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A b s t r a c t 

We investigate the cosmological consequences of Bekenstein theory, in which the 

electric charge e takes on the value of a real scalar field. Cosmic string vortices in 

such theories are shown to act as source for variations in the electric charge, giving 

a significantly different value at the string core. The dielectric field arranges itself in 

the shape of a local string with a quantized magnetic flux presumably borrowing these 

features from the underlying Nielsen-Olesen vortex. 

Furthermore we produce a self-consistent cosmological model from the Bekenstein 

theory. We show how this model can explain the recent evidence for a varying a , whilst 

still honouring constraints from fifth-force experiments. This is done by placing strong 

constraints upon the nature of the dark matter in the Universe. This cosmological model 

is investigated in detail, and it is shown, alongside Brans-Dicke theory, to motivate the 

formulation of novel anthropic considerations. 

The link between non-minimally coupled scalar fields and weak equivalence princi-

ple violations can be shown to imply striking experimental differences between different 

varying-Q! theories. We suggest ways in which this can be used to distinguish observa-

tionally between varying e and varying c theories. 

We also propose a self-consistent theory which combines our varying e theory 

with Brans-Dicke varying G theory. In this framework both a and G are allowed to 

vary simultaneously. The theory has similar behaviour to the constant G case, with G 

varying only a few percent through the history of the Universe. 
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Chapter 1 

Introduction 

The possibihty that the constants of Nature may not be constant at all has long 

been entertained by physicists. Despite decades of enormous advances in fundamen-

tal particle physics we still have no idea why the constants of Nature take the values 

they do, let alone know the processes by which they acquire their values. Historically 

the gravitational constant has been the main subject to this sort of speculation. It 

started in 1935 when Milne set up his kinematic theory in which the gravitational con-

stant is shown to grow oc i[l, 2]. This was followed by Dirac's 1937 "Large Numbers 

Hypothesis" [3]. It states that the existence of certain large dimensionless numbers which 

arise in combinations of some cosmological numbers and physical constants was not a 

coincidence but a consequence of an underlying relationship between them. 

To understand Dirac's concern about the "Large Numbers" we need to go into 

further detail[3]. Note first that the approximate number of nucleons in the universe 

is N ^ p{cH^^Y/rup ~ 10®°. Another dimensionless number is the ratio between the 

Hubble radius and the Compton wavelength of an electron which is c H ~ ^ / ~ lO^o 

thus approximately \ / N . A similar order of magnitude can be obtained if one considers 

the ratio between electromagnetic and gravitational forces on a hydrogen atom, namely 

e^/Gmpirie ~ 10^°, again ~ y/N. Dirac felt there had to be a deeper connection behind 

these seemingly coincidental numbers and proposed that this relationship should hold for 

all times not just the present day. Since the universe is expanding we know that the ratio 



between universal and atomic radii should go as oc t. Thus if Dirac's hypothesis 

is correct we would expect e'̂ /GmpTTie oc i as well. Dirac went on to suggest that this 

dependence was carried by the gravitational constant and thus G ( x f ^ . Dirac's Large 

Number Hypothesis later attracted considerable interest[4, 5, 6, 7, 8]. Jordan[9, 10] was 

the first to consider how Dirac's hypothesis might be applied to forces other than gravity, 

however he rejected time variations in the weak interactions or the electron-proton mass 

ratio. Brans and Dicke[ll] put G variation into a more rigorous theoretical framework 

within a scalar-tensor generalisation of General Relativity. This work was motivated 

in part by apparent discrepancies between observations and General Relativity in the 

solar system, but also by a wish to incorporate Mach's principle into General Relativity 

in the sense that the physical properties of space should have their origin in the matter 

contained therein. In this formalism variations in G were described self-consistently by 

the propagation of a scalar field which also acted as a source of space-time curvature. 

Teller (1948) [4] pointed out that G oc as followed from the LNH, would lead to earth 

surface temperatures near the boiling point of water. In 1967 attention shifted towards 

the electromagnetic fine structure constant a — ^ jhe % 1/137.04, when Gamow[12] in 

order to avoid these geological problems, suggested that the Large Number Hypothesis 

should be interpreted as a variation in the charge on the electron rather than in G so 

that a (xt . However this power-law variation in recent geological past was soon ruled 

out by other evidence. 

The first proposition of a proper theory for a varying fine structure constant was 

made by Bekenstein in 1982[13]. He formulated a theory which could account for a 

variation in a or to be more precise, a variation in the fundamental charge, whilst 

still honouring important physical principles like causality and general covariance. This 

theory will form the basis of our work, and it will be described in more detail in a later 

chapter. 

More recently, theories allowing for variations in fundamental constants arise 



from attempts to find a unified theory of quantum gravity. Most candidates like string 

and M-theories all feature extra dimensions, and in this scenario the 3+1 dimensional 

couplings we observe, are mere effective values of the true higher dimensional couplings 

and would thus vary as the size of the extra dimensions change. Various string theories 

exhibit different variations in the effective couplings, some of which allow both a and 

G to vary at the same time. 

A more radical approach to varying a is seen in the so-called varying speed of 

light (VSL) theories. These theories attribute the change in the fine-structure constant 

to a varying light propagation speed[14, 15]. The motivation for such theories are 

their ability to solve the cosmological problems usually solved by inflation. Clearly 

the horizon problem is trivially solved by claiming a much higher light speed in the 

early universe, and under closer investigation these theories can be shown to also solve 

both flatness and monopole problems[14, 15, 16, 17, 18, 19]. VSL theories typically 

entail the breaking of Lorentz invariance, however there are exceptions (see e.g. [20] or 

[21]). Barrow and Magueijo developed a particular VSL theory in which the variation 

in the speed of light is coupled to the cosmological constant providing an explanation 

for the apparent smallness of the cosmological constant [22]. It is important to realise 

that speaking of variations in dimensionful constants is somewhat ambiguous, since a 

varying e theory can be reformulated as a VSL theory by an appropriate change of units 

(see e.g. the discussion in [15]). However the dynamics will be more transparent in the 

original frame, and it is in this context we can speak of a varying e vs. a varying c theory. 

Indeed we cannot experimentally distinguish one from the other as only dimensionless 

ratios can be measured[23]. 

The formulation and detailed investigation of varying-a cosmological theories have 

been further motivated by recent observations. The new observational many-multiplet 

technique of Webb et. al., [24], [25], exploits the extra sensitivity gained by studying 

relativistic transitions to different ground states using absorption lines in quasar (QSO) 



spectra at medium redshift. It has provided the first evidence that the fine structure 

constant might change with cosmological time[24, 25, 26]. The trend of these results 

is that the value of a was lower in the past, with A a / a = —0.72 ± 0.18 x 10"^ for 

z « 0.5 — 3.5. During the course of this thesis this data has been improved and the claim 

for a non-zero change in a with cosmological time is now at near 6a level, so although 

independent confirmation is necessary, the results must now be taken seriously. 

Another constraint on the time-variation in the fine structure constant comes from 

the natural reactor in Oklo, Gabon. By analysing nuclear and geochemical data one has 

been able to reconstruct the operating conditions of the reactor, and the thermal neutron 

capture cross sections of several nuclear species have been measured. Of particular 

interest is the gl^Sm capture cross section 

n S m - ) - g 2 ° Sm + 7 (1.1) 

which was found by Shlyakhter in 1976[27] to be dominated by a narrow capture reso-

nance of a neutron of energy near 0.1 eV. The existence of this resonance is a consequence 

of a near cancellation between the electromagnetic repulsive force and the strong inter-

action. By measuring this cross section at the time of reaction and relating it to the 

energy of the resonance one can translate the variation in this energy into a constraint 

on the time variation of the fine structure constant[27, 28]. The analysis of isotope ratios 

give jAa/a l < 10~^ over a period of 1.8 billion years (redshift z 0.1)[27]. However a 

recent re-analysis of the Oklo bound using new Samarium samples provides two possible 

results for a [28], 

A a / a = - ( 0 . 7 ± 0 . 9 ) x 10"^ (1.2) 

or 

Aa/a = (7.9 ± 0.7) x lO'* (1.3) 

These two values correspond to two possible physical branches. Note that only the first 

solution is consistent with a null result, whereas the other solution has opposite sign to 



the Webb results. 

There are also cosmological constraints on a coming from the Cosmic Microwave 

Background (CMB) and Big Bang Nucleosynthesis (BBN). The effects of varying fine 

structure constant on the CMB are twofold. Firstly it changes the temperature at which 

last scattering happens and secondly it changes the residual ionization after recombina-

tion. Both of these effects will affect the CMB anisotropics. For instance, an increase 

in a will lead to smaller sound horizon at the time of decoupling, with a corresponding 

shift of the C; spectrum to higher multipoles. These effects have been used to set upper 

limits on \Aa/a\ of the order a few per cent[29, 30], consistent with a null result. The 

amount of ^He produced during nucleosynthesis is mainly determined by the neutron to 

proton ratio at the freeze-out of weak interactions which is again directly dependent on 

the proton neutron mass difference. Electromagnetic energy contributes differently to 

neutron and proton masses[31], thus a change in the electromagnetic coupling will lead 

to a change in the neutron proton mass difference. The a dependence of Am can be 

modelled by[32] Am % 2.05 — 0.76 x (1 + Aa/a) MeV. Avelino et. al.[29] utilised this 

connection to derive the bound Aa/a = (—7 ± 9) x 10^^, although other investigations 

have claimed slightly less restrictive constraints [32]. 

Should the observations of Webb et. al. be confirmed it will indeed be one of 

the biggest discoveries in physics over the last half century, and finding a reasonable 

theoretical explanation will be a great challenge. No doubt most of the physical con-

structions employed by physicists will have to be reexamined. Bekenstein's theory is 

perhaps the most conservative theory with which to interpret the new results, in the 

sense that it does not require giving up any truly fundamental principles, such as co-

variance and Lorentz invariance. Within the framework of this theory the vacuum is 

pervaded by a dielectric medium screening the electric charge. The properties of this 

dielectric medium are determined by the electromagnetic field itself, within the context 

of a dynamical Lagrangian theory. It is the purpose of this thesis to explore and develop 
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further Bekenstein's theory. 

In the next chapter as an introduction to the subject, we consider sohton solutions 

to Bekenstein's theory, for which the fine structure constant is allowed to vary due to 

the presence of a dielectric field pervading the vacuum. More specifically we investigate 

the effects of a varying a. upon a complex scalar field with a U{1) electromagnetic gauge 

symmetry subject to spontaneous symmetry breaking. We find vortex solutions to this 

theory similar to the Nielsen-Olesen vortex. Near the vortex core the electric charge is 

typically much larger than far away from the string, lending these strings a supercon-

ducting flavour. In general the dielectric field coats the usual local string with a global 

string envelope. We discuss the cosmological implications of networks of such strings, 

with particular emphasis on their ability to generate inhomogeneous recombination sce-

narios. We also consider the possibility of the dielectric being a charged free field. Even 

though the vacuum of such a field is trivial, we find that the dielectric arranges itself in 

the shape of a local string, with a quantized magnetic flux at the core — presumably 

borrowing these topological features from the underlying Nielsen-Olesen vortex. 

In chapter 3 we explore the cosmological consequences of a simple theory in 

which the electric charge e is allowed to vary. The theory is locally gauge and Lorentz 

invariant, and satisfies general covariance. We find that in this theory, a remains almost 

constant in the radiation era, undergoes small increase in the matter era, but approaches 

a constant value when the universe starts accelerating due to the presence of a positive 

cosmological constant. This model satisfies geonuclear, nucleosynthesis, and CMB con-

straints on time-variation in a , while fitting simultaneously the observed accelerating 

universe and the recent high-redshift evidence for small a variations in quasar spec-

tra. It also places specific restrictions on the nature of the dark matter. Further tests, 

involving stellar spectra and the Eotvos experiment, are proposed. 

Chapter 4 investigates further and more deeply the behaviour of a time-varying 

fine structure 'constant' a{t) during the early and late phases of universes dominated by 



the kinetic energy of changing a{t), radiation, dust, curvature, and lambda, respectively. 

We show that after leaving an initial vacuum-dominated phase during which a increases, 

a remains constant in universes like our own during the radiation era, and then increases 

slowly, proportional to a logarithm of cosmic time, during the dust era. If the universe 

becomes dominated by negative curvature or a positive cosmological constant then a 

tends rapidly to a constant value. The effect of an early period of de Sitter or power-law 

inflation is to drive a to a constant value. Various cosmological consequences of these 

results are discussed with reference to recent observational studies of the value of a from 

quasar absorption spectra and to the existence of life in expanding universes. 

In chapter 5 we study inhomogeneous cosmological variations in a in Priedmann 

universes. Inhomogeneous motions of the scalar field driving changes in a display spa-

tial oscillations that decrease in amplitude with increasing time. The inhomogeneous 

evolution quickly approaches that found for exact Priedmann universes. 

Chapter 6 contains a discussion of novel anthropic arguments, as we demonstrate 

how in some cosmological theories with varying constants there are anthropic reasons 

why the expansion of the universe must not be too close to flatness or the cosmological 

constant too close to zero. Using exact theories which incorporate time-variations in 

a and in G we show how the presence of negative spatial curvature and a positive 

cosmological constant play an essential role in bringing to an end variations in these 

'constants' during any dust-dominated era of a universe's expansion. In spatially flat 

universes with A = 0 the fine structure constant grows to a value which makes the 

existence of atoms impossible. 

The recent evidence for a time-varying fine structure 'constant' has raised an im-

portant question. Are the results to be interpreted as a varying e, c, H, or a combination 

thereof? In chapter 7 we consider as examples a simple varying electric charge theory 

and a varying speed of light theory (VSL) and prove that for the same type of dark mat-

ter they predict opposite senses of variation in a over cosmological times. We also show 



that unlike varying e theories, some VSL theories do not predict violations of the weak 

equivalence principle (WEP). Varying e theories which explain astronomical inferences 

of varying a. predict WEP violations only an order of magnitude smaller than existing 

Eotvos experiment limits but will be decisively tested by STEP. We finally exhibit a 

set of atomic-clock and related experiments for which all (hyperbolic) varying a theo-

ries predict non-null results. They provide independent tests of the recent astronomical 

evidence. 

In chapter 8 we formulate a simple extension of general relativity which incor-

porates space-time variations in the Newtonian gravitation 'constant', G, and the fine 

structure 'constant', a, which generalises Brans-Dicke theory and our theory of varying 

a . We determine the behaviour of Friedmann universes in this theory. In the radiation 

and dust-dominated eras aG approaches a constant value and the rate of variation of 

a is equal to the magnitude of the rate of variation in G. The expansion dynamics of 

the universe are dominated by the variation of G but the variation of G has significant 

effects upon the time variation of a . Time variations in a are extinguished by the dom-

ination of the expansion by spatial curvature or quintessence fields, as in the case with 

no G variation. 

We conclude with chapter 9 where we sum up the main findings of this thesis. 

We also address the difficulties in matching the QSO data with theory, and explore 

possible future directions that our work could take. Finally in appendix B we add some 

unpublished results describing the nature of charged black hole solutions in our theory. 
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Chapter 2 

Nielsen—Olesen vortex in varying-a theories 

2.1 Introduction 

As mentioned in the previous chapter, Bekenstein's theory is perhaps the most 

conservative theory with which to interpret the Webb results [1, 2]. In such dynamical 

Lagrangian theory there will not only be temporal variations in a but also spatial 

variations in the surroundings of an object with an electromagnetic energy component. 

The application of this theory to cosmology is clouded by the issue of determining 

how much of the matter in the Universe will act as a source for this dielectric medium 

[3] (see however [4, 5] and the following chapters of this thesis). Clearly one needs to 

understand the microphysics underlying the cosmological fluid, in particular the nature 

of the dark matter, in order to set up a consistent cosmological model. In this chapter 

we first turn to a more concrete and simpler situation. We consider a complex scalar 

field with a C/(l) gauge electromagnetic symmetry spontaneously broken, which couples 

to a dielectric field in accordance with Bekenstein's prescription. We then consider 

topologically non-trivial solutions to this theory, the counterpart of the Nielsen-Olesen 

vortex [6]. In the standard theory such vortices have well localized concentrations of 

energy, along a stable string-like core. Furthermore this core constitutes a magnetic 

field flux tube. Hence the vortex acts as a source for the dielectric vacuum proposed in 

[3], leading to a varying a in the vicinity of the string. 

The value of e in the string core is therefore much larger (smaller) than the 
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asymptotic value eo (larger or smaller depending on parameter signs). If e becomes 

much larger we obtain a situation vaguely similar to the superconducting strings of 

Witten [7]. Indeed in some sense, infinite charge could amount to superconductivity. 

In Sec. 2.2 we set up the formalism, and study the asymptotics of our solution, and in 

Sec. 2.3 present the full numerical solution. A qualitative discussion of the implications 

of cosmological networks of such strings is presented in Sec. 2.4. Such strings would 

combine local and global string elements in their evolution and energy loss mechanisms, 

as well as in their gravitational interaction with the surrounding matter. More distinctly 

they would generate inhomogeneities in the value of e, leading, among other things, to 

inhomogeneous recombination scenarios. 

Another interesting connection, spelled out in Sec. 2.5, is the similarity between 

our solutions and fast-tracks, a construction found in VSL theories [8]. Such solitonic 

solutions to VSL allow for fast travel without a time-dilation effect. We discuss how 

the situation is distinctly different in the case of these strings — they still allow for 

fast travel in some sense, however they would induce a time-dilation effect of their own 

which has nothing to do with the special relativity effect. 

The solution derived in Sec. 2.2 is but the simplest of many similar constructions 

involving solitonic solutions coupled to varying charge theories. In all of these a gauge 

field undergoing spontaneous symmetry breaking supplies a solitonic solution which acts 

as a source for a dielectric field. As a result a dielectric coating is superposed on the 

soliton, forcing the gauge coupling (or charge) to vary in the soliton core or near its 

vicinity. In Sec. 2.6 we discuss the possibility of gauging the dielectric field itself. In a 

concluding discussion, in Sec. 2.7 we also consider the possibility of non-Abelian gauge 

groups, and similar constructions with the morphology of monopoles and textures. 
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2.2 The model 

We first describe Bekenstein's theory in the context of a charged complex scalar 

field undergoing spontaneous symmetry breaking. Let 0 be a complex scalar field with a 

gauged U{1) symmetry, and A^j, be the gauge field. Let the electric charge e be a variable, 

with e = e/eo where cq is some fixed electric charge. Under a gauge transformation 

Scj) = iAcf), where A is a scalar function, one should impose SAfj, = — (9^A)/e, so that the 

derivative — dfj, + ieA^ transforms covariantly. The gauge invariant electromagnetic 

field tensor is then 

— di,{€A^j)) (2.1) 

and the Lagrangian is; 

r = - y(9^) - (2.2) 

(we are using a metric with signature — h + + as we will do consistently throughout 

this thesis). The first three terms constitute the matter Lagrangian, while the last term 

governs the dynamics of e. We adopt the proverbial Mexican hat potential: 

y((?i)) = (2.3) 

with A and m? < 0 fixed parameters. The vacuum is then the circle |^| = = 

A/-m2/(2A). 

We first introduce a transformation which simplifies Bekenstein's theory enor-

mously. We note that by defining an auxiliary gauge potential = eA^ and field 

tensor: 

ffj,u — — d^cii, di/dfj, (2.4) 

the Lagrangian becomes 

C = — V{<j)) - •^d^ed'^e, (2.5) 
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in which + «eoo^. Hence we have eliminated the dependence on e in the matter 

Lagrangian apart from dividing the term by e^. This greatly simplifies the variational 

problem regardless of which variables we decide to label as physical (which is essentially 

a matter of convention). Indeed zero variation with respect to {(j), e} is equivalent to 

zero variation with respect to {(j), e}. We have also exposed an interesting similarity 

between this theory and Brans-Dicke changing-G theory. In the latter one multiplies 

the Ricci scalar (essentially a p term) by a scalar field, which also does not appear 

explicitly elsewhere (other than in its own kinetic terms or potential). 

Variation of (2.5) with respect to cj) produces the equation: 

in which we may use or = d^ + ieA^. Variation with respect to 

now produces straightforwardly; 

ftlV p/i!/ 
(2.7) 

The first pair of Maxwell equations need to be modified accordingly. By use of the 

antisymmetric properties of the electromagnetic field tensor, we can show that the 

following relation is satisfied 

dfaP , ^/i87 I df^a _ deFgp deF/jry deF^g _ fo e"! 
dx^ dx°^ dx^ dx"< dx°^ dx^ 

Finally variation with respect to e leads to: 

These equations, in the representation, are nothing but Bekenstein's equa-

tions. However the transformation we have used has simplified the derivation greatly, 

and it will also simplify the search for solutions in what follows. 

We now seek solutions similar to the Nielsen-Olesen vortex in this theory. We 

therefore introduce the ansatz cj) = x(r)e'"^ and ag = a{r) with all other components 
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for set to zero. We define a magnetic field out of the tensor, so that b = V x a. 

Hence the magnetic field is aligned with the z direction and has value: 

b = bz = — — [ra]. (2.10) 
rdr 

The dynamical equations are: 

x = 0, (2.11) 

which is unmodified, and 

and 

1 d f (ilne\ 16^ 
r d r V ' ' " ^ J (2.13) 

To investigate the asymptotic behaviour far from the core, first recall that the 

scalar field takes on the constant value % = s j for r —>• oo. Prom Eq. (2.11) we 

then see that 

a = — , (2.14) 
reo 

which also agrees with Eq. 2.12. Prom this we deduce that the fiux of b is quantized: 

J b • dS = ^ a. - dl — (2.15) 

but not the flux oi B = b/e in which e takes the role of a magnetic permeability. We 

also find the asymptotic solution for e: 

- j , (2.16) 

where I is the integral of over a string cross section. Hence e can only either go to 

zero (if w > 0) or infinity (if w < 0) far away from the string — corresponding to a 

logarithmic divergence in •0; not surprising since (2.13) has sources at spatial infinity (at 

z -- ±oo). Furthermore the energy in the e field diverges away from the string. These 
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Figure 2.1: Numerical integration of the Nielsen-Olesen vortex. The first graph shows 
the solution of t/) = Ine as a function of r , in Bekenstein's theory. The middle graph 
shows a plot of B with a constant electric charge (dashed line) compared to a plot of b 
in Bekenstein's theory. The third graph compares the solution of the (j) field in the two 
theories; the solutions are indistinguishable. 
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features are well known properties of global strings. Indeed we have a local or gauged 

string (in the field </>) superposed on a global string (in the field e). 

In a cosmological setting these seemingly pathological divergences are naturally 

removed by the scale of curvature of the strings. Then the difference between the 

asymptotic and core values of the electric charge is roughly of the order of 

where and ro are the curvature and core radii of the string respectively. 

If we require that •0 has a positive definite energy, then w > 0 in which case the 

charge at the core should be much higher than its asymptotic value. It is in this case that 

we can claim a similarity between our construction and superconducting strings [7]. In 

some loose sense a diverging electric charge should be equivalent to superconductivity. 

Indeed applying an electric field upon a conductor in the interior of this string subjects 

the charge carriers to a force proportional to e. Hence the electric force applied to 

them is much larger than normal. If the resistance to which they are subject does not 

change, we can then ignore it — and it is in this sense that these strings could maintain 

persistent currents and therefore be labelled superconducting. Note that this is just a 

loose analogy: effects such as the expulsion of magnetic fields from the interior of the 

string are not present in this case. 

Our solution also has vague similarities to the dilatonic string of [9], for which 

the string mass per unit length is a function of a scalar field. 

2.3 Numerical Solutions of the Model 

Equations (2.11)-(2.13), together with the asymptotic values at r = 0 and r = rc, 

constitute a boundary value problem. For the sake of numerically solving this problem, 

it is convenient to make the following change of variables so as to avoid singularities: 

a —> V = ar, (2.17) 

e -4- •0 = lne. (2.18) 
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We also reduce the problem to first order by introducing the new variables 

The new set of equations suitable for numerical implementation is 

(&20) 

I = ,2.21, 

t = (2-22) 

dh 

dr 
2776 - ^2eo" (2.23) 

t - - " 

f = 'l-h"""'"*-

We first check our code on the Nielsen-Olesen vortex with constant e. The results 

for the scalar field and the magnetic field compare well with the original work[6], and are 

shown as the dashed lines in Figure 2.1. We then allow the e to vary, and incorporate 

Equations (2.20)-(2.25). The results are consistent with the asymptotic behaviour found 

in Equations (2.14)-(2.16), and are shown as the solid lines in Figure 2.1. 

2.4 Qualitative discussion of a cosmological network 

Varying-Q! strings, if formed at phase transitions, would have a complex evolution. 

It is conceivable that the string core would still be governed by the Nambu-Goto action. 

Also, presumably these strings, when crossing, would still intercommute (although this 

fact should be checked by numerical simulations). However, in addition to intercom-

muting, the dielectric field would act as a long-range force between the strings, creating 

a double mechanism for string interaction. Hence we should have something like a local 

string network, acting as a source for a global string network, the two networks being 

driven by their usual interaction mechanisms plus a complex interaction between the 

two. 
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Energy loss processes would again combine local and global string elements. The 

core string should develop small scale structure, via intercommutation, thereby emit-

ting gravitational radiation. On the other hand the dielectric field would now supply 

a channel for the string to lose energy via the emission of scalar radiation. A com-

bination of processes peculiar to local and global strings should therefore push these 

strings towards a scaling solution, but clearly we may expect such scaling solutions to 

be distinctly different from the usual ones. 

The interactions of these strings and the other matter in the universe would also 

be rather peculiar. Gravitationally we would find a combination of the effects of local 

strings (and their conical flat space) and the more complex global string gravitational 

fields. However, predicting the density fluctuations in this scenario as a simple superpo-

sition of global and local fluctuations (that is the total spectrum as a weighted average 

of the separate spectra) is clearly too gross an approximation. The local and global 

string networks will be highly correlated, and have a strong feedback effect upon each 

other. Whatever the gravitational effects of these strings upon the surrounding matter 

will be, they have to be determined by simulations along the lines of [10, 11] specifically 

applied to varying-a string networks. Note that unlike conventional super-conducting 

cosmic strings we would not expect the equation of state of these strings to differ from 

standard ones. 

However what would truly distinguish these strings, and their possible cosmolog-

ical effects, is the fact that the electric charge varies in their vicinity. For a straight 

string the electron charge variation away from the core would be given by: 

A5 = , (2.26) 
e WTT ro 

in which for the I defined after equation 2.16, we used I = Here /i is the string 

mass per unit length, and /3 is the fraction of this mass in the magnetic field flux tube. 

These fluctuations are therefore of the order of the gravitational potential induced by 
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the strings. 

Hence, in addition to acting as gravitational seeds for structure formation, these 

strings would affect any electromagnetic processes in their neighbourhood. A topical 

example is recombination. In the vicinity of these strings the hydrogen binding energy 

would suffer spatial variations, leading to inhomogeneous recombination. The impli-

cations of a homogeneous changing-a upon recombination and CMB anisotropy were 

studied in [12, 13]. A network of changing-a strings would provide additional effects. 

2.5 A comparison of varying-a strings and fast tracks 

Although there is a parallel between the solutions found in this chapter and fast-

tracks [8], there is a crucial difference. Fast-tracks are string-like solutions to some 

covariant VSL theories such that the speed of light is much higher near the string core. 

Hence observers may move along the string core much faster than the asymptotic value 

of c = C o o - Moreover such " s u p e r - C o o " speeds need not be relativistic, that is, they may 

still be much smaller than the local value of c, so that such observers would not be 

subject to time-dilation effects. Fast-tracks are what space travel is begging for: fast, 

"superluminal" travel, free from time dilation. It can be shown that a change of units 

transforms fast-tracks into wormholes. 

In the case of our strings the situation is rather different. As a changes near the 

string core so will change the time rates associated with all electromagnetic processes. 

In particular an atomic clock, ticking to a rate r oc l / o^ , will tick differently. Biological 

processes, being electromagnetic, also tick to this rate. If the charge decreases towards 

the string core, then alpha is smaller, and so the time scales r of all electromagnetic 

processes increase. Unfortunately this situation is realized in the case w < 0 , for which 

the dielectric energy density is not positive definite. Nonetheless let us consider further 

this case. 

Using coordinate time we know that " s u p e r - C o o " speeds cannot be achieved near 
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the string. However, since e 0, it would then be possible to "pickle" observers 

moving along the string, since r —)• oo. If we were to measure speeds along the string in 

atomic clock units, then we could indeed measure " supe r -Coo" : the point is that natural 

organisms would be able to travel very large distances within their perceived time scales. 

However the use of such strings for space travel would still lead to twin paradox 

effects: clearly a round trip would cause a large difference in ages between sedentary 

and nomadic twins. Curiously enough such a time dilation effect has nothing to do with 

relativistic speeds. It is simply given by 

At — Ato 

In this respect the varying-a strings considered here are distrinctly different from VSL 

fast-tracks. 

2.6 Gauged dielectric field 

We have noted that the dielectric coating surrounding our modified Nielsen-

Olesen vortex is like a global string superposed on the usual gauged string (made up 

of charged scalar field and a magnetic flux tube). Further symmetry would be enforced 

if the dielectric itself were charged, that is if we replaced Bekenstein's real scalar field 

= Ine, by a complex field such that e = Upon gauging the U{1) symmetry 

associated with ip we therefore arrive at the Lagrangian: 

4 c 

(2.28) 

in which where g the charge of the dielectric field, is the photon 

associated with the dielectric, and G^i, = d^Bi, — the corresponding field tensor. 

The equations for the scalar field (j) and the gauge field remain unaffected, but the 
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equation for ijj is now: 

(2.29) 

and for By, 

(2.30) 

Under cylindrical symmetry these equations may be solved using the same ansatz for 0 

and as before, and the counterparts for the dielectric: ip = and Bg — B{r) 

(with all other components of B^ set to zero). The new equations are 

= » • ( - ) 

Given that is confined to the (local) string core, the asymptotics for the new fields 

are similar. While we still have % = y — a n d a — n/{reo), for r —)• 0 0 , we find that 

^ may go to any constant (if eo is the asymptotic value of the electric charge, ^ - + 0 ) , 

while 

B = —. (2.33) 
rg 

Overall we find that the dielectric behaves like a local string superposed on the usual 

Nielsen-Olesen vortex. Its magnetic flux, associated with the gauge field is quan-

tized, with a quantum number m. This is particularly curious as there is nothing 

topological in the nature of the dielectric string. Somehow it borrows these features 

from the topological nature of the ^-string sourcing it. The ijj field does not have a 

potential, only kinetic terms plus a source at the string. Thus the ip field can take on 

any covariantly constant value far away from the string, which amounts to constant \il)\, 

and a phase equal to m9. 

Notice that none of the points made in Section 2.4, regarding the cosmological 

implications of local strings coupled to an ungauged dielectric, apply to the strings con-

sidered in this section. The variations in e experienced in the surroundings of these 
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strings are confined to microphysical distances, and have no direct cosmological impli-

cations. 

It could also happen that 4> and ijj are coupled to the same ?7(1) gauge field. Then 

r = - y(,^) - (2.34) 

leading to equations; 

(2.35) 

1 
(2.36) 

and the gauge-field equation: 

2 ~ + (2.37) 

== ieo[qy\D"^-- (2.38) 

= ieo[V'*D''^-V'(^''V')1. (2.39) 

Studying the asymptotics of these equations we find that in this case the quantum 

number m associated with ij) would have to be the same as n. Indeed we have that cj) = 

%(r)e'"^, with % = y — a n d a = n/{reo); but now we should also have ip = ^(r)e'"^ 

with ^(r) going to any constant. More generally it could be that the charge of the ijj 

field is 5 = ke, where k is an integer (or more generally a rational number), in which 

case m — kn. 

2.7 Concluding remarks 

In this chapter we studied the counterpart of the Nielsen-Olesen vortex in Beken-

stein's varying-o; theory, by means of analytical asymptotic methods, and numerically. 

We found that such strings are covered by the dielectric medium characterizing Beken-

stein's theory. This coating, in effect, looks like a global string superposed upon the 

local string core. The electric charge would thus vary (typically increase) as the string 

core is approached. 
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We then discussed possible cosmological implications of such strings. Clearly their 

networks will be much more complex than just the superposition of a local and a global 

string network. We pointed out the main aspects in which their dynamics and energy 

loss mechanisms will be more complex. Structure formation in these theories will also 

have more to it than just a superposition of results known to be true for the two types of 

network. In addition we highlighted a peculiar feature of these networks: their ability to 

generate inhomogeneities in the electric charge, and consequently (among other things) 

to generate inhomogeneous reionization scenarios. 

In a brief section we compared these strings with fast-tracks: solitonic solutions 

to VSL theories along which fast travel without time-dilation effects is possible. We 

showed that while in some sense fast travel along these strings is possible, in those cases 

one cannot evade a time-dilation effect. Curiously enough this time dilation effect is 

present even if observers do not exceed non-relativistic speeds. It is an effect merely due 

to the fact that the pace of atomic clocks depends upon a , and slows down accordingly 

near the string core. 

Finally we initiated an exploration of other solitonic solutions in these theories. 

We considered the possibility that the dielectric field itself might be a gauged. We found 

that in such a case, even if the dielectric is not endowed with a potential, it acquires 

topological features, e.g. quantization of its associated magnetic field flux in the string 

core. 

Although in this work we restricted ourselves to gauged J7(l) symmetries it is 

possible to generalize our constructions to non-abelian symmetry groups. Indeed coun-

terparts to Bekenstein's theory associated with strong interactions were discussed in 

[14]. Following such generalizations it would be possible to construct monopoles and 

textures (associated with 0(3) and SU{2) gauge symmetries), covered by similar di-

electric coatings. The only type of soliton which apparently could not be associated 

with changing-charge theories are domain walls, for which there is no associated gauge 
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symmetry. We defer to future work the scrutiny of these more comphcated sohtons. 
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Chapter 3 

A Simple Varying-alpha Cosmology 

3.1 Introduction 

As mentioned in chapter 1, the observations by Webb and collaborators have pro-

vided the first evidence that the fine structure constant might change with cosmological 

time[l, 2, 3]. The trend of these results is that the value of a was lower in the past, 

with Aa/cK = —0.72 ± 0.18 x 10"^ for z % 0.5 — 3.5. 

Another remarkable set of recent observations is of Type la supernovae in distant 

galaxies. These data have extended the Hubble diagram to redshifts, z > 1[4]. They 

imply an accelerated expansion of the universe. When combined with CMB data, the 

supernovae observations favour a flat universe with approximate matter density, ~ 

0.3 and vacuum energy density, ~ 0.7. Studies have attempted to determine whether 

quintessential scalar fields could explain both cosmological dark matter and the recent 

acceleration of the universe, [5, 6, 7, 8, 9]. 

We will not here attempt to explain the acceleration of the universe. Instead, we 

show that by applying a generalisation of Bekenstein's varying-e theory in a cosmological 

setting including the cosmological constant, A, we are able to explain the magnitude 

and sense of the observed change in a . The main assumption is that the cold dark 

matter has magnetic fields dominating their electric fields. The magnetostatic energy 

then drives changes in a in the matter dominated epoch, but as the Universe starts 

to accelerate these changes become friction dominated and come to a halt. This gives 
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a decelerated rate of change in a , just as the universe starts to accelerate, in accord 

with both data sets. The only energy scale we introduce is similar to the Planck scale, 

which also makes our model attractive. This model may be seen as a more conservative 

alternative to [10, 11], where a VSL scenario was proposed which could explain the 

observed acceleration of the universe and variations in a , as well as their remarkable 

coincidence in redshift space. 

3.2 A scalar theory of varying a 

Bekenstein's original theory[12] takes c and h to be constants and attributes 

variations in a to changes in e, or the permittivity of free space. In chapter 2 we 

introduced this theory in the context of a complex scalar field. Here, we will develop 

the relevant equations and formalisms in a cosmological setting. As seen in the previous 

chapter, the variation in a is achieved by letting e take on the value of a real scalar field 

which varies in space and time eo ^ e = eoe(a;^), where e is a dimensionless scalar field 

and Co is a constant denoting the present value of e. This means some well established 

assumptions, like charge conservation, must give way [13]. Still, the principles of local 

gauge invariance and causality are maintained, as is the scale invariance of the e field. 

Since e is the electromagnetic coupling, the e field couples to the gauge field as 

eAfj, in the Lagrangian and the gauge transformation which leaves the action invariant 

is eAu —>• eAu + x,fi, rather than the usual ^ An + x,fi- The gauge-invariant 

electromagnetic field tensor is again, — {{eA^)^^ — (eAfj,)^^) /e, which reduces to 

the usual form when e is constant. The electromagnetic Lagrangian is still £em = 

and the dynamics of the e field are controlled by the kinetic term Ce = 

— as in [12] (we again use a metric with signature - + + + ) . Here the 

coupling constant w can be written as where I is the characteristic length scale of 

the theory, introduced for dimensional reasons. This constant length scale gives the 

scale down to which the electric field around a point charge is accurately Coulombic. 
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The corresponding energy scale, hc/l^ has to lie above a few tens of MeV to avoid 

conflict with experiment. 

3.3 Cosmology in a varying a theory 

We now go on to consider Bekenstein's theory in the cosmological setting sug-

gested by the recent supernovae and CMB results. To simplify calculations, we invoke 

the transformation introduced in chapter 2. By defining an auxiliary gauge potential 

— eAfi, and field tensor the covariant derivative takes the 

usual form, — 0^ + %eoa .̂ The dependence on e in the Lagrangian then occurs only 

in the kinetic term for e and in the F'^ = /^/e^ term. To simplify further we change 

variable; e —>• '0 = Ine. The total action becomes 

5 = y di^X^f—g {^Cg + Cmat + + •^emS , (3.1) 

where and Cem = The gravitational Lagrangian is the 

usual Cg = Yg^_R, with R the curvature scalar. Our theory generalises Bekenstein's 

approach by including the effects of the varying e (or ^ ) field on the gravitational 

dynamics of the expanding universe. The scalar field ijj plays a similar role to the 

dilaton in the low-energy limit of string and M-theories, with the important difference 

that it couples only to electromagnetic energy. Since the dilaton field couples to all the 

matter (although generally to different sectors with different powers) then the strong 

and electroweak charges, as well as particle masses, can also vary with These 

similarities highlight the deep connections between effective fundamental theories in 

higher dimensions and varying-constant theories, [14]. 

To obtain the cosmological equations we vary the action with respect to the metric 

to give the generalised Einstein equations 

(Zp, = -KTZi, , (3.2) 
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and vary with respect to the ^ field to give the equations of motion for the field that 

carries the a variations: 

(3.3) 
w 

It is clear that £em vanishes for a sea of pure radiation since then £em = {E'^—B'^)/2 — 0. 

This suggests a negligible change in e in the radiation epoch, a fact confirmed by our 

numerical calculations. The only significant contribution to a variation in ip comes from 

nearly pure electrostatic or magnetostatic energy. 

In the matter epoch changes in e will occur. In order to make quantitative 

predictions we need to know how non-relativistic matter contributes to the RHS of 

Eqn. (3.3). This is parametrised by the ratio ( = Cem /p, where p is the energy density, 

and for baryonic matter £em ~ E'^/2. For protons and neutrons (p and can be 

estimated from the electromagnetic corrections to the nucleon mass, 0.63 MeV and 

—0.13 MeV, respectively [15]. This correction contains the E^/2 contribution (always 

positive), but also terms of the form (where is the quarks' current) and so 

cannot be used directly. Hence we take a guiding value Cp ~ Cn ~ 10"^. Furthermore 

the cosmological value of ( (denoted (m) has to be weighted by the fraction of matter 

that is non-baryonic, a point ignored in the literature [12, 18]. Hence, (m depends 

strongly on the nature of the dark matter, and it could be that (cdm ~ — 1 (e.g. 

superconducting cosmic strings, for which Cem ~ —B^/2), or \Ccdm\ 1 (neutrinos). 

BBN predicts an approximate value for the baryon density of % 0.03 with a Hubble 

parameter of /iq ~ 0.6 , implying Qcdm ~ 0.3. Hence, depending on the nature of the 

dark matter, can be positive or negative and have a modulus between 0 and % 1. 

Assuming a spatially-flat, homogeneous and isotropic Priedmann metric with ex-

pansion scale factor a{t) we obtain the Eriedmann equation^ (G = c = 1) 

( a ) ~ ~3" ~ j + Pre + p^^ + — (3.4) 

^ We refer to appendix A for a more rigorous form of this equation 
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Figure 3.1: Cosmological evolution from radiation domination through matter domi-
nation and into lambda domination with coupling = —0.02%. The upper graph 
plots CK as a function of the redshift z. The lower graph shows the energy densities of 
radiation ( ), dust ( ), cosmological constant ( ) and the scalar field (combined) 
as fractions of the total energy density. The scalar field energy is subdominant at all 
times, a increases in the matter era, but approaches a constant after A takes over the 
expansion. 

0 . 8 1 

redshift 

Figure 3.2: The data points are the QSO results for the changing a(z) reported in 
refs.[2, 1, 3]. The solid line is the theoretical prediction for a(z) in our model with 

= —0.02%. The top ( ) and bottom ( ) lines correspond to choices ( m / ^ = 
—0.01% and ( m / ^ = —0.03% respectively 
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where the cosmological vacuum energy pA is a constant given by A/(Svr), and 

For the scalar field we get 

'ip + SHip = e (3.5) 
w 

where H = a/a. The conservation equations for the non-interacting radiation and matter 

densities, Pr and pm respectively, are: 

p'm + ^Hpm — 0 (3.6) 

Pr + AHpr = 2'lpPr. (3.7) 

This last relation can be written as 

Pr + 4.Hpr = 0, (3.8) 

with Pr = pr^~'^^ oc a~^. Eq. (3.5) may be expressed in terms of the kinetic energy 

density of the ip field, = w^^/2, to give 

Pf + = 2 \ J ^ e (3-9) 

The •0 field behaves like a stiff Zeldovich fluid with p^ oc when the RHS vanishes. 

Eqns. (3.4-3.7), govern the Priedmann universe with time-varying a = exp(2'i/')eo//ic. 

They depend on the choice of the parameter Cm/w, which we take to be negative. We 

evolve these equations numerically from early radiation-domination, through the mat-

ter era and into vacuum domination by p \ . Fig. 3.1 shows the evolution of a with 

redshift in this model, for = —0.02%. We note that •0 and a remain almost 

constant during early radiation domination where baryonic species become relativistic. 

In the matter epoch, ip and a increase slightly towards lower redshifts, but tend to 

constant values again once the universe starts accelerating, and A dominates - this is 

due to the friction term Hip in Eq. (3.5). This A efi'ect reduces variations in a during 

the last expansion time of our universe where the local geonuclear effects of varying 
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a are strongly constrained by observations, [16, 17], while allowing the cosmological 

variations observed by [2, 1, 3] at redshifts, z ~ 0.5 — 3.5, where the effects of A on 

the expansion progressively diminish. In Figure 3.2 we plot the predicted change in a 

for —Cm/^ — 0.01,0.02,0.03%, and the binned QSO data from refs.[2, 1, 3]. Given the 

uncertainties in (rn discussed above, it is possible to fit the data with w = 0(1) , so that 

the theory's length scale is of the order of the Planck length. 

In view of the special a{z) variation produced by the cosmic acceleration there 

is agreement with all laboratory, geological and astrophysical constraints on varying-

a deriving from the last expansion time (cf. [18, 19, 16, 17]). Notice also that the 

supernovae luminosity data are fitted by our model, since tp affects the cosmological 

expansion very little, and its direct effect upon the luminosities of astrophysical objects 

is negligible. Hence, our Hubble diagram is precisely the same as that of a universe with 

constant a and fim ~ 0.3 and ~ 0.7. Our model also meets constraints from BBN, 

since it occurs deep in the radiation epoch, z ~ 10® — 10^^, when a is predicted to be 

only 0.007% lower than today. The standard BBN scenario can withstand variations 

in a. of the order of 1% without contradicting observations (see [20] and references 

therein). The value of a at CMB decoupling, z % 1000 is only ~ 0.005% lower than 

today, compatible with CMB observations, [20, 21], which place an upper bound of a 

few percent. However, the variations we predict are close enough to these limits to hold 

out the possibility of observational test in the future by more detailed calculations of 

the effects on BBN and the CMB, and more precise data. Low-redshift observations 

of molecular and atomic transitions [22] can provide important information about the 

value of a close to the redshift where acceleration commences, za ~ 0.7, if the chemical 

isotopic evolution uncertainty can be reduced [23]. 
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3.4 Spatial variations in a 

Spatial variations of a are likely to be significant [24], and our model makes firm 

predictions on how a varies near massive objects. Linearising eq. (3.3) and following 

the calculation of [25], one finds that relative variations in a are proportional to the 

local gravitational potential: 

^ = (3.10) 
a TTu r Cm r 

where M is the mass of the compact object, r is its radius, and Cs is its value of ( . 

When (jn and (s have different signs, for a cosmologically increasing a , we predict that 

a should decrease on approach to a massive object. If |Cm| ^ G, extragalactic scales 

the CMB temperature anisotropy A T / T ~ GM/r would lead us to expect large-scale 

spatial gradients of order A a / a ~ 10~®. More locally, one would need an object not 

larger than some tens of Schwarzschild radii for the effect on a{r) to be observable with 

current technology. However with improved technology, one might find less demanding 

candidates. An independent low-z test of the effects seen by [2, 1] could ultimately be 

provided by the detection of a Act ^ 0 effect from the fine structure of stellar spectral 

lines. The exact relation between the change in a with redshift and in space (near 

massive objects) is model dependent [25], but eq.(3.10) provides the exact prediction 

for the simple varying-a theory considered in this chapter. 

3.5 Sensitivity to Fifth Force Experiments 

Spatial gradients in a lead to an extra force acting upon matter coupling to 

via the term. In order to compute this force one must model ( for test bodies. The 

test-particle lagrangian may be split as Ct = Cm + Variation with respect 

to the metric leads to a similar split of the stress-energy tensor, producing an energy 

density of the form p((l - \Ct\) + |Ct|e~^^), and so a mass of m(( l - |Ct|) 4- |Cj|e~^^). In 



35 

order to preserve their ratios of Ci = J^em!P test particles may thus be represented by 

C{y) = - f d T m((l - 101) - (3.11) 

where over-dots are derivatives with respect to the proper time r . This leads to equations 

of motion: 
OA p—2'!/' 

which in the non-relativistic limit (with |((| <K 1) reduce to 

== , (3.13) 

where (j) is the gravitational potential. Thus we predict an anomalous acceleration: 

a = ^ f l + — ) (3.14) 
\ (jJTT J 

Since (p ^ Cn we see that depends on the make up of the test particles. Thus this 

force acts differently on matter with different composition leading to violations of the 

weak equivalence principle [15, 26]. These are parameterized by the Eotvos parameter, 

which in our theory is 

^ _ 2 | & i - Q2I ^ C g | C i - C2I ^ C g | C i - C2I Cp Cm 

ai + 0 2 WTT ttCp Cm W 

where E denotes the Earth and 1 and 2 two different test bodies. If Cn ~ Cp ~ ICp Cn| 

the first factor is C(10"^) for typical substances used in experiments. The third factor, 

Cm/w, is of the order of —10"^. Hence for |Cm| = 0(0.1) — 0(1) we have consistency 

with the current experimental bound, rj < [27]. We note that the next generation 

of Eotvos experiments should be able to detect the variations in a predicted by this 

theory, but firmer predictions require better theoretical calculations of C for neutrons, 

protons, nuclei and atoms (the uncertainties of which were discussed above). 

3.6 Predictions for Future Varying-a Probes 

Due to the potentially enormous impact of the Webb et. al. results [1, 2] it is 

vital that the searches be independently confirmed and extended to higher redshift. In 
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an attempt to aid future observational efforts, we will in this section give more extensive 

quantitative predictions of our varying a theory. We use a wide range of cosmologies 

from dust-only Universes to models strongly dominated by a cosmological constant. We 

also explore results from using different values for the model parameter determining the 

amount of change in a . 

Table 3.1 shows best fit^ to the Webb data with cosmological parameters ranging 

from 100% dust, to 90% cosmological constant. The best fit is achieved by finding 

optimal value for the parameter Cm/w for the given scenario. Table 3.2 shows results 

for models assuming the currently preferred energy distribution of 30% matter and 

70% dark energy. The different columns show various choices for the parameter Cm/w. 

Both tables show predicted variation for z = 0.1 (geophysical constraints), z = 0.5 to 

3 (current quasar absorption line observations) and goes on to predict variations for 

higher redshift z = 3 — 6 possibly subject to future observations. 

3.7 Conclusions 

In summary, we have shown how a cosmological generalisation of Bekenstein's 

theory of a varying e can naturally explain the reported variations in the fine structure 

constant whilst satisfying all other observational bounds. The onset of A domination is 

shown to be closely related to the cosmic epoch when significant changes in a cease to 

occur. Our numerical results show that with a natural coupling, and using observational 

constraints on the nature of the cold dark matter, a changes significantly only in the 

matter dominated epoch. At the onset of A domination, the expansion accelerates and 

a rapidly approaches a constant. This model also places specific restrictions on the 

nature of the dark matter. 

^ We used a Least Sum of Squares method to fit the model to the data. The values of the Sum of 
Squares for various sets of cosmological parameters are shown as "SS" in table 3.1 
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Redshift AQ/a(xlO-®) A a / a ( x l O - ® ) AQ/Q(X10-®) A a / a ( x l 0 " 5 ) AQ/Q{X10 
Urn = 0.1 Um — 0.3 dm = 0.5 dni = 0.7 fini = 1.0 

z CIa = 0.9 QA = 0.7 QA = 0.5 QA = 0.3 Ha = 0.0 
Cm/w = 0.029% Cm/w = 0.020% Cm/uj = 0.017% (m/w = 0.016% (m/w = 0.015% 

SS= 1.38 • 10-io SS= 1.24 10-10 SS= 1.17- 10-10 SS= 1.17 10-10 SS= 1.15-10-10 

0.1 -0.018 -0.032 -0.048 -0.057 -0.062 
0.5 -0.133 -0.196 -0.216 -0.243 -0.258 
1.0 -0.319 -0.381 -0.411 -0.422 -0.434 
1.5 -0.495 -0.542 -0.562 -0.573 -0.573 
2.0 -0.671 -0.691 -0.690 -0.690 -0.692 
2.5 -0.837 -0.819 -0.800 -0.791 -0.785 
3.0 -0.984 -0.934 -0.899 -0.881 -0.868 
3.5 -1.128 -1.032 -0.996 -0.958 -0.939 
4.0 -1.243 -1.110 -1.063 -1.031 -1.007 
4.5 -1.370 -1.197 -1.137 -1.099 -1.070 
5.0 -1.463 -1.275 -1.204 -1.161 -1.127 
5.5 -1.564 -1.344 -1.263 -1.215 -1.177 
6.0 -1.650 -1.403 -1.314 -1.261 -1.220 

1100 -7,803 -5.542 -4.957 -4.601 -4.301 
lOio -10.717 -7.649 -6.682 -6.181 -5.760 

Table 3.1: Predicted variation in the fine structure constant at redshifts 0 - 6 , last 
scattering {z = 1100) and BBN {z ^ 10^°), for fiat A: = 0 Universes with different values 
of ^Irn and The results represents optimal values for ( /w for the different sets of 
cosmological parameters. The goodness-of-fit is indicated by the Sum of Squares, SS 

Redshift Aa/a(xlO-^) Aa/a{xlO A a / a ( x l 0 - ^ ) A a / a ( x l 0 - ® ) 
z C/w = 0.01% C/oj = 0.02% 

(best fit) 
C/w = 0.03% C/w = 0.04% 

0.1 -0.015 -0.032 -0.047 -0.063 
0.5 -0.098 -0.196 -0.294 -0.393 
1.0 -0.190 -0.381 -0.571 -0.761 
1.5 -0.270 -0.542 -0.812 -1.083 
2.0 -0.345 -0.691 -1.036 -1.381 
2.5 -0.409 -0.819 -1.227 -1.636 
3.0 -0.466 -0.934 -1.399 -1.866 
3.5 -0.515 -1.032 -1.546 -2.061 
4.0 -0.554 -1.110 -1.663 -2.217 
4.5 -0.597 -1.197 -1.792 -2.390 
5.0 -0.636 -1.275 -1.910 -2.546 
5.5 -0.671 -1.344 -2.013 -2.684 
6.0 -0.700 -1.403 -2.101 -2.801 

1100 -2.825 -5.642 -8.462 -11.283 
10^° -3.824 -7.649 -11.473 -15.296 

Table 3.2: Predicted variation in the fine structure constant at redshifts 0 - 6 , last 
scattering {z = 1100) and BBN {z ~ 10^°), for fiat k = 0 Universes with ilm = 0.3 and 

= 0.7. The different scenarios represent different choices for the value of our model 
parameter ( /w 
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Our model complies with geonuclear constraints, like Oklo, but is consistent with 

the non-zero variations in a{z) inferred from observations of quasar absorption lines 

[2, 1, 3] at z ~ 0.5 — 3.5. It is also consistent with CMB and BBN observational 

constraints. The model is attractive because of its simplicity; apart from the (observed) 

cosmological constant value, the only free parameter introduced is an energy scale similar 

to the Planck scale. There is also only one extra scalar field, and no potential has to be 

put in by hand. Further tests for this model will be possible using stellar spectra and 

the next generation of Eotvos experiments. 

In the hope of aiding future observational efforts we have also used our model to 

make predictions for variations at higher redshift for a range of cosmological and model 

parameters. 
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Chapter 4 

Further Properties of Varying-Alpha Cosmologies 

4.1 Introduction 

One of the problems that cosmologists have faced in their attempts to assess the 

astronomical consequences of a time variation in the fine structure constant, a , has 

been the absence of an exact theory describing cosmological models in the presence 

of varying a . This is one major motivation for the work presented in this thesis. In 

chapter 3 we extended the generalisation of Maxwell's equations developed by Beken-

stein so that one can explore the behaviour of varying-a cosmologies self-consistently. 

We reported numerical studies of the cosmological evolution of varying-cc cosmologies 

with zero curvature, non-zero cosmological constant, and matter density matching ob-

servations. They reveal important properties of varying-a cosmologies that are shared 

by other theories in which 'constants' vary via the propagation of a causal scalar field 

obeying 2nd-order differential equations. 

In this chapter we present a detailed analytic and numerical study of the behaviour 

of the cosmological solutions of the varying-a theory presented in the previous chapter. 

We shall confine our attention to universes containing dust and radiation but analyse the 

effects of negative spatial curvature and a positive cosmological constant. Extensions 

to general perfect-fluid cosmologies can easily be made if required. 

We should not confuse this theory with other similar variations. Bekenstein's 

theory [1] does not take into account the stress energy tensor of the dielectric field in 
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Einstein's equations, and their application to cosmology. A supersymmetric extension to 

Bekenstein's and our framework has been provided by Olive et. al. [2]. Dilaton theories 

predict a global coupling between the scalar and all other matter fields. As a result 

they predict variations in other constants of nature, and also a different dynamics to 

all the matter coupled to electromagnetism. An interesting application of our approach 

has also recently been made to braneworld cosmology in [3]. More phenomenological 

models have been suggested [4, 5] which expand a around its present value, 

* = (41) 

and examine the inferred violations of the weak equivalence principle. These models also 

suggest identifying the scalar field responsible for the a-variations with the quintessence 

field causing the current acceleration of the Universe, thereby constraining the class of 

viable quintessence potentials. Chiba[5] also noted that combining the Quasar results 

with the Oklo data, required a slowing down of the scalar field variation. As seen 

in Chapter 3 this is naturally explained in our model by the onset of A-dominated 

expansion. 

4.2 The Cosmological Equations 

The Einstein equations in our generalised Bekenstein theory were developed in 

the previous chapter, as well as the resulting Priedmann equations which we recapitulate 

here: Assuming a homogeneous and isotropic Priedmann metric with expansion scale 

factor a{t) and curvature parameter k in eqn. (3.2), we obtain the field equations (c = 1) 

( o ) ( p m i l - ICml+ |Cm|exp[-2V'])+/5rexp[-2l/i] + 

4 4 -
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where A is the cosmological constant. For the scalar field we have the propagation 

equation, 

2 
"0 + ^Hip = exp (4.3) 

w 

where H = a/a is the Hubble expansion rate. Note that the sign of the evolution of 

is dependent on the sign of (m- Since the observational data is consistent with a 

smaller value of a in the past, we will in this chapter confine our study to negative 

values of Cm) in line with our discussion in chapter 3. The conservation equations for 

the non-interacting radiation and matter densities are 

p'm + 3-ffpm = 0 (4.4) 

Pr+4iHpr = 2lppr. (4 .5) 

and so pm oc a~^and Pr oc a~^, respectively. If additional non-interacting perfect 

fluids satisfying equation of state p — { j — l)p are added to the universe then they 

contribute density terms p oc a~^'^ to the RHS of eq.(4.2) as usual. This theory enables 

the cosmological consequences of varying e, to be analysed self-consistently rather than 

by changing the constant value of e in the standard theory to another constant value, 

as in the original proposals made in response to the large numbers coincidences (see ref. 

[6] for a full discussion). 

We have been unable to solve these equations in general except for a few spe-

cial cases. However, as with the Priedmann equation of general relativity, it is possible 

to determine the overall pattern of cosmological evolution in the presence of matter, 

radiation, curvature, and positive cosmological constant by matched approximations. 

We shall consider the form of the solutions to these equations when the universe is 

successively dominated by the kinetic energy of the scalar field ip, pressure-free matter, 

radiation, negative spatial curvature, and positive cosmological constant. Our analytic 

expressions are checked by numerical solutions of (4.2) and (4.3), where we have em-

ployed the NAG routines D02PCF and D02PVF for the integration tasks. 
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4.2.1 The Dust-dominated era 

We consider first the behaviour of dust-filled universes far from the initial sin-

gularity. We assume that A; = 0 — A = so the Priedmann equation (4.2) reduces 

to 

( a ) — {pm (1 — ICml + Km I exp [—2ip]) + j , (4.6) 

and seek a self-consistent approximate solution in which the scale factor behaves as 

a = (2/3 (4.7) 

= iVexpf—2^"] (4.8) 

where 

JV = (4.9) 
w 

is a positive constant since we have confined ourselves to Cm < 0. If we put 

x = ln(t) 

then (4.8) becomes 

ijj" + V"' = N exp[—2ij)] (4.10) 

with N > 0 and ' = d/dx. This equation has awkward behaviour. For any power-law 

behaviour of the scale factor other than (4.7) a simple exact solution of (4.8) exists. 

However, the late-time dust solutions are exceptional, reflecting the coupling of the 

charged matter to the variations in ijj, and are approximated by the following asymptotic 

series: 

1 °° 

tp = - l n [ 2 N x ] + 'Y^anX~'^ (4.11) 
n = l 
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To see this, substitute this in the evolution eqn. (4.10) for ip then it becomes: 

--^ + ^n{n + l)anx " ^ 
^ n=l 

~ ^ 'n-O'TiX ^ — — e x p [ — 2 ^ a „ a ; "] (4.12) 
n = l 

Now we can pick the to cancel out all the terms in a;"*" , r > 2 on the left-hand side. 

This requires 

Ci2 ~ ~ 2A2; ^4 ~ 3(13 ^ 3 X 2^2; 

hence 

V—V _jj 1 , 1 1 2 
- -^{- + -2 + ^ 

n = l 

2 x 3 2 x 3 x 4 ( r - 1 ) ! 

all that is left of the eqn. (4.12) is 

n = l 

as a: —>• oo. So, at late times, as a; = ln(t) becomes large, we have 

i, - ^ t a [ 2 i V ( l n ( t ) ) l - i { j ^ + p ^ + p ^ 

2 x 3 2 x 3 x 4 , , ( r - 1 ) ! , _ 
"^(ta(t))< + (ln(f))= + - + (ln(())r + 

also, since a = exp[2'ip] we have, as t —> oo 

1 1 
a — 2Nla.{t) x exp[ 

ln(i) (ln(t))2 (ln(t))3 

2 x 3 2 x 3 x 4 ( r - 1 ) ! 
(hi(f))4 (ln(())5 (la(f))' 

-]• (4.14) 
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So, to leading order, we have 

Q; ~ 2 i V l n ( t ) e x p [ - j ^ ^ ] (4.15) 

The non-analytic exp[l/a;] behaviour shows why the eqn. (4.10), despite looking 

simple, has awkward behaviour. We can simplify the asymptotic series (4.14) a bit 

further because we know from the definition of the logarithmic integral function li{x) = 

fg dt/ ln(i) = Ei[ln(a:)], that as x -> oo 

" n! 
li{x) ~ expM (4.16) 

n=0 

so the series we have in (4.13) in {..} brackets is 

OO / - \ I 

^ ^ ~ exp [-a:]i?(exp[a;]) (4.17) 

and so asymptotically 

r = l ^ 

V' = ^ ln[2iVa;] — ^ exp [—a;]h'(exp[a;]). (4.18) 

Hence, as t ^ oo, 

and so asymptotically, 

a — exp[2^] = 2Nexp[—t~^li{t)] Ini. (4.20) 

This asymptotic behaviour is confirmed by solving equations (4.2-4.5) numerically for 

Pm ^ PriPtp- By using a range of initial values for ip we produce the plot in fig (4.1), 

in which the asymptotic solution is clearly approached. 

We need to check that the original assumption of a — in the Priedmann eqn. 

(4.2) is self consistent. The relevant terms are 
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Pm (1 — Km] + ICml exp [—2tp]) + (4.21) 

The exp[—2V'] = oT^ falls off as t —> oo so the Pm (1 + Cm exp [—2i/;]) a a~^ term 

dominates as expected. For the kinetic term •ijp' we have 

^ = j x O ( j ^ ) (4.22) 

and so again the •ifP' term falls off faster than as t —>• oo and the a — behaviour is 

an ever-improving approximation at late times. If we examine the form of the solution 

(4.20) we see that a always increases with time as a logarithmic power until it grows 

sufficiently for the exponential term on the right-hand side of (4.3) to affect the solution 

significantly and slow the rate of increase by the series terms. The rate at which a grows 

is controlled by the total density of matter in the model, which is directly proportional 

to the constant N, defined by eqn. (4.9). The higher the density of matter (and hence 

N) the faster the growth in a . However, because of the logarithmic time-variation, the 

dependence on and (m is weak. The self-consistency of the usual a = dust 

evolution for the scale factor leaves the standard cosmological tests unaffected. This is 

just as one expects for the very variations indicated by the observations of [9]. 

4.2.2 The Radiation-dominated era 

In the radiation era we assume A: = A = 0 and take a = as the leading order 

solution to (4.2). We must now solve 

^ = Nexp[—2^]. (4.23) 

There is a simple particular exact solution 
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2 

log{log t) 

Figure 4.1: Numerical solution to the equations in the dust-dominated epoch, ijj is 
plotted against log{logt), with initial conditions ?/) = 0,1,2,2.5. The numerical solution 
clearly approaches the asymptotic solution in the expected manner. The time is plotted 
in Planck units of 10~'^^s. 



49 

V' = ilii(8Ar) + i l n ( t ) (4.24) 

Consider a perturbation of this solution by f{t) 

Inserted in eqn. (4.23) we then get 

/ + ^ / = ^ ( e x p [ - 2 / ] - 1) (4.25) 

Let us first consider the case of a large perturbation, exp (—2/) 1. The RHS 

of (4.25) then reduces to —l/(8t^), and through a straightforward integration we get 

y = 4- (4.26) 

with C an arbitrary constant. As t increases this will approach —l/{At) which has the 

same absolute value and is opposite in sign to the derivative of the exact solution (4.24). 

Thus for values of V* much higher than this solution tp is zero. •0 will stay constant until 

the perturbation / becomes small and ip approaches the exact solution (4.24). 

To establish the stability of the exact solution we need to consider small pertur-

bations around it. For small / we have 

Hence, 

/ = •^{ylsin[\/31n(t)] + Scos[V31n(f)] (4.28) 

Thus, we have 
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•0 -> i ln(8iV) + i 

+i{Asin[\ /31n(t)] + Scos[\/31n(t)]} (4.29) 

a = ^ exp[^{Asin[\/31n(t)] 

+Scos[\/31n(t)]}] -)• (4.30) 

as t -> oo. 

We need to check that the ip^ term does not dominate as t ^ oo. We have 

1 1 
~ ^ X oscillations (4.31) 

Thus the ijp' term is the same order of t as the radiation density term if we assume 

a ~ Also, the matter density term pm (1 — |Cml + |Cm| exp [—2'ip]) ~ pm exp [-2i/)] ~ 

a~^ exp [—2ip] ~ X is the same order of time variation as the radiation-

density term because of the variation in a. The assumption a ~ is still good 

asymptotically but there is an algebraic constraint from the Priedmann eqn. (4.2) 

Evaluating the terms in (4.2), we have 

where pm — p-y exp [—2ijj] = Fa"^, N — —2M(^rn/oJ where from the discussion in 

chapter 3 we have Cm/w ~ —0.02% with w ~ 1. So, to we have the algebraic 

constraint 

1 SttG 3a; 
4 = 

This generalises the familiar general relativity (w = 0) radiation universe case where we 

have r — 3/327rG. 
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Again, the asymptotic behaviour in eqns. (4.29)-(4.30), and the approach to the 

exact solution (4.24), can be confirmed by numerical solutions to eqns.(4.2) - (4.5) in the 

case of radiation domination. The results from runs with initial values for ip — —8,0,8, 

•0 = 0 and same value for N, are shown in fig. (4.2). The particular solution (4.24) is 

clearly an attractor. It is also seen that if the system starts off with values higher than 

l/21n(8iV), ip will stay constant until it reaches the value of the solution, as predicted 

above. In cosmological models containing matter and radiation with densities given by 

those observed in our universe this is the case, as seen in the computations shown in 

chapter 3. Hence, during the radiation era a remains approximately constant until the 

dust era begins. 

This analysis can easily be extended to other equations of state. If the Priedmann 

equation contains a perfect fluid with equation of state p = (7 — l)p with 7 / 0,1,2 

then there is a late time solution of (4.2) and (4.3) of the form 

a = (4.33) 

^ + (4.34) 

which reduces to (4.24) when 7 = 4/3. This solution only exists for fluids with 1 < 7 < 2. 

4.2.3 The Curvature-dominated era 

In our earlier study in chapter 3 we showed that the evolution of a stops when 

the universe becomes dominated by the cosmological constant. This behaviour also 

occurs when an open universe becomes dominated by negative spatial curvature. In a 

curvature-dominated era we assume that (4.2 ) has the Milne universe solution with 

a = t. (4.35) 
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Figure 4.2: Numerical solution to the equations in the radiation-dominated epoch given 
different initial conditions. The particular exact solution is eventually reached in all 
cases. The time is plotted in units of the Planck time. 



53 

We must now solve eq. (4.23) again. It has the form 

^ = iVexp[-2^]. (4.36) 

We seek a solution of the form 

i ' = \ + f{t) (4.37) 

Hence, for small / 

/ + ; / + ^ ^ ^ = 0 (4%;) 

Solutions exist with / oc t" and 

n = - 1 ± V1-2N (4.39) 

Since N > 0 we see that the real part of n is always decaying and so 

-4- const (4.40) 

as t —>• GO. Thus, as t —>• CO we have 

a ~ CKoo exp[2^f i±\/i (4.41) 

where aoo and A are constants. 

Again we need to check that the term does not come to dominate. We have 

•02 ^ ^2(n-i) as t -> oo and this always falls faster than ka~'^ oc since n < 0, so our 

approximation is always good. Thus we have shown that in open Friedmann universes 

a rapidly approaches a constant value after the universe becomes curvatuie dominated. 

The rate of approach is controlled by the matter density through the constant iV m eq. 

(4 41). 
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This behaviour is again confirmed by numerical solution. Fig. (4.3) shows how 

alpha changes through the dust-epoch and how the change comes to an end as curvature 

takes over the expansion. 

4.2.4 The Lambda-dominated era 

We can prove what was displayed in the numerical results of chapter 3, and again 

in fig. (4.4) for the A-dominated era when the value of A matches that inferred from 

recent high redshift supernova observations [10]. At late times we assume the scale 

factor to take the form 

a — exp[At] (4.42) 

where A = and so eqn.(4.2) becomes 

^ = Nexp[—2ip] (4.43) 

Linearising in we have 

•ip 4- 3Xip — iVexp[—3Ai]. (4.44) 

Hence, 

•0 = V'o + >lexp[-3Ai] - ^ exp[-3Ai] -)• i/jq (4.45) 

as it DO, where A, ipo are arbitrary constants. Thus a approaches a constant with 

double-exponential rapidity during a A-dominated phase of the universe. The dominant 

term controlling the late-time approach to the constant solution is proportional to the 

matter density via the constant N. 
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137.04 

Figure 4.3: The top plot shows evolution of a from radiation domination through matter 
domination and into curvature domination where the change in a comes to an end. The 
lower plot shows radiation (dotted), matter (solid) and curvature (dashed) densities as 
fractions of the total energy density 

137.04 

Figure 4.4: The top figure shows numerical evolution of a from radiation domination 
through matter domination and into lambda domination where the change in a comes 
to an end. The lower plot shows radiation (dotted), matter (solid) and lambda (dashed) 
densities as fractions of the total energy density 
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4.2.5 Inflationary Universes 

The behaviour found for lambda-dominated universes enables us to understand 

what would transpire during a period of de Sitter inflation during the early stages of a 

varying-a cosmology. It is straightforward to extend these conclusions to any cosmology 

undergoing power-law inflation. Suppose the varying-a Priedmann model contains a 

perfect fluid with p = ( 7 — l)p and 0 < 7 < 2/3. The expansion scale factor will 

increase with a{t) oc while ip will be governed, to leading order by 

= 0 (4.46) 

Hence, for large expansion 

1/, = '^ + D r 1/% (4.47) 

and so ijj and a approach a constant with power-law (exponential) rapidity during 

any period of power-law (de Sitter) inflation. If we evaluate the kinetic term in 

the Priedmann equation and the terms 0{Nexp[—2i{}]) in the ip conservation equation, 

we see that the assumption of a{t) oc jg an increasingly good approximation as 

inflation proceeds. Similar behaviour would be displayed by a quintessence field which 

violated the strong-energy condition and came to dominate the expansion of the universe 

at late times. It would turn off the time variation of the fine structure constant in the 

same manner as the curvature of lambda terms discussed above. Note that the ip field 

itself is not a possible source of inflationary behaviour in these models. We are assuming 

that the inflation is contributed, as usual, by some other scalar matter field with a self-

interaction potential. However, if this field was charged then these conclusions could 

be altered as the coupling of the inflationary scalar fleld to the ^ field would be more 

complicated. 
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4.2.6 The Very Early Universe (i —> 0) 

As t -> 0 we expect (just as in Brans-Dicke theory) to encounter a situation where 

the kinetic energy of ip dominates the evolution of a{t). This is equivalent to the solution 

approaching a vacuum solution of (4.2)-(4.3) with = 0, as t -)• 0. In the flat 

case with A = 0 (the k ^ 0 and A ^ 0 cases can be solved straightforwardly and the 

models with Pr ^ 0 can also be solved exactly in parametric form.) we have 

i/) + 3Hip = 0 (4.49) 

Thus the exact vacuum solution is 

* = + (4 SO) 

a — (1/3 (4.51) 

During this phase the fine structure constant increases as a power-law of the comoving 

proper time as t increases: 

1 

a = exp[2i/'] oc ( (4.52) 

Note that the matter and radiation density terms fall off slower than ijp' oc 
as t —> 0 and exp[—2i/)] oc They will eventually dominate the evolution 

at some later time and the vacuum approximation will break down. As in Brans-Dicke 

cosmology [12] we expect the general solutions of the cosmological equations to approach 

this vacuum solution as t -> 0 and to approach the other late-time asymptotes discussed 

above as t —>• oo. 
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4.3 Discussion 

The overall pattern of cosmological evolution is clear from the results of the last 

section even though it is not possible to solve the Priedmann equation exactly in most 

cases. There are five distinct phases: 

• a. Near the initial singularity the kinetic part of scalar field will dominate 

the expansion and the universe behaves like a general relativistic Priedmann 

universe containing a massless scalar or stiff perfect fluid field, with a = 

During this 'vacuum phase', the fine structure constant increases as a power 

law in time. 

b. As the universe ages the radiation density will eventually become larger than 

the kinetic energy of the ip field. In this radiation dominated epoch, the fine 

structure constant will approach a specific solution, a oc asymptotically. In 

reality however, if the initial value of a. is much larger than the specific solution, 

we will have a potentially very long transient period of constant evolution, and 

the universe may become dust dominated while a is still constant. 

c. After dust domination begins, a slowly approaches an asymptotic solution, 

a — 2N\n{t) x e x p [ — w h e r e li{t) is the logarithmic integral function. If 

the universe has zero curvature and no cosmological constant this will approach 

the late time solution a oc ln(i). 

d. If the universe is open then this increase will be brought to an end when 

the universe becomes dominated by spatial curvature and a will approach a 

constant. If the curvature is positive the universe will eventually reach an 

expansion maximnm and contract so long as there are no fluids present which 

violate the strong energy condition. The behaviour of closed universes also offers 

a good approximation to the evolution of bound spherically symmetric density 
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inhomogeneities of large scale in a background universes and will be discussed 

in a later paper. 

e. If there is a positive cosmological constant, the change in a will be halted 

when the cosmological constant starts to accelerate the universe. If any other 

quintessential perfect fluid with equation of state satisfying p < —p/3 is present 

in the universe then it would also ultimately halt the change in a when it began 

to dominate the expansion of the universe. 

To obtain a more holistic picture of the evolution it is useful to string these 

different parts together. To a good approximation we know that in the vacuum phase 

from the Planck time tp until ty we have 

a ^ - (4.53) 
\ / 3 ^ ^ ^ 

In the radiation era we have a constant until the growth kicks in at a time tgrowth- The 

fine structure constant then increases as 

a cc a (X (4.54) 

until iggwhen the radiation era end and dust takes over. However, in universes like our 

own, this growth era is never reached. Then, in the dust era, 

a oc Int (4.55) 

until the curvature or lambda eras begin at tc or t\, after which a remains constant 

until the present , to. So, matching these phases of evolution together we can express 

CK(̂ o) in terms of a{tp) : 

When the universe is open with A = 0 : 

where we have used the fact that our log formula to express ages in Planck time units. 
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When the universe is flat with A > 0 : 

and tc has been replaced by t\. 

For the radiation era we consider two extreme cases. We look at a constant a 

scenario with tg^owth ~ teg and a scenario where it grows throughout the radiation era, 

t growth — tv 

Typically, tc/tp ~ tA/tp ~ 10®̂  and teq/tp ~ 10^^, so in both cases for constant a 

evolution in the radiation epoch we get 

a{to) = a{tp) ~ (4.58) 

We approximate the value for it, ~ ip ~ 1, so for continuous growth through radiation 

epoch we get 

a{tQ) - a{tp) f (10®^) ^ f ~ 10^^a{tp) (4.59) 
tpj \ 5 3 / \tp 

Hence there are very different possibilities for the change in a depending on the evolution 

in the radiation era. 

We have proved this sequence of phases by an exhaustive numerical and analytical 

study. The ensuing scenario finds two interesting applications, with which we conclude. 

In chapter 3 we found that our theory could fit simultaneously the varying a 

results reported in [8, 7, 9] and the evidence for an accelerating universe presented in 

[10]. We noted the curious fact that there is a coincidence between the redshift at 

which the universe starts accelerating and the redshift where variations in a have been 

observed but below which a must stabilise to be in accord with geochemical evidence 

[13, 14]. This may be explained dynamically in our theory by the fact that the onset of 

lambda domination suppresses variations in a . Therefore a remains almost constant in 

the radiation era, undergoes small logarithmic time-increase in the matter era, but ap-

proaches a constant value when the universe starts accelerating because of the presence 
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of a positive cosmological constant. Hence, we comply with geological, nucleosynthesis, 

and microwave background radiation constraints on time-variations in a , while fitting 

simultaneously the observed accelerating universe and the recent high-redshift evidence 

for small a variations in quasar spectra. 
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Chapter 5 

Variations of Alpha in Space and Time 

5.1 Introduction 

In chapters 3 and 4 we have discussed the behaviour of a class of cosmologies in 

an exact theory in which the fine structure "constant" varies in time. This theory of 

Sandvik, Barrow and Magueijo is an extension, to include the self-gravitation of the 

dielectric medium, of Bekenstein's prescription [1] for generalising Maxwell's equations 

to incorporate varying electron charge. Henceforth we will refer to it as the BSBM 

theory. The fine structure "constant" a varies through the space-time dynamics of 

a scalar '"dielectric" field (where a = exp[2^]) in these theories. However the 

overall behaviour is significantly affected by the form of the coupling. Even though 

the requirement that the energy in ijj be positive definite fixes the sign of the coupling 

constant w we find that ip is driven by a term of the form Cem/^, where Cem is the 

electromagnetic Lagrangian. In general, £em can be positive or negative, a fact we 

parameterize in terms of ( = £ em/p, where p is the energy density. The sign of ( for 

the dark matter in the universe turns out to be of exceptional significance. In accordance 

with the work presented in earlier chapters we will also in this chapter confine ourselves 

to the case where C < 0. 

The studies described in previous chapters have been performed in the context 

of an exact isotropic and homogeneous Friedmann universe. All variations in the fine 

structure "constant" therefore depend only on cosmic time. However, the rate of varia-
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tion that is suggested by recent astronomical observations of quasar spectra, or allowed 

by geophysical data at recent times, is very small, A a / a ~ 10"^, and spatial variations 

in the rate of time variation could easily be of similar order [2]. It is therefore important 

to determine if spatial variations in the rate of change of a are significant in the BSBM 

theory and whether they allow different modes of time variation to occur in addition to 

those studied in the purely homogeneous variations found. Such is the purpose of this 

chapter. 

5.2 Inhomogeneous solutions with varying a 

The Priedmann models with varying a have shown that when ( < 0 the homo-

geneous motion of the does not in general create significant metric perturbations at 

late times and we can safely assume that the expansion scale factor is that of the usual 

Priedmann universe for the appropriate fluid. The behaviour of ^ then follows from 

a solution of the ^ conservation equation in which the expansion scale factor is taken 

to be that of the Priedmann universe for matter with the same equation of state in 

general relativity {ip = ( = 0). Our analyses in previous chapters found that ijj is 

approximately constant during the radiation era, and a increases as 27Vln(^) during 

the dust dominated era when spatial curvature is negligible, and tends to a constant in 

any subsequent era dominated by negative spatial curvature or a positive cosmological 

constant. When ( < 0 we can use the same test-motion approach to investigate inhomo-

geneous variations in ij) and a as the universe expands. We assume that the expansion 

scale factor is that of the Priedmann model 

a = (5.1) 

and solve the wave equation in one of its appropriate forms: 

2C 
= /)^exp[-2V'] (5.2) 

w 

+ Pmexp[-2V'] (5.3) 
a w 



dt 
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— aS/'^ijj = Nexp[—2i()] (5.4) 

where iV is a constant, defined by 

2C , 
N — Pmfl > 0. 

w 

We seek a general solution of (5.4) of the form 

ip = iph + S{x,t) (5.5) 

where iph{t) is the solution to the space-independent problem {Vijj = 0), so by definition 

iphii) is an exact solution of 

d 
— = Nexp[-2ijjh] 

We note immediately an important general property of this equation, that applies to all 

Friedmann universes with varying a : 

No-oscillation theorem: In the BSBM theory, a cannot display oscil-

latory behaviour in time in a Friedmann universe of any curvature. 

The proof is simple: When N is positive (negative) the right-hand side of equation 

(4.3) is positive (negative), cannot have an expansion maximum (minimum) since 

•0/1 = 0 and •0/1 < 0 (> 0) there. Therefore t/z/jcannot oscillate in time and so neither 

can ct = exp[2'0]. 

We see that in the case of interest, when N > 0, i/' can have a minimum but 

thereafter it must always increase irrespective of the behaviour of the expansion scale 

factor. However, if the equation is linearised in ^/^ this is no longer true if attention is not 

confined to the small •0 regime where exp[—2'0/i] % 1 — 2^^ > 0 and spurious oscillations 

of (and a) in time can appear to arise at late times if ip grows. It is of particular 

interest that this proof that ^/i cannot have a maximum applies to recollapsing universes 

(k = 4-1) as well as to ever-expanding universes (A: < 0). It also means that oscillations 
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of a with redshift should not be observed in Priedmann universe. This might prove an 

interesting prediction for future observations to test. 

Substituting (5.5) into (5.4) we get 

^ - aV^(5 = iVexp[-2'!/)/i]{exp[—25] - 1} 
dt 

So for small 6 

^ - aV^6 = -2N6 ex-p[-2iPh] + 0{S^) 

Now look for separable solutions 

6 = T{t)D{x) 

and we have 

T T 2N 
—a^ + 3aa~ + exp[—2̂ /̂ /1] — ^ (5.6) 

where is a separation constant with a sign chosen to ensure non-growing, oscilla-

tory, inhomogeneity in D{x) at spatial infinity . In this equation we can always neglect 

2Na~^ e'xp[—2'4>h] with respect to as t —>• 0 0 because never falls with time (in 

the dust era grows as ^ ln[2Arln(t)] as t 00, for example). This is an important 

feature of the variation oiip, and a , in BSBM varying-a theories when ( < 0. It ensures 

that the kinetic term and the exp[—2'^] terms can be neglected in the Priedmann 

equation asymptotically and the expansion scale factor can self-consistently be assumed 

to be of the same form as when a does not vary (this is not true if ( > 0). Thus 

f + — f + ^ = 0 (5.7) 
a 

and 

= - / i ^ D 

so we have the standard separable spherical oscillator solution in spherical polar coor-

dinates: 

00 

D{r, 0,93) = ^ c^,iYi{e, {fir) 

e=o 
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where Z is a cyhndrical function and Y the spherical harmonic function. If we specialise 

to spatially-flat cosmologies with perfect fluid equations of state for pressure p and 

density p of the form 

P = (7 - 1)P, 

then the expansion scale factor will have power law form 

a = r (5.8) 

with n = 2/37. In these cases we have 

t f + 3nT + = 0 (5.9) 

Thus, for n 7̂  1 : 

T{t) = 
\ l - n J \ l - n 

^ 

- 2 ( 1 - » ) 

while for the curvature-dominated expansion with n — 1 : 

(5.10) 

(5.11) 

T oc (5.12) 

q = jj? (5.13) 

The late-time behaviour is easily determined as i 0 0 : 

T{t) oc t~"'X oscillations] n ^ l . (5.14) 

T{t) oc ; n = l (5.15) 

and decays, T oc a~^, ast 00. However, as we have already pointed out the oscillatory 

behaviour is an artefact of the linearisation process and the Bessel-like oscillation are 

not reached by the solution for 
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In the radiation era we can find an solution of eqn. (5.6) for T{t) without ne-

glecting the term 2Na~^ e x p [ — s i n c e the radiation universe has the simple exact 

solution; 

•0/1 = ^ log(8Ar) + ^ log(t) (5.16) 

Substituting (5.16) in eqn. (5.6) we find 

T(() = + 

where 

iVS 
m ^ ~ 

and we see explicitly that there is agreement with the asymptote (5.14) of the approx-

imated equation when n = 1/2. Similar exact solutions can be found for all universes 

with 1/3 < n < 2/3. 

The cosmological constant case of 7 = 0 is distinct, with 

a = exp[ffo4 

which gives 

0 = f + 3Hof + p?T exp[-2ffo(] + ZHqT 

as t 0 0 , so 

T -4- Too — 577" exp[—3iJo(^ + ^o)] Too 
Olio 

This behaviour is in accord with the expectations of a cosmic no hair theorem. It means 

that if a period of inflation occurs in the very early universe then large scale homogeneity 

will appear increasingly negligible with time within the event horizon of a geodesically 

moving observer. In the late stages of a universe like our own, which displays evidence 

of being accelerated by the presence of a positive cosmological constant, [3], it ensures 

that time variations in a will not grow. This is to be expected since the inhomogeneities 

in density are also prevented from growing by the effects of the cosmological constant. 
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5.3 The case of C > 0 

When the dark matter is dominated by electric field energy, we have ( > 0 , 

and the behaviour of eq. (4.3) is very different to that obtained when ( < 0. Most 

crucially, the test-motion approximation used above to analyse the behaviour or (4.3) 

does not apply, even for the purely time-dependent ip evolution in a Priedmann universe. 

The solutions obtained for ip by assuming the scale factor evolution a = of general 

relativity (with constant a) lead to solutions for i/j (and a) which do not increase 

with time. For example, we have a oc in the curvature era and a oc ln{to/t) in 

the dust era. These contribute kinetic (^^) and magnetic contributions (C exp[—2i/']) 

terms which dominate the underlying Priedmann equation, (4.2), at large times and 

the expansion of the universe is not well approximated by that obtained in general 

relativistic cosmologies with the same equation of state and constant a except over finite 

non-asymptotic intervals of time. This leads to problems accommodating observational 

constraints, notably the results of studies of the structure of the microwave background 

at last scattering [4, 5] and big bang nucleosynthesis [6] in the radiation era because 

the value of a then is significantly different from today, unlike in the cases of ( < 0). 

Cosmologies with ( > 0 have been discussed in ref. [7] in a theory that is similar in 

structure to the BSBM theory discussed here. We will discuss the ( > 0 version of the 

theory in more detail elsewhere. It is less well behaved and does not seem to provide 

the smooth and simple perturbation of the standard cosmology with constant a as seen 

in the negative ( case. 

5.4 Discussion 

We have shown that the time-dependent solution to the Priedmann model are 

stable against the effects of inhomogeneous motions of the ijj field. In the case of 

inhomogeneous variation the cosmological solutions in universes with scale factor a{t) — 
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t" , to leading order take the form: 

L \ / V / J _̂Q 

when n ^ 1, and 

oo 

e=o 

when n = 1, while for the case of a{t) = exp[Hot] 

ip{x,t) = iph{t) + 0(exp[-3JToi ]) (5.17) 

Thus in all cases we have 

ip{x,t) -> 

as t —>• oo and at late times spatial variations in the fine structure constant decay as 

00 

a = exp[2'!/'7i]{l + (/xr) x oscns + ..} 
e=o 

for n 7̂  1. Hence, denoting = exp[2i/;/i], the spatial variation in a decays in time in 

the n 7̂  1 universes as 

r 00 

— = - — — = Cn^iYi{e, 1 (/xr) x oscns 
" e=o ^ 

Analogous expressions can be written down mutatis mutandis for 5a/a in the n, — 0,1 

cases. 

It is important to compare the evolution of the fine structure constant a{t) in 

the BSBM theory in the homogeneous case with that for the situation admitt ing inho-

mogeneous motions of the fine structure 'constant', a{t,x), here. We have found tha t 

inhomogeneity {fj, 0) introduces the possibility of damped oscillatory evolution of a 

with time but this has been shown to be a artefact of the linearisation process. To lead-

ing order, the overall pattern of time evolution studied in previous chapters is unaffected 
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by the presence of small inhomogeneities. The spatial variation amplitudes, 6a/a, are 

found to decay with time as the universe expands and will not be as significant as the 

overall variation in time of the mean value of a.{t) oc ln(t) during the dust-dominated 

phase of a spatially-flat universe. Inhomogeneous test motions of the •0 field will have 

been decaying in amplitude throughout the period when the universe was dominated by 

dust if C < 0. Therefore we would not expect any significant inhomogeneities to survive 

at the astronomically interesting epoch z ^ 1 — 4 where the value of the fine structure 

constant can be probed spectroscopically with high precision. However, our discussion 

has not considered two situations where more significant spatial variations might arise. 

The first is the situation within gravitationally bound matter inhomogeneities of large 

scale which separate out from the expansion of the Universe and collapse to form super-

clusters and clusters of galaxies. These behave in a manner similar to that expected of 

separate closed universes until deviations from spherical symmetry become significant. 

Our analysis is not applicable here because the dynamics of the bound inhomogeneities 

will differ significantly after they separate off from the background expansion. The 

second situation of interest is that in which perturbations of the Priedmann metric are 

included in the problem and allowed to couple to spatial variations in i/i, or a . This cou-

pling will lead to small temperature fluctuations in the microwave background radiation. 

These problems will be discussed in a subsequent analysis. 
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Chapter 6 

Anthropic arguments from varying constants 

6.1 Introduction 

The collection of considerations now known as the Anthropic Principles emerged 

from attempts by Whitrow [1] to understand why it is unsurprising that we find space 

to have three dimensions, and by Dicke [2] to understand the inevitability of Dirac 

'large number' coincidences in cosmology. Dicke recognised that it was unnecessary 

to introduce the idea of a time-varying gravitational constant in order to understand 

why we could not fail to observe that the number of protons in the observable universe 

is of order the square of the ratio of electromagnetic to gravitational force strengths. 

Subsequently, Dicke inspired a detailed observational and theoretical investigation of 

gravity theories in which the Newtonian gravitational constant becomes a space-time 

variable. He was partly motivated by apparent discrepancies between the predictions 

of standard general relativity and observations of the perihelion precession of Mercury. 

These discrepancies were subsequently ascribed to errors in the measurements of the 

shape and diameter of the Sun created by solar surface activity [3]. 

There have been many investigations of the apparent coincidences that allow 

complexity to exist in the universe (see [4, 5, 6, 7]). Typically, they examine the stability 

of life-supporting conditions to small (or large) perturbations to the values of constants 

of Nature or to quantities fixed by cosmological 'initial' conditions at i = 0 or i = —oo. 

These in turn divide into studies of two sorts: first, those in which the hypothetical 
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changes introduced to the 'constants' are self-consistently permitted by the cosmological 

or physical theory employed; and second, those in which they are not. An investigation 

of the first kind might be one in which the cosmological initial conditions were enlarged 

to allow anisotropies or the possibility of a significant deviation from flatness. An 

investigation of the second type might note that a change in the observed value of the 

electron to proton mass ratio to another fixed value would make it difiicult to produce 

ordered molecular structures. Studies of universes in which traditional 'constants' of 

Nature are changed are restricted by the lack of self-consistent theories which allow 

all these possible changes to be accommodated. Without them, it is impossible to 

determine the possible knock-on effects of varying one constant on others. 

There are some exceptions. Varying gravitation 'constant', G, (or dimensionless 

constants formed with it like Gm?/hc for any mass m), can be studied using scalar-

tensor gravity theories [8]. A varying fine structure 'constant' can be studied using 

the theory of Bekenstein[9] and Sandvik, Barrow and Magueijo (BSBM), laid out in 

chapters 3 and 4. Moreover, the formulation of physical theories whose true constants 

inhabit more than three space dimensions provides a framework for the rigorous study 

of the simultaneous variation of their three-dimensional counterparts [10], [11], [12]. 

Recently there has also been much interest in theories where a variation in the fine 

structure constant is due to a change in the light propagation speed[13, 14, 15]. In a 

later chapter we will propose various methods for experimentally distinguishing between 

these different theories. 

We have shown in chapter 3 that the simplest theory which joins varying a to 

general relativity via the propagation of a scalar field (BSBM-theory) can explain these 

observations together with the lack of evidence for a similar level of variation locally, 

2 billion years ago, or at very high redshifts, z > 10^ . In this chapter we will show 

how this theory also provides some novel anthropic perspectives on the evolution of our 

universe or others. 
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There have been several studies, following Carter, [16] and Tryon [17], of the need 

for life-supporting universes to expand close to the 'flat' Einstein de Sitter trajectory for 

long periods of time. This ensures that the universe cannot collapse back to high density 

before galaxies, stars, and biochemical elements can form by gravitational instability, 

or expand too fast for stars and galaxies to form by gravitational instability (see also 

[18], [19] and [5]). Likewise, it was pointed out by Barrow and Tipler, [5] that there 

are similar anthropic restrictions on the magnitude of any cosmological constant, A. If 

it is too large in magnitude it will either precipitate premature collapse back to high 

density (if A < 0) or prevent the gravitational condensation of any stars and galaxies 

(if A > 0). Thus existing studies provide anthropic reasons why we can expect to live in 

an old universe that is neither too far from flatness nor dominated by a much stronger 

cosmological constant than observed (|A| < 10 

Inflationary universe models provide a possible theoretical explanation for prox-

imity to flatness but no explanation for the smallness of the cosmological constant. 

Varying speed of light theories [13, 14, 15, 20] offer possible explanations for proximity 

to flatness and smallness of a classical cosmological constant (but not necessarily for 

one induced by vacuum corrections in the early universe). Here, we shall show that if 

we enlarge our cosmological theory to accommodate variations in some traditional con-

stants then it appears to be anthropically disadvantageous for a universe to lie too close 

to flatness or for the cosmological constant to be too close to zero. This conclusion arises 

because of the coupling between time-variations in constants like a and the curvature or 

A, which control the expansion of the universe. The onset of a period of A or curvature 

domination has the property of dynamically stabilising the constants, thereby creating 

favourable conditions for the emergence of structures. This point has been missed in 

previous studies because they have never combined the issues of A and flatness and the 

issue of the values of constants. By coupling these two types of anthropic considerations 

we find that too little A or curvature can be as poisonous for life as too much. 
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6.2 Time variation of a. 

To understand our anthropic discussion we need to sum up the behaviour of the 

theory laid out in chapters 2 - 4 . The Einstein equations are 

, (6 1) 

and the ip field obeys the equation of motion 

(6.2) 
W 

The Friedmann equations are 

( a ) ~ (̂ 1 - ICml + |Cm|e + Pre"^'^ + + PA^ — (6.3) 

where the cosmological vacuum energy pA is a constant that is proportional to the 

cosmological constant A = SttGpa- For the scalar field we have 

= (6.4) 

where H = a/a, and (rn and w have been defined earlier. In line with previous chapters 

and the observational data we will again confine ourselves to negative values of (rn- The 

conservation equations give for the non-interacting radiation, and matter densities pr 

oc e^^a '^and p^ oc a~^, respectively. This theory enables the cosmological consequences 

of varying a , to be analysed self-consistently rather than by changing the constant value 

of a in the standard theory, as in the original proposals made in response to the large 

numbers coincidences [21]. 

The cosmological behaviour of the solutions to these equations was studied in 

chapters 3 and 4 for the A: = 0 case and is shown in Figure (6.1). The evolution of a is 

summarised as follows: 

1. During the radiation era a is constant and a{t) ~ It increases in the dust 

era, where a{t) ~ until the cosmological constant starts to accelerate the universe, 

a{t) ~ exp[Af/3], after which a asymptotes rapidly to a constant, see fig.(6.1) 
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2. If we set the cosmological constant equal to zero then, during the dust era, a 

will increase indefinitely. The increase however, is very slow with a late-time solution 

for ij) proportional to log(2Ariog(t)), see fig.(6.2). N is defined as N = -KmlPmO^-, a 

positive constant since we have confined ourselves to Cm < 0. 

3. If we set the cosmological constant equal to zero and introduce a negative 

spatial curvature [k < 0) then a increases only during the dust-dominated phase, where 

a{t) ~ but tends to a constant after the expansion becomes curvature dominated, 

with a{t) ~ t. This case is illustrated in fig.(6.3). 

Figure 6.1: The top plot shows the change in alpha throughout the dust epoch ends 
as lambda takes over the expansion. The lower plot shows the radiation (dotted), dust 
(solid) and lambda (dashed) densities as fractions of the total energy density. 

From these results it is evident that non-zero curvature or cosmological constant 

brings to an end the increase in the value of a that occurs during the dust-dominated 

era^ . Hence, if the spatial curvature and A are too small it is possible for the fine 

structure constant to grow too large for biologically important atoms and nuclei to 

exist in the universe. There will be a time in the future when a reaches too large a 

^ In some Priedmann universes with initial conditions unlike our own there can be power-law growth 
of a during the radiation era (see discussion in chapter 4). In such universes the same general effects 
of negative curvature and positive A are seen. They still halt any growth in a{t). Our initial conditions 
are chosen so as to give a present day value of a « 1/137. The initial value of alpha would have to be 
several orders of magnitude lower in order to obtain the power-law growth 
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log log(t) 

Figure 6.2: •;/' a Inct changes as log(2Nlogt) in the dust era. 

value for life to emerge or persist. The closer a universe is to flatness or the closer A 

is to zero so the longer the monotonic increase in a will continue, and the more likely 

it becomes that life will be extinguished. Conversely, a non-zero positive A or a non-

zero negative curvature will stop the increase of a earlier and allow life to persist for 

longer. If life can survive into the curvature or A-dominated phases of the universe's 

history then it will not be threatened by the steady cosmological increase in a unless 

the universe collapses back to high density. 

6.3 Anthropic Limits on a 

We have seen that varying-a cosmologies with zero curvature and A lead to a 

monotonic increase in a with time. Here we summarise the principal upper limits on 

a that are needed for atomic complexity and stars to exist. There are a variety of 

constraints on the maximum value of the fine structure compatible with the existence 

of nucleons, nuclei, atoms and stars under the assumption that the forms of the laws of 

Nature remain the same. The running of the fine structure constant with energy due 

to vacuum polarisation effects leads to an exponential sensitivity of the proton lifetime 

with respect to the low-energy value of a with tpr ~ exp(Q:~^)mp/ ~ lO^^yrs. 

In order that the lifetime be less than the main sequence lifetime of stars we have 
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Figure 6.3: Top: The change in alpha comes to an end as curvature takes over the 
expansion. The bottom graph again shows the different constituents of the universe as 
a function of the scale factor. 
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tpr < which implies that a is bounded above hy a < 1/80 approximately 

[2%. 

The stability of nuclei is controlled by the balance between nuclear binding 

and electromagnetic surface forces [23]. A nucleus {Z,A) will be stable if Z'^/A < 

49(q:S/0.1)^(1/137q:). In order for carbon (Z = 6) to be stable we require a < 16(o!g/0.1)^. 

Detailed investigations of the nucleosynthesis processes in stars have shown that a 

change in the value of a by 4% shifts the key resonance level energies in the carbon and 

oxygen nuclei which are needed for the production of a mixture of carbon and oxygen 

from beryllium plus helium-4 and carbon-12 plus helium-4 reactions in stars [24, 25]. 

These upper bounds on a are model independent and were considered in more detail 

in refs. [5], [4] and [6]. However, sharper limits can be found by using our knowledge 

of the stability of matter derived from analysis of the Schrodinger equation. Stability 

of matter with Coulomb forces has been proved for non-relativistic dynamics, including 

arbitrarily large magnetic fields, and for relativistic dynamics without magnetic fields. 

In both cases stability requires that the fine structure constant be not too large. 

The value of a controls atomic stability^ . If a increases in value then the in-

nermost Bohr orbital contracts and electrons will eventually fall into the nucleus when 

a > Z^^rupr/me- As a increases, atoms all become relativistic and unstable to pair pro-

duction. In order that the electromagnetic repulsion between protons does not exceed 

nuclear strong binding e^/r^ < is needed and so we require a < 1/20. It is also 

known that atomic instability of atoms with atomic number Z occurs in the relativistic 

Schrodinger equation when the fine structure constant is increased in value to a = ^ . 

However, when the many-electron and many-nucleon problem is examined with the rel-

ativistic Schrodinger theory there is a bound on a for stability that is independent of 

^ Note that if the electron mass and velocity of light are varied along with the value of a then the 
eigenvalues of the non-relativistic Schrodinger equation can remain invariant and atomic structure is 
unchanged [5]. Here, we break the scale invariance by varying only a. Note that the invariance does 
not hold for the relativistic case[26] 
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Z [27]. If a < 1/94 then stability occurs all the way up to the critical value a = 

whereas if a > 128/15^ the 'atomic' system is unstable for all values of Z. In the pres-

ence of arbitrarily large magnetic fields, which aid binding by creating a two-dimensional 

form for the potential, matter composed of electrons and nuclei is known to be unstable 

if cc or Z is too large: matter is stable if a < 0.06 and a. < 0.026(6/Z) ,[28], [29]. 

If stars are to exist, their centres must be hot enough for thermonuclear reactions 

to occur. This requires a to be bounded above by o? < 20mg/mpr. Carter has also 

pointed out the existence of a very sensitive condition oP' ~ {melmpr)^ ,that 

must be met if stars are to undergo a convective phase, although this stringent condition 

no longer seems to be essential for planetary formation [16]. 

The results collected above show that there are a number of general upper limits 

on the value of a if atoms, molecules, and biochemistry are to exist. These bounds do 

not involve the gravitation constant explicitly. Other astrophysical upper bounds on a 

exist in order that stars be able to form but these involve the gravitational constant. 

6.4 Time variation of G 

A similar trend can be found in relativistic cosmologies in scalar-tensor gravity 

theories. Consider the paradigmatic case of Brans-Dicke (BD) theory to fix ideas. The 

form of the general solutions to the Friedmann metric in BD theories are fully understood 

[30],[31]. The general solutions begin at high density dominated by the BD scalar field 

(f) rv and approximated by the vacuum solution. At late times they approach 

particular exact power-law solutions for a{t) and <p{t) and the evolution is 'Machian' in 

the sense that the cosmological evolution is driven by the matter content rather than 

by the kinetic energy of the free (j) field. There are three essential field equations for the 

evolution of ^ and a{t) in a BD universe 
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Figure 6.4: Top plot shows cosmological evolution of Brans-Dicke theory, with w = 
10, from radiation domination into dust domination and through to curvature driven 
expansion. Lower plot shows radiation (dotted) , dust (solid) and curvature (dashed) 
energies, as well as the scalar field energy (combined), as a fraction of the total energy 
density. 
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Figure 6.5: Similar evolution of Brans-Dicke theory with w = 1000. 
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_ S t t p _ 6 ^ , ubd k 

<2 • StT 

p + 3^(p + p) = 0 

Here, ujbd is the BD constant parameter and the theory reduces to general relativity 

in the limit ojbd —oo and (/> = G~^ —^constant. 

In the radiation era the scale factor approaches the standard general relativistic 

behaviour for large times: 

a{t) ~ G = constant (6.5) 

After the dust density dominates the dynamics the expansion approaches a simple exact 

solution with 

o(t) oc Goct~^, (6.6) 

which continues until the curvature term takes over the expansion. Here, n is related 

to the constant Brans-Dicke ubd parameter by 

and the usual general relativistic Einstein de Sitter universe is obtained as ojbd ^ oo 

and n —>• 0. If the universe is open, {k = —1), then the negative curvature will eventually 

dominate the gravitational effects of the dust and then the BD model approaches the 

general relativistic Milne model with constant G 

a{t) <xt; G = constant (6.8) 
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Again, we see the same pattern of behaviour seen for the evolution of a in the 

BSBM theory. The smaller the curvature term, so the longer the dust-dominated era 

lasts, and the greater the fall in the value of G, and the smaller its ultimate asymp-

totic value when the curvature intervenes to turn off the variation. In general, in such 

cosmologies, if there exists a critical value of G below which living complexity cannot 

be sustained, then a universe that is too close to flatness will have a smaller interval of 

cosmic history during which it can support life. 

So far, we have discussed only the independent variation of a and G. What 

happens if they both vary at the same time? Previous studies of varying constants have 

only examined the time-variation of a single 'constant'. In chapter 8 we will present a 

unified theory, which incorporates the both BSBM varying a and BD varying G theories 

discussed above. When both a and G are allowed to vary simultaneously in this theory 

we find that our general conclusions still hold (see our discussion in chapter 8), although 

the quantitative details are changed. During the dust era of a fiat Priedmann universe 

with varying a{t) and G(t),their time-evolution approaches an attractor in which the 

product aG is a constant and 

a oc G~^ DC f" (6.9) 

where n is given by eq. (6.7). Thus we see that the G evolution is left unchanged by 

the effects of varying a , but variation of G changes the time evolution of a{t) from 

a logarithm to a power-law in time. As before, the longer the dust era lasts before 

it is ended by deviation from flatness or zero cosmological constant, the longer the 

time-increase of a continues, inevitably leading to values that make any atom-based 

complexity impossible. 
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6.5 Discussion 

We have shown that some theories which include the time variation of tradi-

tional constants like a and G introduce significant new anthropic considerations. A 

theory which self-consistently introduces the space-time variation of a traditional con-

stant scalar quantity is strongly constrained in form by the requirements of causality and 

second-order propagation equations [9]. Typically, this requirement leads to equations 

for the driving scalar, y that have the form Oy proportional to linear combinations of 

the energy-momentum components. Explicit examples are provided by the Bekenstein-

Sandvik-Barrow-Magueijo and Brans-Dicke theories. This structure ensures that the 

evolution of the 'constant' whose variations are derived from those of ip is strongly de-

pendent upon the material or geometrical source governing the background expansion 

dynamics. In the case of varying a we have shown in our discussions in chapters 3 and 4 

that this ties the epoch after which time-variations in a become very small to the time 

when the cosmological constant starts to accelerate the expansion of the universe. In 

these theories there is therefore the possibility of a habitable time zone of finite duration 

during which a constant like a or G falls within a biologically acceptable range. 

Surprisingly, there has been almost no consideration of habitability in cosmolo-

gies with time-varying constants since Haldane's discussions [32] of the biological con-

sequences of Milne's bimetric theory of gravity with two timescales, one for atomic 

phenomena, another for gravitational phenomena [33]. Since then attention has fo-

cussed upon the consequences of universes in which the constants are different but still 

constants. Those cosmologies with varying constants that have been studied have not 

considered the effects of curvature or A domination on the variation of constants and 

have generally considered power-law variation to hold for all times. The examples de-

scribed here show that this restriction has prevented a full appreciation of the coupling 

between the expansion dynamics of the universe and the values of the constants that 
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define the course of local physical processes within it. Our discussion of a theory with 

varying a shows for the first time a possible reason why the 3-curvature of universes 

and the value of any cosmological constant may need to be bounded below in order 

that the universe permit atomic life to exist for a significant period. Previous anthropic 

arguments have shown that the spatial curvature of the universe and the value of the 

cosmological constant must be bounded above in order for life-supporting environments 

(stars) to develop. We note that the lower bounds discussed here are more fundamental 

than these upper bounds because they derive from changes in a which have direct con-

sequences for biochemistry whereas the upper bounds just constrain the formation of 

astrophysical environments by gravitational instability (for alternative scenarios see ref. 

[34]). Taken together, these arguments suggest that within an ensemble of all possible 

worlds where a and G are time variables, there might only be a finite interval of non-

zero values of the curvature and cosmological constant contributions to the dynamics 

that both allow galaxies and stars to form and their biochemical products to persist. 
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Chapter 7 

Experimental tests for distinguishing different varying-ct theories 

7.1 Introduction 

The observations of Webb et. al.[l, 2, 3] raise a question which we sofar have not 

attempted to answer: which of e, h and c might be responsible for any observed change 

in a and what operational meaning should be attributed to such a determination? 

Undoubtedly, in the sense of [4], one has to make an operationally "meaningless" choice 

of which dimensional constant is to become a dynamical variable (see however refs. [5] 

and [6] for a recent debate on this issue). Yet, we suggest that in practice this choice is 

never arbitrary; it should be clearly dictated by simplicity once the detailed dynamics of 

the theory have been established. Here, we argue that the dynamics have observational 

implications: a combination of experiment and simplicity therefore selects one member 

of a dimensionless combination (a) of dimensional constants (e, H and c) to which we 

should preferentially ascribe its space-time variation. In this chapter we will present a 

number of clear experimental tests which could distinguish rival theories of a variation 

which are expressed through explicit change in e or c. Existing theories will be used as 

examples. 

Several theoretical contexts for the Webb et al results have been explored. In 

previous chapters we have laid out the framework for a varying electric charge the-

ory (which we shall denote BSBM), inspired by an earlier construction of Bekenstein 
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[7]. This model is simple^ in the sense that it is a minimal extension to general rel-

ativity, not breaking with any fundamental principles such as causality and Lorentz 

invariance, and with only one scalar field added, coupling only to electromagnetism. 

No potential for the field is needed, and the only free parameter in the model is an 

energy scale not far from Planck scale. A supersymmetric version of this theory was 

created in [8]. Phenomenological models expanding a around its present value have 

pointed out the possibility of identifying the scalar field driving the variation in a with 

a quintessence field [9, 10], possibly constraining the possible classes of quintessence po-

tentials. Chiba[10] also identified the difiiculty in reconciling the Oklo data with the 

Quasar results. Carroll [11] suggests that an approximate global symmetry could sup-

press the coupling of the quintessence field to parts of the Standard Model other than 

electromagnetism. This would still allow a finely tuned quintessence field to drive a 

change in a . Various dilatonic alternatives, in which all coupling constants vary as a 

function of a single field, may also be considered (including dilaton couplings to the 

cosmological constant [8]). Other candidates to explain variations in a are the so-called 

varying speed of light (VSL) theories [12, 13, 14, 15, 16, 17, 18], which also offer an alter-

native to inflation for solving cosmological problems. Although VSL theories generally 

entail breaking Lorentz invariance it has been shown[17, 18] that this is not necessarily 

the case. Ref. [18] present a class of two-metric VSL cosmologies compatible with both 

classical Einstein gravity and low-energy particle physics. In this framework there is 

a second separate metric to which photons couple, distinct from the spacetime metric 

which describes the gravitational field and which couples to ordinary matter. These 

models also solve most cosmological puzzles usually solved by inflation, but since there 

is no violation of the strong energy condition, they do not explain the flatness problem. 

^ Indeed there are ambiguities in labelling theories 'simple' or 'natural'. The simplicity could equally 
well lie in a theory being derived from a fundamental theory with particularly attractive higher sym-
metries without necessarily being a minimal extension to general relativity (GR). There are also more 
than one direction in which one can depart from GR 
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As examples of varying e and varying c theories we take the BSBM theory and 

the VSL theory presented in [17]. By introducing an appropriate change of units we 

can turn VSL into a constant c theory, but the dynamics will then look unnecessarily 

complicated; likewise BSBM can be rephrased as a constant e, varying c theory, with 

a concomitant increase in complexity. This is why we say that BSBM is a varying e 

theory while the theory in [17] is a VSL theory: dynamics fixes the choice. Crucially, the 

dynamics also have unambiguous observational implications. We will show that with 

standard dark matter this VSL predicts an increasing a, as a function of cosmological 

time^ . By contrast, BSBM predicts a decreasing a, a conclusion which can only be 

reversed by a different choice of dark matter composition, as explained in chapter 3. 

This is a striking difference, but pending the determination of the nature of the dark 

matter one can use both BSBM and VSL to fit the Webb et al results[19]. The same 

remark applies to other cosmological tests, such as constraints arising from the cosmic 

microwave background (CMB) and Big Bang Nucleosynthesis (BBN) [20, 21]. 

However, BSBM and VSL theories also make different predictions regarding spa-

tial variations in a near massive objects. Due to these variations all changing-a theories 

predict a 'fifth force' effect [7, 8, 22, 19], but we will see that the exact details can distin-

guish between BSBM and VSL. In BSBM theory the fifth force induces an anomalous 

acceleration which, unlike gravity, depends on the material composition of the test par-

ticle and so violates the weak equivalence principle (WEP). This VSL theory and others, 

on the other hand, are consistent with the WEP, as first noted by Moffat[19]. 

The exact level of WEP violation predicted by BSBM depends upon an unsolved 

problem in nuclear and hadronic physics: how much of the mass-energy of nuclei is of 

electrostatic nature? As yet, there is no reliable answer to this question [23] but we can 

still estimate the magnitude of WEP violation, which reveals that the BSBM theory is 

^ This is not unique to the theory in question; the VSL theory of [18] can explain both increasing 
and decreasing a 
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marginally consistent with current Eotvos experiments. However, the next generation 

of WEP tests, such as the STEP project [24], will easily be sensitive enough to detect 

violations of the WEP as predicted by BSBM even by the most conservative estimates. 

Should violations be observed, it should be seen as a success for varying e theories. 

If not, then we must narrow our interest to VSL theories in order to accommodate 

observational signals of varying a . Thus, space experiments such as STEP can provide 

an independent experimental test of any astronomical evidence for varying a , and decide 

between a varying e or c interpretation. 

7.2 The BSBM and VSL frameworks 

We start by comparing the two theories to be used as exemplars. In the BSBM 

varying a theory, the quantities c and h are taken to be constant, while e varies as 

a function of a real scalar field ij), with e = eoe^. As shown in chapters 2 and 3, 

it is possible to rewrite this theory in such a way that ip only couples to the free 

electromagnetic lagrangian £em- The field tensor and the covariant 

derivatives — d^ + ieoUfj, then do not contain and the action takes the form: 

5" = y d!^X^/—g [jlg + Cmat + ; (7-1) 

where ^em = and Cmat (the lagrangian of all matter 

fields apart from Cem) does not depend on tj). The gravitational lagrangian is the usual 

Cg — with R the curvature scalar. 

In contrast, the covariant VSL theory proposed in [17] assumes that c varies, and 

builds the simplest dynamics on this premise, which is equivalent to a choice of a system 

of units. It assumes that c = coe^ (with % another real scalar field) and that the full 

matter Lagrangian Cm does not contain %. Up to a free parameter, q, this assumption 

fixes how all matter couplings scale with c; in particular, one has for all interactions i 
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associated with gauge charges e* that ctj oc oc cc c^. The action is [25] 

S — J d'^x\/—g (^Cg + ! (7.2) 

with = —^dfj,xd^xi Cg is as given above. It was shown in [17] that only when 

6 + 5 7̂  0 can these theories be conformally mapped into dilaton theories, and into 

Brans-Dicke theories only when g = 0 . This theory has an obvious novelty when 

compared to BSBM: all a i are variable. However, recent cosmological variations in non-

electromagnetic ai are beyond the reach of current direct astrophysical observations. 

Hence for the purpose of this Letter we shall ignore their consequences. 

7.3 Cosmological comparisons 

Varying the action with respect to the metric leads to straightforward generaliza-

tions of Einstein's equations, see ref. [17] and chapter 3. Variation with respect to the 

new scalar fields leads to dynamical equations for a. For small variations, 6a/a 1, 

these are: 

O — = - ^ e m (7.3) 
a w 

for BSBM, and 

(7.4) 
a w 

for VSL. In both cases the right-hand side is zero for relativistic matter, predicting 

negligible variations in a during the radiation-dominated cosmological epoch. Two 

striking differences appear in the matter epoch, when the RHS becomes non-negligible, 

in both the coupling parameters and the driving source C. The requirement that the 

fields X and ijj have a positive definite energy forces w > 0. This fixes the sign of the 

coupling for BSBM (4/w) but not for VSL {—bq/oj). The source C is also different for 

each theory and is parameterized by different ratios determined by the dark matter: 

C = Cem/p for BSBM, and ^ = Cm !P for VSL. 



94 

The value of ( for baryonic and dark matter has been disputed [22, 8] (see dis-

cussion in chapter 3 as well). It is the difference between the percentage of mass in 

electrostatic and magnetostatic forms. As explained in chapter 3, we can at most esti-

mate this quantity for neutrons and protons, with Cn ~ Cp ~ 10"^. We may expect that 

for baryonic matter ( ~ 10^^, with composition-dependent variations of the same order. 

The value of ( for the dark matter, for all we know, could be anything between -1 and 

1. Superconducting cosmic strings, or magnetic monopoles, display a negative ( , unlike 

more conventional dark matter. On the other hand it was argued in [17] that the value 

of ^ (characterizing the VSL dynamics in the matter epoch) is —1 for all non-relativistic 

matter. This is equivalent to requiring that non-relativistic matter is dominated by its 

potential energy (including rest mass) rather than by its kinetic energy T. We shall use 

this fact in the rest of the chapter although it is not essential for most of what follows. 

It is clear that the only way to obtain a cosmologically increasing a in BSBM 

is with ( < 0, i.e with unusual dark matter, in which magnetic energy dominates 

over electrostatic energy. In chapter 3 we showed that fitting the Webb et al results 

requires Cm/'^ = —2 ± 1 x 10~^, where (̂ rn is weighted by the necessary fractions of dark 

and baryonic matter. On the other hand VSL theory fits the Webb et al results with 

6g/w = —8 X 10"^, for all types of dark matter. Hence, if we were to determine that 

C > 0 for the dark matter in the universe, we could experimentally rule out BSBM but 

not VSL. This is just one way in which the question in the title of this chapter could 

be answered. However, pending identification of the dark matter, we may still answer 

this question by looking at spatial variations in a . 

7 .4 Spat ia l c o m p a r i s o n s 

In all causal varying-a theories defined by a wave equation the observed redshift 

dependence of a requires there also to be spatial variations near compact massive bodies 

(see chapter 3 and ref. [29]). The relevant equations may be obtained by dropping the 
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time dependence in (7.3) and (7.4 ). Then, a linearized spherically symmetric solution 

in the vicinity of an object with mass Ms and ( == hs 

^ _ 2 ^ (7.S) 
a u) -KT Qrn Trr 

for BSBM 

^ = (7 .6) 
a uj 47rr nr 

for VSL. We note that the level of spatial variations in BSBM, given [2, 3], depends 

on the nature of the dark matter (the ratio Cs/Cm), whereas for VSL it does not. In 

VSL, a increases near compact objects (with decreasing c if g < 0, with increasing c if 

g > 0) but in BSBM a decreases (since <: 0 and )> 0). In VSL theories, near a 

black hole a could become much larger than 1, so that electromagnetism would become 

non-perturbative with dramatic consequences for the physics of black holes. In BSBM 

precisely the opposite happens: electromagnetism switches off. 

Spatial variations lead to a number of observable effects which sharply distinguish 

between VSL and BSBM. Most obviously a could be measured in absorption lines from 

compact objects, as explained in [17] for VSL and chapter 3 for BSBM. More subtly, 

alpha gradients induce a 'fifth force' effect. In order to compute this force one must 

model ( o r ^ for test bodies. In BSBM the test-particle lagrangian may be split as 

A = Variation with respect to the metric leads to a similar split of 

the stress-energy tensor, producing an energy density of the form p((l — Q) + 

and so a mass of m(( l — Ct) + (assuming electric fields dominate). In order to 

preserve their ratios of Ct — jO-em/p test particles may thus be represented by 

'C(y) = - J dr m(( l - Ct) - i (7-7) 

where over-dots are derivatives with respect to the proper time r . This leads to equations 

of motion: 
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which in the non-relativistic limit (with Ct <C 1) reduce to 

== - SKtTTilA , (7.9) 

where <f) is the gravitational potential. Thus we predict an anomalous acceleration: 

° = + (7.10) 
\ LUTT J 

Violations of the WEP occur because is substance dependent. For two test bodies 

with Ci and (2 the Eotvos parameter is: 

^ ^ 2 K - ^ OlCi - C2i (7,11) 
ai + 02 WTT 

This can be written more conveniently as the product of the following 3 factors: 

The last factor is the coupling that determines cosmological time variations in a , and 

using the results[2, 3] is best fitted to be ( m / ^ ~ —10"'^. If we take Cn ~ Cp ~ 

iCp " Cn| = O{10''^) then for typical substances the first factor is % 10^®. Hence, we 

need Cm = 0(1) to produce r] — C?(10~^^),just an order of magnitude below existing 

experimental bounds. 

In contrast to this VSL theories predict that for all test particles 

•^(y) = -- ^ , (7.13) 

where we have assumed ^ = — 1. This leads to an anomalous acceleration of equal mag-

nitude for all test particles, so that there are no WEP violations. This new acceleration 

does imply corrections to the standard tests of general relativity, such as the precession 

of Mercury's perihelion, light defiection and radar echo time-delay [26, 29]. These were 

studied in [29] and impose the undemanding constraint of 6^/w < 10"^ [30]. There-

fore we conclude that an increase of about an order of magnitude in the experimental 

sensitivity to non-zero t] would decide between the BSBM and VSL theories. 
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Webb et al [1, 2, 3] caution that their results might be due to some uninvestigated 

systematic effect. For this reason it is important to seek independent observational 

verification. Direct measurement of WEP violations at the predicted level could be seen 

as a direct confirmation of the source of the astronomical results. Spatial fluctuations 

in a could also be directly mapped from spectroscopy of lines formed in very compact 

objects or their accretion disks (see our discussion in chapter 3 and ref. [29]). But more 

realistically we note that Earth-based atomic-clock experiments could also measure these 

fluctuations. Atomic clocks tick at a rate t~^ oc {Eea'^)/h, where Eg is the electron rest 

energy. Hence atomic-clock experiments able to measure gravitational redshifts will 

suffer from an extra effect: in BSBM theories these clocks tick slower in gravitational 

wells, with T oc l / a ^ , whereas in VSL r oc oc Any hyperbolic varying-

a theory explaining [2, 3] should predict a similar effect. 

In general, any gravitational-redshift experiment should be sensitive to a varying 

a . One example is the Pound-Rebka-Snyder experiment, which lets a 7 - r a y photon 

emitted by a ^^Fe crystal fall in a gravitational fleld only to observe its resonant ab-

sorption by a ^^Fe target. This resonant absorption is made possible by the Mossbauer 

effect, in which the recoil momentum on emission and absorption is taken up by the 

whole crystal, so that essentially no energy is lost on emission and absorption. The 

effect has been used to observe gravitational redshifts, but the emitted photon's energy 

also depends upon a. For small variations in a the energy shift is 5E/E — CSa/a 

with C of order 1 (but not very well known). A similar effect will occur in experi-

ments using Rydberg lines, with a shift in wavelength 5A/A = —2{5a/a) (for both VSL 

and BSBM theories). Once the photon is emitted varying-a theories predict no extra 

redshift for free-flying photons (since £ = 0 for photons). However, the observed grav-

itational redshift of frequencies takes the form dv/u — (1 -|- appi^)5(j)^ with a non-zero 

PPN parameter appj\r induced at emission. Using (7.5) we find that for BSBM theory 

oippN = 2(g/(7rw), with the quasar data [2, 3] then implying that apppf ~ 10~®. For 
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VSL theory care must be taken, because 6X/X, 6u/u and 6E/E are distinct quantities. 

Defining appN in terms of frequency in the conventional way and using (7.6) we have 

that app]S! ~ (2 + q~^)hql{Amlo) % —(2 + Hence BSBM theory predicts a 

stronger redshift than general relativity, with corrections of order 10~®. If g <C 1, VSL 

theory predicts a weaker redshift effect with corrections of order 10"®; but this con-

clusion is changed if g % —1/2. Both BSBM and VSL theories are consistent with the 

current bound of o-ppn < 10"^ [26]. Any causal varying- a theory should predict a 

non-zero correction to the relativistic redshift formulae. 

7.5 Discussion 

In summary, we have in this chapter explained how a combination of experiment 

and common sense may distinguish a varying c from a varying e. Using only mini-

mal versions of such theories, we have shown how they can be distinguished by weak 

equivalence principle violations, by the type of dark matter required to give the varia-

tions inferred from quasar observations[2, 3], and by gravitational-redshift experiments. 

In non-minimal varying-e and -c theories, the distinguishing observational signatures 

should be even more obvious. For instance, if Lorentz invariance were found to be bro-

ken, [27, 28], then a varying-c theory would provide a better framework for expressing 

variations in a . 

Finally, we note that the experiments proposed in this chapter are by no means 

the only discriminators between varying-e and -c expressions of a varying a . In [31] the 

authors examined black hole thermodynamics, by changing the values of e and c in their 

description of black hole thermodynamics (which, however, may be too simplistic [29]). 

In this context they found that interpreting a varying a. as varying e or c leads to opposite 

black-hole dynamics, with a varying-e contradicting the second law of thermodynamics. 

In principle one could test whether or not black hole areas always increases in time in 

the next generation of gravitational-wave observatories. Like the various experiments 
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described in this chapter, this is experimentally unambiguous, since the ratio of two 

areas is dimensionless. 
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Chapter 8 

Simultaneously Varying a and G 

8.1 Introduction 

There have been many studies of the cosmological consequences of allowing some 

of the traditional constants of Nature to change. These include evaluations of the effects 

of altering the observed value of a constant to another constant value and studies of the 

time-evolution of 'constants' in generalisations of the general theory of relativity that 

allow them to become space-time variables. The most studied case is that of varying 

the Newtonian gravitation constant, G, through the Brans-Dicke (BD) scalar-tensor 

theory of gravity [1]. In the earlier chapters of this thesis, following Bekenstein, [2], 

we have developed a theory (BSBM) which describes the space-time variation of the 

fine structure constant. In these, and other, studies of varying constants only a single 

constant is allowed to vary at one time. However, since we have no understanding of 

why the constants of Nature take the values that they do, whether they are logically 

independent, or even whether they all are truly constant, this restriction is somewhat 

artificial. Motivated by recent observational evidence for a time evolution of the fine 

structure 'constant', a, at redshifts z ^ 1 — 3.5, [3], [4], [5], we have unified the BD and 

BSBM theories to produce an exact theory which describes the simultaneous variation 

of a and G. This type of model also provides a framework within which to consider the 

consequences of changes in the scale of extra dimensions of space on apparent three-

dimensional coupling constants. 
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In section 2 we set up the theory and evolution equations for Friedmann universes 

in a theory that generalises general relativity to include varying a and G. In section 3 we 

show how to find the cosmological solutions during the dust-dominated eras. We find an 

exact solution where aG is constant during the dust era while a and G~^ both increase 

with time. We then determine analytically the coupled evolution of a and G during 

the radiation, curvature, and vacuum-energy dominated eras of cosmological expansion. 

Prom here we go on to check the solutions numerically and we show how in Universes 

like our own, with actual initial values for a and G the asymptotic behaviour is never 

reached. Instead we find constant a and G in the radiation era, slow growth of a and 

slow decrease in G in the dust epoch, constant values for both in curvature dominated 

universe, and constant a and decreasing G in A dominated epoch. Generally we find 

that the overall evolution of the expansion scale factor of the universe is dictated by 

the G variation and assumes the form found in the Brans-Dicke theory to a very good 

approximation irrespective of the a variation. The evolution of a. is infiuenced by the 

G variation but does not differ much from that found in the BSBM cosmologies where 

only a varies. 

8,2 Field Equations 

We introduce the structure of the BSBM theory for varying a as another matter 

field in Brans-Dicke theory. The resulting theories has two scalar fields: the BD field 

(/) propagating variations in G, and the field i/* propagating variations in a . The action 

for this theory becomes 

— J d^x^/—g ^R4> 4 — ~ ^BD —) (8-1) 
16% ^ 

(!> 

where 

^ + ^em exp(—2'0) + (8.2) 
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and 

Ctp = — — 

The field equations for the theory, specialised to the case of a homogeneous and 

isotropic Priedmann space-time metric containing dust and radiation perfect fluids are: 

^ ^ ^ & (8.3) 

•i/j + 3-ff^ = - —exp(-2t/))<;pm (8.5) 
w 

p'm + "iHpm — 0 (8.6) 

Pr + 4:Hpr — 2lppr (8.7) 

where = ^ijP' is the kinetic energy density for the ijj fluid, with w the coupling setting 

the relevant energy scale for the ^/^-fleld. ( is defined as the ratio Cem/pm averaged over 

all types of matter in the universe. The fine structure 'constant' is given by (/i = c = 1) 

a = Q!oexp(2'0), (8.8) 

where ao is the present day value of the fine structure 'constant'. The present-day value 

of G is set equal to unity. 

We shall confine our attention to the case with ( < 0 where the magnetic energy 

dominates the electric field energy of the matter coupling to electric charge in the 

universe. This places particular constraints upon the nature of the cold dark matter 

dominating the universe today. From our studies in earlier chapters we know that 

this case provides a slow variation with a increasing logarithmically in time during 

the dust era but staying constant during any subsequent curvature or cosmological 

constant dominated era. Also, in a universe with a matter-radiation balance like our 

own, a remains constant during the radiation era except close to the initial singularity. 

Negative ( models are well behaved and correspond to the dark matter in the universe 

being dominated by magnetic coupling, (for example superconducting cosmic strings 
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contribute ( = —1). The expansion scale factor evolution is not affected by variations in 

a to leading order. By contrast, the choice ( > 0 creates major changes to cosmological 

evolution. It does not lead to slow increase of a with time during the dust era, as 

observations suggest, and the evolution of the expansion scale factor is affected to leading 

order (see for example refs.[6, 7] who discuss related theories for the variation of a with 

( > 0 and hence ce < 0 cosmological behaviour in the dust era in contrast to our 

discussions in chapters 3-4 and below). In what follows we shall investigate how the 

C < 0 evolution of the fine structure constant couples to variation of G in the Brans-

Dicke theory. 

The constant wg#is the Brans-Dicke parameter and w is the analogous parameter 

for the coupling of the ip field driving variations in a. Present observational limits on 

lobd are u)bd ^ 10^ — 10^. We have used the facts that dust is pressureless, p = Pr/3 

for a sea of radiation and p — Pip for a fluid with kinetic energy only. Equation (8.3) 

can be recast for numerical solutions 

a l(j) 1 

a 2 (j) 2 \ 
and eqn. (8.7) integrates to give p^exp(—2^i) oc Note that this is the combination 

that appears in the generalised Priedmann equation, (8.3). In chapter 4 we showed how 

to deduce the solutions of these equations when G is constant. Here, we will extend this 

analysis to the new situation where both a and G vary in time. 

8.3 D u s t era e v o l u t i o n 

From our study of the Friedmann models in BSBM theory we know that, to a 

very good approximation, the a variations do not significantly affect the evolution of the 

expansion scale factor a{t). The effects of varying G in Brans-Dicke theories is different. 

No matter how slow the variation in G, a correction will occur to the power of the 

time-variation of the expansion scale factor. In the dust era we assume the asymptotic 
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solution for the Brans-Dicke (BD) flat dust model holds to high accuracy. This is an 

exact solution of (8.3) iov ( = k — ip = Pj = 0 and is the late-time attractor of the 

general flat BD dust solution (see refs. [8, 9], [10]) which differs only as i > 0, where 

the solution becomes dominated by the kinetic energy of the (j) field and approaches the 

BD vacuum solution. Thus, to leading order the expansion dynamics and (j) evolution 

are described at late times by the exact Brans-Dicke dust solution with fc = 0: 

a{t) dc ^ ( 2 - m ) / 3 . ^ (8.10) 

p = MoT^ M = 0 (8.11) 

* " 4 3 ^ 

where n is related to the Brans-Dicke parameter by 

n = 2/(4-t-Swbc), (8.13) 

and M is the present density of the universe in Planck units, M ~ 10"^^^. 

What is the asymptotic solution for a during the dust era? The relevant equation 

is (8.5), which can now be rewritten as 

^(i^~"V') = Nexp{—2'4)) (8.14) 

where 

N = = - ^ ^ > 0 N = 0, 
(jJ w 

and —C/w % 10"^ is the best fit of this parameter ratio to the observations of Webb et. 

al. [3]-[5]i . 

Unlike the case with constant G, there is an exact solution (for ubd positive and 

finite) 

V'W = | l n ( t ) + ^ I n A T - i l n ( ^ - y ) (8.15) 

^ The value used for —C/w is the value fitted for the BSBM theory with constant G. However, since 
n is so close to zero it should not be significantly different numerically in the case with varying G 
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so we have, using this solution for ip to solve for in (8.4): 

2Nt^ 
«(*) = ao exp(2^) = (8.16) 

Hence, there is a simple relationship between a{t) and G{t)\ 

^ _ r - i _ ~ ^ _ 27rw(2 + Swap) a 
—C(3 + 2a;BD) CKQ —C(3 + 2wgf))(4 + Swg^)) ĉ o ' 

so ccG is always a constant. Note that for large values o f w g g we have a simple relation 

between the values of G and a\ 

(8.18) 
CKo TTO; 

As expected, a increases whilst G falls as i ->• oo in a flat universe. It is interesting to 

note that the asymptotic value of Ga is uniquely determined by the parameters in the 

model with no arbitrary constants. 

Although the asymptotic behaviour is now determined, the question of whether 

this can be reached on a cosmological timescale depends strongly on the choice of initial 

conditions and needs to be investigated numerically. We can quickly conclude that the 

asymptotic regime is not reached in our universe. Presently we have a ~ 1/137, and 

in our units the numerical value of M is extremely small, ~ 10"^^^. Obviously the 

actual value of a is then many orders of magnitude larger than given by the solution in 

eq.(8.15) and we are thus nowhere near the asymptotic regime. Consequently, in order 

to find the behaviour of a and G we turn to numerical solutions of the equations. We 

evolve the Priedmann equations through time with initial conditions chosen so as to 

yield the present day values of G and a. For a we find a behaviour very similar to the 

BSBM theory, with a slow growth giving a relative change of the order 10"^ throughout 

the dust epoch. G goes through a decrease of order 10"^ during the same period. The 

numerical results are shown in Figures 8.1 and 8.2. 
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8.4 Radiation era evolution 

The evolution in the radiation era is slightly more complicated because of the 

contribution of the term to the right-hand side of the </> evolution equation. This 

means that we do not have the usual late-time asymptotic behaviour of constant (f) to 

accompany the a — scale factor as in BD radiation universes. If we assume 

O == (1/2 

then we have 

= (8.19) 

where 

^ S t t M _ Anu;N 

- 3 4-2WBD ( ( 3 ^ ' 

The R term is negligible when the kinetic energy of the ip field dominates the 

matter density during the radiation era. Likewise, the A term can be neglected when 

the matter density dominates the •0 kinetic energy. We also have 

= Nex-p[—2'ip] (8.22) 

as in the case with constant G. This has the exact solution 

V' = ^ ln(8iV)- | -^ ln( t ) (8.23) 

as before, so ip"̂  = (16i^)~^. If we substitute this in (8.19) 
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so 

(f) — (̂ 0 + — — ln(t) + Ct (8.25) 
o 

where C and are constants. If the universe expands for long enough to reach the 

asymptotic regime then we have (as R> 0) 

if) ^ ^ ln(t) (8.26) 

so, from eqns. (8.18) and (8.8), 

+ (8.28) 
CKQ STTCJJN ATTCJN 

for large ubd- Thus we still have the nice asymptotic behaviour of aG in the radiation-

dominated epoch. However, we again need to compare with numerical results to deter-

mine whether these asymptotic solutions can indeed be realised in the Universe. As in 

the case of dust, the same simple reality check can now be performed on the solution 

(8.23). As in the case of constant G we are nowhere near this particular solution in our 

Universe, a would need to be several orders of magnitude smaller if it was to satisfy 

the solution, and as in the BSBM theory we expect instead a constant value of a in the 

rad epoch. This assumption is indeed confirmed by the numerical solutions shown in 

Figures (8.2) and (8.1). 

Another possible problem for the analytic solutions above would arise if the kinetic 

energy of the ip field dominates the matter density during radiation domination. We 

regard this situation as unrealistic and it cannot be realised asymptotically. 
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8.5 Curvature era evolution 

During a curvature-dominated phase of an open universe the expansion scale 

factor tends to that of the Milne vacuum universe, which is an exact solution of general 

relativity and of Brans-Dicke theory (with constant 4>) with 

a = t (8.29) 

Using this in the propagation equations for and i/',we find that, as ( -4 oo, so 

leading order 

i, = j,. -

, , ATTUN 
(p = (p* + 

C(3 + 2ujBD)i 

with ?/>* and 0* constants, so both a and G tend to constant values as t —)• oo. In a uni-

verse that passes directly from dust domination to curvature domination these constant 

values will be very close to the asymptotic attractors for the dust era of evolution found 

above in eqn. (8.18) providing the dust epoch has lasted long enough for the attractor 

to be reached. 

The behaviour of G, a and Ga in a universe like our own but which eventually 

becomes dominated by negative curvature is shown in Figure (8.2). 

8.6 Cosmological 'constant' era evolution 

In flat Brans-Dicke cosmologies a solution of the Priedmann equation with cosmic 

vacuum energy {p^ = —pv) is 

a = fwaa+i • (8.30) 
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# = 4),^ (&31) 

* ^ (5 + 6JCTp + 2 " b d ) (8.32) 

and p-u is constant. This is not the general solution but it is the attractor for the general 

Pi, = —Pu solution at late times [11]. It is a power-law inflation model [12], Note that 

in Brans-Dicke theory, unlike in general relativity, a,pv = —py stress behaves differently 

in the Priedmann equation to an explicit constant A term[ll]. It is the former that 

describes the stress contributed by a stationary scalar field with a constant potential. 

Every term in the BD Priedmann equations falls as for this solution. It is unusual in 

that it appears to predict that if the universe has just begun accelerating (as observations 

imply, [13, 14]) then G should vary rapidly in the solar system. However, this argument 

assumes that the vacuum stress is dominant everywhere, right down to the solar system 

scale, which in reality it is not. 

If we substitute this solution for a{t) (but not <p) in the ip and (j) evolution equa-

tions, (8.4) and (8.5) then we get, since 

Pv = —pv — const, 

that 

^ _ I _ 3 ( 2 u , o t + 1 ) ^ - 3 + L b d 3 + Z B D 

/c u1 

So, at late times 

ip = Aa~^ = £ ) i - 3 ( w B x , + i ) 

^ p 
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3(2wBf) + 1 ) J, _ —STTUJ /O--6\ > —327rwp^ 
^ 7^1 ^ — Q , o,.— —Qa ) 

2t 3 + luiBD 3 + 2U)B£) ' 

so 

(l> = A + Bt'^ + -4- (^(2, (8.33) 

and, as expected, we get the same growing behaviour as in pure BD. When the 

universe becomes vacuum-energy dominated a. tends to a constant value but o.G oc 

G oc continues to fall. This behaviour is confirmed by numerical solutions shown in 

Figure (8.1). Using eqn. (8.18), we see that if t^is the time when a vacuum-dominated 

era succeeds a sufficiently long dust-dominated era in a flat universe, then at t > in 

the vacuum-dominated era we expect 

Hence, today, we would have 

a{to)G{tQ) = ^ (8.35) 
-!toj{l + z-u) 1+2"bd 

We see that, as in the situation where G is constant, the effect of a vacuum energy or 

quintessence field is to turn off variations in a when it takes over the expansion of the 

universe. 

8.7 Discussion 

We have formulated a simple gravity theory which extends general relativity, by 

the addition of two scalar fields, to include time variation of G and a . Previously, 

the study of the cosmological variation of physical 'constants' has confined attention to 
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varying one constant only or to discussing the effects of altering the values of physical 

constants without a self-consistent theory for their dynamical variation [15], [16]. The 

structure of unified gauge theories and particle physics theories with extra dimensions 

has given some indication as to the self consistency conditions required if traditional 

constants are allowed to vary, [17, 18]. 

We have found that the expansion of the universe is affected by varying G to first 

order and the evolution of the expansion scale factor follows the behaviour found in 

Brans-Dicke cosmologies to leading order without being significantly affected by varia-

tions in a. The variations in a are affected by the variations in G through their influence 

on the expansion rate. This is significant in the dust-dominated era of cosmic expan-

sion, which in chapter 4 was shown to exhibit a special mathematical behaviour in the 

absence of G variation. The effect of any G time variation simplifies the a variation and 

allows an exact solution to be found with a oc t",where n = 2/(44-3wg^) is determined 

by the Brans-Dicke parameter 

In both the radiation and dust dominated eras, there are asymptotic solutions 

in which the product Ga remains constant and its value is determined uniquely by the 

coupling constants of the theory. However in universes like our own with the values of 

a and G near present values these asymptotic regimes are not reached throughout the 

life of the universe. Typically our present values for a are much larger than the values 

required by the asymptotic solution. 

In a curvature-dominated or quintessence-dominated era the variation in a ceases, 

just as in the situation with no G variation investigated in chapters 3 and 4. This is an 

important feature of all models with varying a. in theories of the BSBM sort because 

it naturally reconciles evidence of variations in a. at redshifts 2 ~ 1 — 3, with local 

(z = 0.1) constraints from the Oklo natural reactor if the universal expansion began to 

accelerate at z ~ 0.7, as current observations imply. 

Finally, we reiterate that the conclusions drawn above apply only to varying-a 



114 

theories with negative ( . The exact solutions given in eqs. (8.15),(8.16),and (8.23) for 

the evolution of a{t) during the radiation and dust eras no longer exist when ( > 0 

and hence N < 0. During the curvature and cosmological constant-dominated eras the 

evolution of a{t) is significantly changed by the variations of '0 and the assumptions 

(8.29) and (8.30) for the scale factor evolution are no longer valid. 

The study performed here provides a simple cosmological model in which the 

variation of two 'constants' can be studied exactly. A number of extensions are possible. 

The variations of weak and strong couplings can be included and the constraints imposed 

by any scheme grand unification can be imposed [17]. 
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Figure 8.1: Evolution of the relative shift in the values of the two 'constants' in a realistic 
flat cosmology with vacuum energy and approximately accurate initial values for the 
fields. We start from a radiation-dominated universe where both a and G stay constant. 
Thereafter we move into dust domination where a changes slowly, while G goes through 
a small decrease. As the universe becomes dominated by the vacuum energy, a goes to 
a constant, while G goes on decreasing indefinitely as in ordinary Brans Dicke theory. 
Values used for the couplings are the minimum allowed value oi ubd = 3500 and we 
take the best fit value oi (^/oj — —10"^ from BSBM theory. 
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Figure 8.2: Evolution of the relative shift in the values of the two 'constants' in an 
open universe through radiation, dust and curvature-dominated epochs. Initial values 
for the fields are set so as to give realistic values at present time. Again a and G are 
constants in the radiation dominated era, whilst a increases and G decreases through 
matter domination. As curvature starts to take over the expansion, both a and G tends 
to constants. Values for the couplings are the minimum allowed value of wbd = 3500 
and the best fit value of ( /w = —10"^ from the BSBM theory. 
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Chapter 9 

Conclusions and Outlook 

The results by Webb et. al. [1, 2, 3] suggesting a time-varying fine structure 

constant have sparked new intensity into the debate about the value and constancy 

of physical 'constants'. Partially motivated by these results, the main theme of this 

thesis has been the development and subsequent investigation of a generalisation of 

Bekenstein's theory. lU this theory the dimensionless fine structure constant a = /{he) 

is allowed to vary through the presence of a dielectric field pervading the vacuum. The 

variation is thus efi'ectively contributed to the dimensionful electric charge e. 

We started by considering soliton solutions to Bekenstein's original theory, and 

found vortex solutions (cosmic strings) around which the electric charge is varying due 

to the magnetic energy in the string core. Typically the value of the electric charge 

is much higher near the core of the string. We discussed cosmological consequences of 

networks of such strings, particularly the possibility of inhomogeneous recombination 

scenarios. 

From here we went on to generalise Bekenstein's theory to include the self gravi-

tation of the scalar field carrying the a variation (BSBM theory). We showed how we 

can account for the variation found by Webb et. al. and how by putting constraints on 

the nature of dark matter we still marginally honour constraints from Etwos type tests 

of the universality of free fall. The behaviour of this theory in the various cosmolog-

ical epochs was thoroughly investigated through exhausting analytical and numerical 
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studies. Maybe the most important feature of the model is that there is only a very 

short window in the dust-epoch in which a changes. Hence we are able to honour si-

multaneously both early universe constraints from Big Bang Nucleosynthesis [4, 5] and 

geonuclear constraints[6, 7] as well as the Webb results. Then inhomogeneous cosmologi-

cal variations in a in this theory were considered, and we found that inhomogeneities are 

wiped away with time and solutions approach the behaviour found in exact Priedmann 

universes. 

Later we discussed some novel anthropic considerations that arise from the re-

alisation in earlier chapters that a will vary as long as the Universe is dominated by 

pressureless dust. This places lower bounds on the cosmological constant and on curva-

ture if life is to be sustainable in the Universe. Similar anthropic arguments were found 

for Brans-Dicke varying-G theory. This complements earlier anthropic arguments for 

upper limits on these quantities. 

We also looked at ways in which different varying-a theories can be distinguished 

by their different impacts on the weak equivalence principle (WEP). Our own BSBM 

theory has far stronger WEP violations than e.g. varying speed of light theories where 

the scalar field couples universally to the who le matter lagrangian. Thus the improved 

precision of several orders of magnitude from experiments already in the planning stages 

should be enough to determine which of e or c is varying. 

Since there is no theoretical reason why a potential variation in the physical 'con-

stants' should be confined to just one constant, we finally laid out the framework for a 

theory allowing for a variation in both a and the gravitational constant G. The relevant 

Friedmann equations were derived and the cosmological behaviour was analysed. 

There are several possible avenues to explore within the BSBM framework. One 

interesting question is what consequences our theory might have for high energy phe-

nomena like pulsars and black holes. We have developed the classical solutions for 

a charged black hole in this theory (see appendix B), but it is important to investi-
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gate what impact this might have on other aspects of black holes (for instance along 

the lines of what is suggested by [8]). It is also interesting to try to link our theory 

with low-energy limits of more fundamental theories in want of a more solid theoretical 

foundation. 

There are genuine problems in trying to fit the quasar data[l, 2, 3] with theoretical 

models[9, 10, 11] as well as other constraints on a . Banks et. al. [12] have showed 

how even tiny variations in alpha could pose major problems for renormalization in 

Quantum Field Theory. In the BSBM theory, maybe the most conservative varying-a 

theory, these problems have been highlighted by the need for 'unnatural' dark matter 

in order to comply with fifth-force constraints. However, with space based tests of the 

weak equivalence principle planned in the near future[13] there is hope that some of 

these models can be ruled out or confirmed. A point of caution is that due to the 

immense importance of the quasar results, it is vital they be independently verified 

and extended. Should they be confirmed, no doubt most of the physical constructions 

employed by physicists will have to be reexamined. 
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Appendix A 

Priedmann equations 

Below we present a more rigorous transition from the Einstein equations to the 

Eriedmann equations. Especially the details of the ( parameter for electric and magnetic 

energy densities will be examined. 

Again the Einstein equations are, 

with the dynamical equation for the scalar field: 

(A.2) 
w 

We need to introduce the ( parameters in order to parameterise the fraction of electric 

and magnetic energies: 

C = ^ , C = ^ (A.3) 
rm Km 

where Pm is the density of non-relativistic matter in the Universe, and E"̂  and are 

the electric and magnetic energies respectively. Thus equation A.3 can be written 

(A.4) 
w 

and assuming isotropy and homogeneity we obtain the new version of equation 3.5 

'4) + 3Hlp = e Cm)- (A.5) 
CjJ 
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Since the time-time component of the electromagnetic stress-energy tensor is 

3:2% = ^ (js* + J92) (Jl.6) 

we get the the sum of the two ( parameters in the Priedmann equation 

( a ) ~ - (Cm + Cm) + (Cm + Cm)e + Pr^ + Pipj + (A.7) 

where we have employed a FRW metric. This is a more rigorous variant of eqn. (3.4), 

which can be obtained by defining Cm = Cm Cm) introducing absolute values in eqn. 

(A.7) and taking the hmit where either Cm ^ Cm (positive Cm) or Cm Cm (negative 

Cm)- Eqn. (3.4) only becomes significantly inaccurate for the very special case where 

Cm ~ Cm) &nd we have chosen to use the simplified form throughout this thesis. 



Appendix B 

Black Hole Solutions in the BSBM theory 

B . l Introduction 

One of the most interesting aspects of varying a theories are their implications 

for black holes and stars. In order to test varying alpha theories experimentally, we 

need to know their impact on stars and black holes on astrophysical scales. Varying 

c theories are known[4] to result in a divergent speed of light on the horizon. We will 

show that in the framework of BSBM - theory of a varying fundamental electric charge, 

the charge is indeed well behaved on the horizon. We will show that this theory has 

solutions iden t ica l to dilatonic black holes carrying electric charge. 

B.2 Action and Equations of Motion 

The relevant action where the vacuum is endowed with only the electromagnetic 

field is 

5" = - y (B.l) 

This is similar to the action used for the dilatonic black hole described in [2, 3], which 

reads 

S = - j d f ^ g ( ( B . 2 ) 

Thus the theories are identical with tp — acf) and w — 1/a^. 
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The Einstein equations are obtained from varying the action with respect to the 

metric, 

Gfiu = —SttGThi/ (B.3) 

and from variation with respect to the gauge field and the scalar field we obtain the 

modified Maxwell equations and the dynamical equation for i/) respectively, 

= 0 (B.4) 

(B.5) 

B.3 Solutions 

The solution of the field equations are remarkably simple and can be easily ob-

tained by using the results in refs. [2, 3] together with the redefinitions from the previous 

section. The metric is 

ds'^ = + ^ + B?d£l (B.6) 

where — (1 — ^ ) ( 1 — and R = r ( l — For the gauge field we have 

= ^5, (B.7) 

and for the ip field: 

or equivalently 

e 
1 

= ( l - ^ ) (B.8) 

1 + w r 

The radii r+ and r_ are related by 

(B.9) 

M = ^ + f ^ (B.IO) 
2 \ cu -|-1 y 2 

<5 = (B. i l ) 
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There are several interesting aspects to this solution. Firstly note that there 

are two horizons. For r = r+ we have a non-singular event horizon as for the normal 

Schwartzchild solution. The inner horizon is singular for all finite values of u>. Only in 

the no coupling limit w —>• oo do we recover the Reissner-Nordstrom solutionwith two 

non-singular horizons. 

It is also interesting to note that the solution for ip (and thus the electric charge 

e) is f inite and well behaved at the horizon r = r+ with jp = 1/{1 + co) ln(l — r _ / r + ) . 

This is to be contrasted with the solutions found for VSL theories in [4] for which the 

speed of light either diverges or goes to zero on the horizon. 

B.4 Discussion 

For minimally coupled scalar fields, no-hair theorems for black holes apply[5, 6] 

for both the massive and massless cases and for any kind of potential. In other words the 

black hole cannot possess any quantum number associated with these fields. The same 

is true for massive vector fields. The massless vector field, has an internal gauge freedom 

which makes the black hole horizon non pathological. This property also allows a scalar 

field to escape the theorem if it is strongly coupled to the electromagnetic field, as is 

the case in the BSBM theory and dilaton theories. We found that the BSBM solution 

is identical to the solution for the charged dilaton black hole, and the electromagnetic 

coupling is indeed well behaved and finite on the event horizon. We leave it to future 

work to further investigate the details and consequences of this solution. 
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