure of the theory, namely the requirement
of satisfying the (contracted) Bianchi identity, and the
local conservation of the energy momentum tensor. It is
important to acknowledge that there is a vast literature
concerning models in which either G, c or Λ are varying,
almost all of them at the background level. Some of them
have an overlap with the approach developed here, and
we will highlight some of the differences and similarities.
Moreover, it is relevant to say that the model presented
here has already appeared in the literature at the back-
ground level [19, 20], but some of the conclusions and
discussions we will draw are original. More importantly,
this paper aims to open room for a new framework that
is being developed in which the dynamics associated to
the variation of the fundamental constants is given by a
potential for these variables [21], which can be seen as
scalar fields in an action. This way we shall address one
of the biggest criticisms towards some of the VSL theories
so far: the lack of a well defined variational principle.
This paper is divided as follows: in section II, we briefly

comment on the previous literature regarding varying
fundamental constants in cosmology focusing mainly in
their advantages and drawbacks; in section III we dis-
cuss and provide the framework we consider throughout
this paper; section IV considers the generalized version
of the Friedmann’s equations and a simple application of
them; section V presents a sort of bootstrap mechanism
that provides a possible explanation of why we seem to
observe a cosmological constant given this framework;
section VI brings attention to future applications; finally
we conclude in section VII.

II. VARYING FUNDAMENTAL CONSTANTS

LITERATURE

There is an extensive literature of models that consid-
ers variation of classical (i.e. non-quantum) fundamen-

tal constants, mainly G and c, as well of the cosmological
constant2, Λ, and α. We will briefly discuss some of these
models so that we can make comparisons among them
and be aware of the advantages and drawbacks of each
model. Since our objective is not to review, the reader
should not expect an exhaustive list of them.

A. Λ (t) models

There are different motivations to consider the cosmo-
logical constant to be varying. For the very early uni-
verse, for example, this could easily solve the flatness
and horizon problems [21]. In fact, to some extent infla-
tion does that in a more elaborated fashion, since during
the slow-roll phase the stress tensor of the scalar field is
given basically by the potential of the field, which acts ef-
fectively as a Λ (t) . For the late time universe, this is also
interesting since it could account for backreaction effects
coming from the effective energy-momentum tensor due
to fluctuations at second order Einstein’s equations that
also influence the background cosmology (for a review on
backreaction, see [22]). These effects also play a role in
the early universe (see e.g. [23]).
Given these motivations, some of the models that have

been considered so far include the time dependence of Λ
by considering Λ (H (t)) [24], where H (t) is the Hubble
parameter; or by Λ (a (t)) [25], a (t) the scale factor; also
by Λ (α (t)) [26], α (t) the varying fine structure constant;
and even combination of H and a, [27]. All these mod-
els have different and interesting cosmologies, but as it
will be clear later on, if we only assume that Λ is vary-
ing without considering also G and/or c to be varying as
well, and having the dynamics solely given by Einstein’s
equations, thus either Bianchi identity or the local con-
servation laws will be violated.

B. Bimetric models

In general, bimetric models make use of two different
metrics: gµν , the gravitational field, and ĝµν , the met-
ric that couples to matter. Usually ĝ depends on the
gravitational field plus a new scalar [28], or vector field
[29]. This implies that massless particles will have dif-
ferent velocities, so that special relativity will be realized
differently in each of these sectors. Due to the existence
of the two metrics, the coupling between geometry and
matter in Einstein’s equations is changed and picks a de-
pendence on the dynamics of this new field that has been

2 Note that although a bare cosmological constant should always
come for free in Einstein’s equations, we know that, if the vacuum
energy gravitates, its effect would be given by a cosmological
constant in the energy side of the equations. Since the vacuum
energy is a quantum effect, we do not consider the overall Λ in
the equations to be a classical constant.
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introduced. Some of the consequences of such approaches
are the resolution of the flatness and horizon problem in a
Friedmann-Robertson-Walker (FRW) universe, also pro-
viding a graceful exit to the inflationary epoch, and even
recovering a scale invariant spectrum for the fluctuations
[30].
However, their successes are limited since the very exis-

tence of a different metric coupling to the matter sector
explicitly violates the equivalence principle. Moreover,
although the Bianchi identity is satisfied in relation to
the metric g, the local conservation laws are satisfied in
relation to the metric ĝ.

C. Jordan-Brans-Dicke framework

The very first implementation of a varying G model af-
ter Dirac’s initial phenomenological proposal was made
by Jordan [4]. This was an important step, since it in-
corporated the variation of G as a dynamical feature of
the model instead of just being imposed by hand, setting
up a consistent framework from which equations of mo-
tion could be derived in a consistent matter following an
action principle. The action proposed by him was given
by:

S =

∫

d4x
√−gφη

[

R− ξ

(∇φ

φ

)2

− φ

2
F 2

]

, (1)

where η and ξ are two parameters, and F is the electro-
magnetic field strength. It then follows that G and α are
promoted to be dynamical variables.
As it is summarized in [16], later it was realized that

if η 6= −1 the atomic spectra will be space-time depen-
dent. After fixing η = 1, the model becomes 1-parameter
dependent only and represents a class of scalar-tensor
theories in which only G is a dynamical variable. This
idea was further explored by Brans and Dicke [5]. The
most recent work that makes use of this approach is the
BSBM proposal, which actually considers the variation
of G and α, and it can be seen as combination of the
initial proposal from Bekenstein [7] revived by Sandvik,
Barrow and Magueijo [31].

D. VSL theories

Besides the proposals we have briefly overviewed
above, there is a whole class of models typically called
VSL theories. There is a big overlap among them
and their consequences, so here we focus in two semi-
nal papers, Moffat’s early work [32] and Albrecht and
Magueijo’s paper [33]. It is historically fair to bring at-
tention to the fact that Moffat’s first paper was pub-
lished in 1993, and his ideas were mostly neglected until
the work of Albrech and Magueijo, which finally got the
proper attention to VSL models from the community.

In summary, the initial idea brought up by Moffat in-
volved a spontaneous breaking of Lorentz invariance (as-
sociated to a first order phase transition) in the early
universe, and this symmetry would be later restored.
The symmetry breaking was produced after introducing
a Higgs mechanism for four scalar fields. The flatness
and horizon problems are solved with the phase transi-
tion, which also leads to a scale invariant power spectrum
for the energy density fluctuations. It is worth mention-
ing that in order to solve these problems the speed of
light has to drop by 1028 between the two phases. It pre-
serves the underlying geometrical structure by satisfying
Bianchi identity, but that leads to non-standard energy-
momentum conservation laws.
Albrecht and Magueijo’s proposal also considers

departures from Lorentz invariance, as well as violation
of the local conservation laws. The core idea is to
postulate that Friedmann’s equations, as known from
General Relativity in a cosmological setting, should
remain the same in the CMB frame, but having now
c and G being also functions of the cosmological time
(see discussion in section IV). This explicitly breaks
covariance, and also implies that Einstein’s equations, as
we know them, would only be valid in the CMB frame.
Although Bianchi identity is enforced, this also results
in non-standard local conservation laws, which now
includes source terms proportional to ċ/c. Within such a
prescription, Albrecht and Magueijo are able to also solve
the horizon and flatness problems, as well as alleviating
the cosmological constant problem. Moreover, they can
also account for the large entropy inside the horizon
nowadays. Unfortunately, it lacks a dynamical equation
for c (t) , so that one has to impose its dynamics by hand.

For a more extensive review and discussion of different
models, please see [9, 34, 35].

III. THE FRAMEWORK OF THE PROPOSAL

We have seen above that among the different ideas
that have been considered so far regarding the variations
of the fundamental constants, most of them lack a con-
straint for the variations of the different constants coming
from theoretical grounds, which usually leads to violation
of the conservation laws or of the very geometrical struc-
ture in which these theories are considered. Here, we
aim to revive an approach that preserves the underlying
geometrical structure and the known local conservation
laws.
The proposal is very simple. We start off by consider-

ing the (contracted) Bianchi identity:

∇µGµν = 0, (2)

where Gµν ≡ Rµν − 1
2
gµνR is known as the Einstein ten-

sor, and Rµν and R the Ricci tensor and scalar, respec-
tively. This is a formal identity after assuming a torsion-
free connection and the metricity condition, ∇ρgµν = 0,
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being valid for any (pseudo)-metric manifold [36]. We
also consider the minimally coupled local conservation
law:

∇µTµν = 0, (3)

where Tµν is the energy-momentum tensor (EMT). It is
no surprise for all the readers that are familiar with Gen-
eral Relativity that those two equations can be written
together in a self-consistent way through Einstein’s equa-
tions, namely,

Gµν =
8πG0

c40
Tµν + Λ0gµν , (4)

where we have allowed the presence of a cosmological
constant3, Λ0. Besides, the proportionality constant mul-
tiplying the EMT tensor is recovered after one considers
the Newtonian limit [36]. It is important to note that
Einstein’s equations are supposed to rule the dynamics of
the spacetime structure in the presence of matter/energy
content. Even though the local experiments at the time
did not indicate the existence of any space and/or time
variation concerning the so called fundamental constants,
as the speed of light, c0, and the Newton’s gravitational
constant, G0, it was a conservative call to consider that
those quantities would be necessarily constants for all
times and regions of the universe. Therefore, our pro-
posal is to consider the more general case, in which the
constants are promoted to be spacetime variables, while
keeping intact the underlying geometrical structure of
General Relativity, namely, we preserve the validity of
(2) and the local conservation laws (3).
In order to do so, let us take a step back and write the

most general relation between Einstein’s tensor and the
energy-momentum tensor to be:

Gµν = χ (xρ)T µν + gµνΛ (xρ) , (5)

where we have now allowed a coordinate dependence on
the cosmological constant-like term, represented by (xρ),
as well for the coupling of the EMT, instead of assuming
that α and Λ are constants, as it was done for equation
(4). Of course, since we still would like to have a well de-
fined geometric structure, let us plug in the above equa-
tion back into (2), resulting in the following constraint:

T µν∂µχ (xρ) + gµν∂µΛ (xρ) = 0, (6)

after using local conservation of the EMT, eq. (3). Note
that a trivial solution would be to consider both α and
Λ being constants, as usual.
In order to investigate the Newtonian limit, we remind

ourselves that locally Λ-effects are negligible (this is an
empirical statement) and one should recover Newtonian

3 From now on the subscript 0 denotes the quantity is a constant.

gravity. Therefore, after foliating our spacetime with
constant time slices labeled by t, one should recover:

χ (xρ
0) =

8πG0

c40
, (7)

where xα
0 represent our local configuration on the space-

time. Now, being conservative, we can use this as an
ansatz for χ (xα) as a whole, so that we postulate the
following functional dependence:

χ (xα) =
8πG (xα)

c4 (xα)
, (8)

in which G and c are variables over time and space.
Therefore, the constraint equation above reduces to4:

[

1

G
∂µG (xα)− 4

c
∂µc (x

α)

]

8πG (xα)

c4 (xα)
T µν (xα)+

+ [∂µΛ (xα)] gµν (xα) = 0, (9)

which tells us how c, G and Λ can vary altogether with-
out violating Bianchi identity, therefore preserving the
underlying geometrical framework intact, while at the
same time preserving the same local conservation laws
we are familiar with. The above equation is referred to
as the general constraint (GC). The cosmological version
of it has already appeared in the literature [19, 20]. One
could also derive the second order constraint after oper-
ating with ∇ν on the equation above.
Some important comments about this constraint fol-

lows:

1. Note that the variations of G and c are directly
correlated with the local matter/energy distribu-
tion while the variation of Λ is correlated to the
local geometry. This highlights an intrinsic differ-
ence between the variation of c and G in compar-
ison with the variation of Λ, which will result in
interesting implications for their dynamics.

2. Once that we do not expect that Λ should have
much of an influence for local physics given current
observations, one could locally expect to have the
following constraint being satisfied:

T µν

(

∂νG− 4G

c
∂νc

)

≃ 0, (10)

which implies:

G (xα) =
G0

c40
c4 (xα) , (11)

4 One could also have considered a more general constraint com-
ing from Bianchi identity: (8πG/c4)∇µTµν = Tµν∂µG (x, t) −
(4G/c)Tµν∂µc (x, t) + (c4/8π)gµν∂µΛ(x, t), without assuming
right away the typical minimally coupled conservation law to be
held. This would imply a violation of the local conservation laws
that could be further explored in future works. I thank Jerome
Quintin for this remark.



5

assuming G (xα
0 ) = G0 for c (xα

0 ) = c0. This ties to-
gether the variation of Newton’s gravitational cou-
pling to the variation of the speed of light. Now,
since we have G/c4 appearing in Einstein’s equa-
tions, one can see that it could be changed to G0/c

4
0

locally, recovering the physics we are familiar with,
as long as variations of c are small. In other words,
for negligible variations of Λ and c locally, Lorentz
symmetry is effectively restored5.

3. Note that vacuum solutions, given by Tµν = 0, im-
ply Λ to be a spacetime constant, while, at the
same time, dropping any constraint concerning the
variation of G and c. Of course, after imposing
G and c to be constants as well, one can recover
the usual Minkowski, de Sitter and anti-de-Sitter
cosmological spacetimes. This is a relevant obser-
vation also for non-cosmological vacuum solutions,
e.g., Schwarzschild’s metric, since it means that the
speed of light and the Newton’s coupling could be
varying in principle, albeit this would imply a phe-
nomenological approach once the dynamics of c and
G would have to be imposed by hand.

4. In standard GR, Einstein’s equations for a traceless
EMT theory implies:

R+ 4Λ0 = 0. (12)

Since Λ0 is constant, this also implies that the cur-
vature would have to be constant, as it is the case
for electromagnetism, for instance. However, in the
current formalism, we see that one could actually
have a conformal field theory (traceless EMT) with-
out necessarily having constant curvature, given
the fact that the above equations are generalized
to:

R (xρ) + 4Λ (xρ) = 0. (13)

In the next sections, we start to explore some immediate
consequences of the variation of c, G and Λ having the
general constraint imposed at all times.

5 By Lorentz symmetry we are referring to the local group of trans-
formations that keep the infinitesimal (when considering curved
spacetimes) line element, given by ds2 = −c2 (t, ~x) dt2 + d~x2, in-
variant. One could find odd the fact g00 is spacetime dependent,
but it is important to remember that Lorentz transformations are
infinitesimal ones: dt = γ

(

dt′ + v/c2dx′
)

, d~x = γ (d~x′ + ~vdt′) ,

where γ =
(

1− v2/c2
)

−1/2
, so that the spacetime dependence

does not play a role directly in the transformations. On the other
hand, it means that for different spacetime points, the speed as-
sociated to the Lorentz symmetry will be different. This is, of
course, a naive way to think about a generalization of the Lorentz
group, and hopefully we will be able to address this issue in fu-
ture work.

IV. COSMOLOGICAL BACKGROUND

SOLUTION

After we have discussed about the most immediate dy-
namical implications that one could expect to have from
the general constraint, we can now analyze the implica-
tions of having G, c and Λ varying in Einstein’s equa-
tions. In this section, we will restrict ourselves to the
background cosmology.
We start off with a FRW-like ansatz 6:

gµν = diag
(

−c2 (t) , a2 (t) , a2 (t) , a2 (t)
)

. (14)

The reader should now be concerned with the fact that we
could reparametrize the time coordinate so that the time
dependence of the speed of light would disappear from
the above ansatz. However, this would be misleading.
Let us understand why that is the case.
When we observe the CMB to be isotropic (and homo-

geneous after assuming the Copernican Principle), we can
use the CMB to define a whole class of coordinate sys-
tems, which differ from one another by the function c(t)
in the ansatz above. In standard cosmology, this func-
tion is meaningless since the speed of light is constant
and we are allowed to consider time-reparametrizations,
so we may as well fix it to be equal to a constant (in
particular to be equal to 1 in natural units). How-
ever, for our given framework in which the speed of
light is varying, even though we are still allowed to con-
sider time-reparametrizations (given the covariance of
the model), it is not possible to find a time coordinate
in which the speed of light would not be varying (since
its variation is not a coordinate artifact). Thus, time-
reparametrizations can only hide the effect of a varying-c
in the metric, for example by finding a new time coor-
dinate, call it t′, such that c(t)dt = c0dt

′. If one does
that, we interpret it as finding a new frame, to be called
CMB coflowing frame, which is the frame that makes ho-
mogeneity and isotropy explicit, but hides the effects of
a varying-c in the metric7. We do not want to use this
preferential frame in the same way that we do not want
to use an inhomogeneous metric to describe background
standard cosmology, since it would be very hard to make
homogeneity explicit again. Hence, for us, in a general
sense, the speed of light has changed with cosmological
time, where the cosmological time is set up by the CMB
evolution (which correlates this time coordinate directly
to the CMB temperature) and we keep this time depen-
dence in our metric ansatz so that the effects related to
a varying-c remain explicit everywhere else.

6 Spatial curvature can be thought of as embedded in the ~x coor-
dinates.

7 The nomenclature comes in analogy to the terminology comov-

ing, which refers to a spatial reparametrization of the physical
coordinates, xp, to comoving coordinates, xc, by dxp = a (t) dxc.
The comoving spatial coordinates move along with the Hubble
flow, remaining fixed.
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That being said, we consider a perfect fluid EMT de-
fined by:

T µν =
1

c2
(ε+ p)UµUν + pgµν , (15)

where ε is the energy density, p is the pressure, and Uµ is
the 4-velocity, satisfying gµνU

µUν = −c2, and, of course,
c = c (t) in our work8.
Then, considering a perfect fluid, Einstein’s equations

can be reduced to generalized Friedmann equations given
by:

H2 (t) =
8πG (t)

3c2 (t)
ε (t)− Λ (t) c2 (t)

3
− kc2 (t)

a2 (t)
(16)

ä (t)

a (t)
= −4πG (t)

3c2 (t)
[3p (t) + ε (t)] +H (t)

ċ (t)

c (t)
− Λ (t) c2 (t)

3
,

(17)

where H (t) = ȧ (t) /a (t) and “ ˙ ” stands for time deriva-
tives. These same equations have already been consid-
ered in [19, 20]. Again, a few comments are worth men-
tioning here:

1. The first Friedmann equation has the same form as
the usual one, but now with G, c and Λ being time
variables.

2. The second Friedmann equation has an extra term,
proportional to ċ (t) , that disappears for c = con-
stant. However, now it becomes clear that the
background can expand in an accelerated fashion
by demanding that:

−4πG (t)

3c2 (t)
[3p (t) + ε (t)] +H (t)

ċ (t)

c (t)
−

−Λ (t) c2 (t)

3
> 0, (18)

which implies that even if Λ = 0 we still can recover
acceleration with non-exotic matter (3p + ε > 0)
given that ċ (t) 6= 0.

3. Usually, in standard cosmology, we have a, p and
ε as variables together with three equations: an
equation of state and two Friedmann ones. Here,
the situation is trickier: we have c, G, Λ, ε, p and
a as variables. However, we have two Friedmann
equations, another one from the general constraint,
and an equation of state, giving four equations to-
tal9. Therefore, it is expected to have some hypoth-
esis imposed by hand concerning the time depen-
dence of a pair of the set {G, c,Λ} . Besides, in the

8 This sort of generalization has been known as minimal coupling
[9]. Following the arguments above about local variations of c
being negligible, this seems to be a good ansatz for the moment.

9 I thank Renato Costa for pointing this out to me.

same sense that the equation of state represents the
underlying thermodynamic fluid being considered,
one should now expected that some underlying the-
ory could provide the hypothesis for the variation
of this set of variables. In particular, if Λ = 0, one
needs only one more equation [21].

4. The second Friedmann equation has a curvature
correction due to the variation of the speed of light.
If we had used the CMB coflowing frame, that term
would be gone and we would have the following
equations after considering c(t)dt = c0dt

′:

(

a′

a

)2

=
8πc20G (t′)

3c4 (t′)
ε (t′)− Λ (t′)

3
− k

a2 (t′)
(19)

a′′ (t′)

a (t′)
= −4πc20G (t′)

3c2 (t′)
[3p (t′) + ε (t′)]− Λ (t′)

3
,

(20)

where “ ′ ” denotes derivatives w.r.t. t′. These
equations look the same as what we have in stan-
dard cosmlogy while allowing c, G and Λ to vary.

5. Another implication is the following: if we are not
considering cosmic scales, we can, in fact, choose
a local coflowing coordinate system (as one would
be doing when considering black hole solutions or
physics on Earth, for instance) that is nor isotropic
or homogeneous, that is, not connected to the
CMB. However, these (local) frames would consist
in a subclass of all the possible frames that could
be considered in principle (since for a varying-c
theory, coflowing frames define a preferred class
of frames). Since the CMB defines another class
of frames, the ones which are homogeneous and
isotropic, having among them a single one which
is also coflowing, that implies this local subclass of
coflowing frames is not always compatible with the
class defined by the CMB in the sense presented
by Padmanabhan [37]. He argues that it is odd
the fact that operationally the CMB defines a
preferred rest frame that does not seem to select
any preferred class of frames in sub-cosmic level
physics, which would be key if someone was to
solve Einstein’s equations exactly and then to
consider the average of the metric on cosmological
scales. In our framework, since now we do have
a distinction between the CMB comoving frame
class and the coflowing one, we see that the CMB
would actually select a particular subclass of
local frames: the ones that are not coflowing, but
rather comoving, therefore addressing the problem
raised by Padmanabhan. Given this clarification,
one should be concerned to what sort of effect we
might have been observing that could be due to the
incompatibility between all these frames, since we
would be locally solving Einstein’s equations with
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coflowing frames10 and later expecting that these
solutions would recover a comoving non-coflowing
frame when averaged over large scales. Although
cosmology has been quite successful as a whole,
we still have two big elephants in the room: dark
matter and dark energy. In the current framework,
if these effects are actually due to the spacetime
variation of G and c at the perturbation level, it is
clear that a frame redefinition could in principle
hide these effects.

Finally, we can also derive the continuity equation,
namely the 0−th component of ∇µT

µν = 0, which gives:

ε̇+ 3H (p+ ε) = 0. (21)

This can also be derived after taking the time derivative
of (16) and substituting it into (17), and then imposing
the general constraint.

A. Λ−less acceleration

From a UV perspective, it is very reasonable to con-
sider that G and c would be varying in the very early
universe. Therefore, we consider the case in which Λ = 0,
and investigate some of consequences of the variation of
the other constants.
We have seen already that the general constraint im-

plies for this case:

G (t) =
G0

c40
c4 (t) , (22)

after considering G and c to be homogeneous. Then,
assuming a constant equation of state, ω = p/ε, and
considering (16) into (17) for k = 0, we have:

ċ

c
>

1 + 3ω

2

ȧ

a
. (23)

If this condition is satisfied, we are guaranteed to have
acceleration. If, for instance, we seek for a polynomial so-
lution for the scale factor, a (t) ∼ tn, n > 1, this demands
the following dynamics for the speed of light c (t) ∼ tm,
m > 1+3ω

2
n.

Needless to say that it would be much better if we could
provide a dynamical theory in which c and G would have
their variations given by an equation of motion, instead
of considering any sort of hypothesis by hand. This will
be presented in [21], where an action prescription will be
introduced and early universe puzzles will be dealt with,
providing an alternative paradigm to inflation.

10 Since there is no reason to make explicit any cosmological vari-
ations of the speed of light when solving Einstein’s equations
locally.

V. A NATURAL SCREENING MECHANISM,

OR WHY WE OBSERVE A COSMOLOGICAL

CONSTANT

A screening mechanism basically works in a way that
some degrees of freedom of a model are not accessible for
a particular physical scale, they are “hidden”. For in-
stance, in the context of cosmology, two mechanisms are
well known, they are called chameleons [38] and sym-

metrons [39]. In short, these mechanisms rely on a field,
typically scalar, that has its mass (chameleon) or its effec-
tive potential symmetry (symmetron) being dependent
on the local matter density. The importance of such
mechanisms comes from the fact that most of scalar fields
coming from fundamental theories, e.g. String Theory,
would imply strong violations of the equivalence princi-
ple. However, such violations have not been observed
in the Solar System [40]. Therefore, if someone hopes
that such fundamental fields could be responsible for any
cosmological observations, as dark energy for instance,
such mechanisms would play an important role to pre-
vent these violations.
Within the proposal of this paper, it is also possible to

find something that resembles a screening mechanism us-
ing a bootstrap approach after considering the GC. From
eq. (9), we have at the background level:

(

∂tG− 4G

c
∂tc

)

ε− c4

8π
∂tΛ = 0. (24)

Now, we can think about this equation in two different
scales: when/where ε is high, and when/where ε is low.
Therefore, we could split this equation relative to these
two scales,







Ġ− 4G
c
ċ = ε−1

high

(

c4

8π
Λ̇
)

≃ 0 , ε high

c4

8π
Λ̇ = εlow

(

Ġ− 4G
c
ċ
)

≃ 0 , ε low.
(25)

Therefore, we observe that when considering scales in
which the energy density is high, two things happen: i)
the variation of G is fixed to the variation of c, which
reproduces what we have discussed above for our local
physics; ii) it relaxes the temporal variation of Λ, since
now its time-dependence can be “more” arbitrary, once
it is suppressed by ε−1

high. On the other hand, when ε is

low, we also observe two things: i) the variation of c and
G are not so tied together; ii) more importantly, because
the variations of G and c for those scales are suppressed,
the constraint tells us that effectively Λ̇ ∼ 0, once its
variation is suppressed by εlow/c

4.
Note that we have related to these scales a sense of time

(when) and space (where). For the former, we can imag-
ine comparisons between the background energy density
in the early univese and nowadays, being the first much
higher than the second, what could help explaining why
the variation of Λ seems to be non-existent today, even
though could have been much more prominent in the
early universe.
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Regarding the sense of space, although we are assum-
ing a homogeneous description, this can also be consid-
ered a 0th order description of inhomogeneous regions.
In doing so, we take the average energy density of these
regions. If we keep ourselves to galactic scales the energy
density will be much higher than if we average over cos-
mological scales11. Thus, even though this is a first ap-
proximation, it already tells us that local energy density
might also suppress how Λ might be varying. Of course,
a full perturbation theory is needed to be conclusive.

Hence, this embedded natural screening mechanism
brings new perspective to the fact that we observe a cos-
mological constant in cosmological observations, and still
leaves room for its local variations. This can be of great
interest concerning the recent observations of [41] that
have created tension for the Λ0CDM model concerning
the constancy of Λ0.

A small comment is necessary at this point. The gen-
eral constraint is an equation as valid as the Einstein’s
equations, since in this framework both equations follow
from the requirement to have the Bianchi identity be-
ing satisfied and preserving the standard local conserva-
tion laws. Therefore, our dynamical analyses that result
from the general constraint is automatically incorporated
in the dynamics that one finds coming from Einstein’s
equations. In other words, it is legitimate to derive pre-
liminary conclusions after looking only to the constraint
given all the equations are consistent among themselves.

VI. PROSPECTS

In some sense, the framework presented here had al-
ready been briefly considered in the literature, but many
points were not particularly addressed. Now that we have
revived the model and shown some different consequences
of it, we have laid the ground for further work regarding
its own limitations and applications.

At the formalism level, we have emphasized the neces-
sity of having the dynamics of the fundamental constants
being given by an action principle/equation of motion.
This is being developed [21] specifically in the framework
discussed here, in which we consider the background cos-
mology for Λ = 0. Having an action in someone’s hands,
this opens room for considering different dynamics for
the fields associated to c and G by choosing different po-
tentials, in a similar fashion to what is done for inflation.
This also allows considering early universe puzzles and
their resolutions without making use of an ad hoc field,
such as the inflaton, since there is a field associated to c
and G (they are “the same” given the general constraint
for Λ = 0) comes for free. Evidently, this can also be ap-

11 This is the case since our homogeneous description of these scales
takes a small volume (galactic) compared to a large one (cosmo-
logical) in order to consider the average energy density.

plied for late time cosmology, in particular investigating
dark energy.
Another clear direction of work is to understand the

cosmological perturbations in this approach. We know
that given that the equations are self-consistent, we can
consider a back of the envelope calculation just looking
at the general constraint at linear order in perturbations:

δTµν

(

∂µG− 4G

c
∂µc

)

+

+Tµν

(

∂µδG− 4G

c
∂µδc+

4G

c2
∂µcδc− 4

c
∂µcδG

)

+

+
c4

8π
gµν

(

∂µδΛ +
4

c
∂µΛδc

)

+
c4

8π
δµΛδgµν = 0.

(26)

Here it is clear that variations of c and G are connected
to perturbations in the local matter density. Although
we need to have a proper treatment after defining gauge
invariant variables, naively it is expected that effects sim-
ilar to cosmic accelerated expansion could be a local effect
due to such variations.

VII. CONCLUSIONS

We have started the construction of a framework in
which the fundamental constants, G, c and Λ, can be
spacetime variables, as long as their variations are con-
strained in relation to the local geometry and local stress
tensor. This framework does not provide a dynamics for
the variation of these constants, which leaves room for an
upgrade in which an action and equation of motion for
these variables could also be obtained, instead of having
their dynamics imposed by hand. When we have the full
framework built, this will provide a self-consistent and
covariant approach for treating the early universe puzzles
after considering fundamental constants as variables.
Regardless, we can already appreciate within this for-

malism an explanation of why we observe a cosmological
constant today, realizing cosmic accelerations by consid-
ering variations of the speed of light and a better un-
derstanding of the interpretation of having a varying-c
theory which is also covariant. We also have presented
extensive discussions of the implications of choosing the
CMB class of frames without assuming the constancy of
the fundamental constants in it. We hope that future
works will be able to bring other applications of the full
framework, not only at the background level, but for the
perturbations as well.
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