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In high-level perceptual regions of the ventral visual pathway in humans, experience shapes the functional properties of the cortex: the
fusiform face area responds most strongly to faces of familiar rather than unfamiliar races, and the visual word form area (VWFA) is
tuned only to familiar orthographies. But are these regions affected only by the bottom-up stimulus information they receive during
learning, or does the effect of perceptual experience depend on the way that stimulus information is used during learning? Here, we test
the hypothesis that top-down influences (i.e., task context) modulate the effect of perceptual experience on functional selectivities of the
high-level visual cortex. Specifically, we test whether experience with novel visual stimuli produces a greater effect on the VWFA when
those stimuli are associated with meanings (via association learning) but produces a greater effect on shape-processing regions when
trained in a discrimination task without associated meanings. Our result supports this hypothesis and further shows that learning is
transferred to novel objects that share parts with the trained objects. Thus, the effects of experience on selectivities of the high-level visual
cortex depend on the task context in which that experience occurs and the perceptual processing strategy by which objects are encoded
during learning.

Introduction
Substantial evidence indicates that the human visual system is
plastic, modified by perceptual learning (Golby et al., 2001; Baker
et al., 2007). After learning, the visual system becomes more sen-
sitive to trained objects compared with untrained ones (Gauthier
et al., 1999; Grill-Spector et al., 2000; Janzen and van Turennout,
2004; Sigman et al., 2005; Op de Beeck et al., 2006; Jiang et al.,
2007; Weisberg et al., 2007). Here, we used functional magnetic
resonance imaging (MRI) to examine whether the effect of per-
ceptual experience on functional selectivities of the high-level
visual cortex depends on the way that stimulus information is
used during learning.

There is a consensus that no single cortical locus is exclusively
responsible for object learning (Bukach et al., 2006; Kourtzi and
DiCarlo, 2006). Rather, the learning-induced changes are distrib-
uted throughout the visual system (Op de Beeck and Baker,
2010). However, regarding the question of where and how object
representations are constructed through learning, hypotheses of
stimulus-driven learning and task-guided learning have different
predictions (Kanwisher, 2001). The stimulus-driven learning hy-
pothesis suggests that the prior preference of neurons biases the
visual system to develop object representations in or near cortical

regions whose preferred stimuli share similar visual features or
physical properties (Dale et al., 1999; Jacobs, 1999) regardless of
the task context within which objects are learned. However, dif-
ferent computational problems faced by the visual system in
complex environments may recruit different neural substrates in
processing the same object (Wong et al., 2009a,b). Therefore,
object representations are likely developed in cortical regions that
are intimately involved in tackling specific computational de-
mands (Op de Beeck et al., 2006; Weisberg et al., 2007). That is,
object representations are developed in cortical regions originally
responsive to objects that are experience related but not necessar-
ily visually similar to trained objects.

Although the top-down task context may recruit different
neural substrates to construct new representations, processing
strategies used to encode stimulus information during the learn-
ing may play a role in shaping the boundary of the tolerance of the
representations to visual variations of trained objects. The holis-
tic strategy processes the information on individual parts rela-
tively inseparably from the information on relations between the
parts (e.g., Tanaka and Farah, 1993; Gauthier and Tarr, 2002).
Therefore, the learning would be specific to the trained objects
and there would be no transfer of learning from trained objects to
their variations. In contrast, the parts-based strategy processes
objects as a combination of simple and independent parts (e.g.,
Marr, 1982; Biederman, 1987). Therefore, the individual parts of
an object would be encoded when the whole object is learned, so a
transfer of learning to the variants that share those parts would be
expected (Riesenhuber and Poggio, 2000; Golcu and Gilbert, 2009).

To address these questions, we trained subjects to learn a set of
novel objects either through visual association learning or
through shape discrimination learning and investigated where in
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the brain object representations were con-
structed and whether the learning effect
transferred to their variations.

Materials and Methods
Subjects
Sixteen subjects (age 22–28; 9 females) partici-
pated in the experiment of visual association
learning, and another 12 subjects (age 20 –24; 8
females) participated in the experiment of
shape discrimination learning. Four subjects
from each group also participated in a behav-
ioral discrimination task before and after the
training. All subjects were right handed, had
normal or corrected-to-normal visual acuity,
and were native Chinese speakers who have
studied English for at least 10 years. The func-
tional MRI (fMRI) protocol was approved by
the Institutional Review Board of Beijing Nor-
mal University, Beijing, China. Informed con-
sent was obtained from all subjects before their
participation.

General procedure
A set of novel objects were created (Fig. 1 A).
Two groups of subjects were trained in either a
visual association task or a shape discrimina-
tion task. During the association learning, the
objects were paired with English words and
subjects were instructed to learn their associa-
tions (Fig. 1 B). During the discrimination
learning, subjects reported the identity of ob-
jects based on their shapes, which were briefly
presented and then backwardly masked (Fig. 1C). After subjects’ perfor-
mance reached asymptotes, fMRI was used to characterize the cortical dis-
tribution of learning effects and the transfer of learning to variants of the
trained objects by examining neural responses within the visual word form
area (VWFA), which responds to the orthography of English words (Cohen
et al., 2000, 2002), and the lateral occipital cortex (LO), a part of the lateral
occipital complex (LOC) that is involved in processing the shape of general
objects (Grill-Spector et al., 2000, 2001; Kourtzi and Kanwisher, 2001).

Stimuli
Dumbbell-shaped objects used in the training and fMRI scanning were con-
structed by connecting two component figures with a connection bar (Fig.
1A). The component figures were made of simple shapes (e.g., arc, line,
circle, square) that were designed to avoid resemblance to everyday objects.

Sixteen objects used for training were created from 16 component
figures. In particular, the 16 figures were arbitrarily divided into four
groups, each of which contained four component figures. By combining
any two figures in a group with a connection bar, four dumbbell-shaped
objects were created (Fig. 1 A, left) (for the whole set of stimuli, see
supplemental Fig. 1, available at www.jneurosci.org as supplemental ma-
terial). Note that once a figure was selected as a left (or right) component
of a dumbbell-shaped object, it remained on the left (or right) in other
combinations to ensure the uniqueness of component figures in each
dumbbell-shaped object. Therefore, the dumbbell-shaped objects could
not be learned based only on one component figure on either end. In-
stead, the configurations of the component figures had to be taken into
account to acquire good performance on object recognition.

In addition to the to-be-trained objects, 16 variant objects were cre-
ated by randomly combining a left component figure in one group and a
right component in another group of the to-be-trained objects (Fig. 1 A,
middle). Therefore, the variants contained the same part components as
the to-be-trained objects, but their configurations were novel.

Finally, another set of 16 dumbbell-shaped objects were constructed in
the same way as the to-be-trained objects, but from a new set of compo-
nent figures to serve as a nonexposed baseline condition (Fig. 1 A, right).

Behavioral training
Visual association learning. A paired-associate association learning para-
digm was used to train subjects to learn 16 paired associates (Fig. 1 B).
Subjects were first shown all paired associates to become familiar with
their associations. Then, they conducted an association judgment task
(two-alternative forced choice) to determine whether the stimulus pair
was one of the actual paired associates. Each trial started with a blank
screen for 800 ms, followed by a dumbbell-shaped object presented along
with an English word. The display was presented until a response was
made. Auditory feedback was given to indicate whether the response was
correct (high pitch) or incorrect (low pitch). There were 480 trials (30
trials per object) in one training session, half of which contained correct
paired associates. The behavioral training was terminated when the reac-
tion time (RT) reached an asymptote (i.e., no significant decrease in RT
in at least three consecutive sessions). This criterion was chosen so that a
subject’s end performance was equated both within and between the
learning tasks. All subjects completed at least six training sessions (i.e.,
180 trials per object), which took �3– 4 h in total for 3 successive days.

Shape discrimination learning. A shape discrimination learning para-
digm was used to train subjects to learn the shape of 16 dumbbell-shaped
objects (Fig. 1C). Each trial started with a blank screen for 1 s, followed by
a dumbbell-shaped object briefly presented on the center of screen for 75
ms that was immediately masked for 500 ms. Subsequently, all 16 objects
were presented simultaneously on the screen. Subjects reported the target
object with a mouse click (i.e., a 16-alternative forced choice task). Au-
ditory feedback was immediately provided. There were 80 trials per train-
ing session (i.e., 5 trials per object). The behavioral training ended when
the accuracy reached an asymptote (i.e., no significant increase in accu-
racy in at least three consecutive sessions). All subjects completed at least
31 training sessions (i.e., 155 trials per object), which took �8 –10 h in
total for 5– 6 successive days.

fMRI scanning
Each subject participated in a single session consisting of the following:
(1) two blocked-design functional localizer scans; and (2) three blocked-
design experimental scans. The localizer scan consisted of English words,
human frontal view faces, line-drawing objects, and scrambled line-

Figure 1. Stimuli and training procedure. A, Four dumbbell-shaped exemplars for each stimulus condition. B, Visual association
learning. Subjects conducted an association judgment task to determine whether a stimulus pair was one of the actual paired
associates. Each trial started with a blank screen, followed by a dumbbell-shaped object presented along with an English word. The
display was presented until a response was made. C, Shape discrimination learning. Subjects learned to discriminate the shape of
briefly presented dumbbell-shaped objects. Each trial started with a blank screen, followed by a dumbbell-shaped object briefly
presented on the center of screen that was immediately masked. Subjects then selected the target among all 16 objects presented
simultaneously on the screen.
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drawing objects. The experimental scan consisted of three types of the
dumbbell-shaped objects: objects from behavioral training (Trained),
variants of the trained objects (Variant), and nonexposed novel objects
(Novel) (Fig. 1 A). Each scan lasted 5 min and 15 s and consisted of
sixteen 15 s blocks with five 15 s blocks of fixation periods interleaved. In
each 15 s block of both localizer and experimental scans, 16 different
exemplars of a given stimulus condition were shown in the center of the
screen, each of which were presented for 400 ms followed by a blank
interval of 500 ms.

During the experimental scan, subjects performed neither the associ-
ation task nor the discrimination task that they performed in the behav-
ioral training. Instead, they performed an identity one-back task (i.e.,
pressing a button whenever two identical images in a row repeated). This
orthogonal task was designed to ensure that differences in cortical distri-
bution of learning effects from these two task contexts, if observed, were
not mainly from the differences in tasks performed during the scan. In
addition, this task also ensured that subjects allocated attention equally
to all types of stimulus conditions, regardless of whether they were famil-
iar or not.

MRI data acquisition
Scanning was done on a 3T Siemens Trio scanner with an eight-channel,
phase-arrayed coil at Beijing Normal University Imaging Center for
Brain Research, Beijing, China. Thirty 2.8-mm-thick (20% skip) near
axial slices were collected (in-plane resolution � 1.4 � 1.4 mm) and
oriented parallel to each subject’s temporal cortex to cover the inferior
portion of the occipital lobes as well as the posterior portion of the
temporal lobes, including the VWFA, fusiform face area (FFA), and LO.
This relatively high in-plane resolution involves considerably less aver-
aging across distinct neural populations and therefore reduces partial
voluming so as to enable detection of small learning-induced changes in
neural activity. T2*-weighted gradient-echo, echo-planar imaging pro-
cedures were used [repetition time (TR) � 3 s, echo time (TE) � 32 ms,
flip angle � 90°]. In addition, MPRAGE, an inversion prepared gradient
echo sequence (TR/TE/inversion time � 2.73 s/3.44 ms/1 s, flip angle �
7°, voxel size � 1.1 � 1.1 �1.9 mm), was used to acquire three-
dimensional structural images.

fMRI data analysis
Functional data were analyzed with the FreeSurfer functional analysis
stream (CorTech Labs) (Dale et al., 1999; Fischl et al., 1999), froi
(http://froi.sourceforge.net), and in-house Matlab code. After data pre-
processing, including motion correction, intensity normalization, and
spatial smoothing (Gaussian kernel, 4 mm full width at half maximum),
voxel time courses for each individual subject were fitted by a general
linear model. Each condition was modeled by a boxcar regressor match-
ing its time course that was then convolved with a gamma function
(delta � 2.25, tau � 1.25).

The method of individual subject analysis was used for characterizing
the learning-induced neural changes because the size of learning effects
may be small and the exact cortical loci representing the learned objects
may vary across subjects. Therefore, in this study we first identified
object-selective regions of interest (ROIs) separately for each subject
from the localizer scan. The VWFA was defined as a set of contiguous
voxels in the mid-fusiform gyrus in the left hemisphere that showed
significantly higher responses to English words compared with line-
drawing objects ( p � 0.01, uncorrected for multiple comparisons). Face-
selective and object-selective regions were defined in the same way by the
contrasts of faces versus objects and objects versus scrambled objects,
respectively. Because the occipital face area and the anterior subregion of
the LOC, the posterior fusiform sulcus, could not be reliably localized
across subjects, we focused here on the FFA and LO. Both the FFA and LO
were bilaterally localized, but the VWFA was found only in the left hemi-
sphere. Because the right FFA and LO are anatomically far from the VWFA
in the left hemisphere, they were less critical than the left FFA and left LO in
examining how the learning effect was distributed in the ventral visual cor-
tex. Therefore, we focused on the spatial distribution of learning effects in the
left hemisphere, with the results in the right hemisphere reported.

For the ROI analysis, percentage signal changes were extracted and
averaged by condition across all experimental scans and all voxels within

each subject’s predefined ROIs, and this response was combined across
subjects by averaging. Because fMRI responses typically lag 4 – 6 s after
the neural response, the magnitude of the ROI activity was measured as
the average percentage change in MR signal at the latencies of 6, 9, 12, 15,
and 18 s (TR � 3 s, block length � 15 s) compared with a fixation as a
baseline. Percentage signal changes, one per experimental condition per
ROI per subject, were submitted to repeated-measures ANOVA, fol-
lowed by post hoc pairwise two-tailed t tests.

Results
The role of task context in object learning
In the association learning, subjects were trained to learn the
paired associates of English words and dumbbell-shaped objects.
As expected, association training greatly shortened the RT in judging
the paired associates (Fig. 2A, left). The RT in association judgment
decreased monotonically from session 1 to session 5 (F(4, 48) �
21.10, p � 0.001) and then reached an asymptote from session 6
to session 8 (F(2, 30) � 1.40, p � 0.05). The mean accuracy re-
mained �90% during the entire training period.

In the shape discrimination learning, another group of sub-
jects were trained to discriminate briefly presented dumbbell-
shaped objects. As shown on the left side of Figure 2B, the
training significantly improved the behavioral performance,
from a near-chance level of performance in accuracy in the first
session (22%) to �85% after 26 sessions (F(25, 275) � 61.13, p �
0.001). From the 27th session to 31st session, the accuracy
reached an asymptote (F(4, 44) � 1).

Four subjects from each group were further tested before
and after the training with the same task used in the discrim-
ination learning to examine the specificity of object learning.
After the discrimination learning there was a significant inter-
action of stimulus (Trained versus Novel) by learning (before vs
after) (F(1, 3) � 46.16, p � 0.01), with the performance in discrim-
inating the trained objects significantly higher than that for the
novel objects after the training (t(3) � 4.93, p � 0.05) but not
before (t(3) � 1.81, p � 0.05) (Fig. 2B, right). In contrast, the
association learning did not selectively improve subjects’ ability
in discriminating the trained objects over the novel objects, as the
interaction of stimulus by learning did not reach significance
(F(1, 3) � 1) (Fig. 2A, right). Thus, the association learning and
discrimination learning posed different computational demands
on the trained objects, resulting in subjects performing differ-
ently on the trained objects after the learning. Note that both
stimulus exposure time (i.e., 180 trials per object in the associa-
tion learning versus 155 trials in the discrimination learning on
average) and subjects’ end performance (i.e., no further improve-
ment in performance) were approximately equated between two
learning tasks.

To investigate the neural correlates of the task context on
object learning, we examined the effect of perceptual experience
on functional selectivities of the predefined ROIs after the learn-
ing. During the scan, a one-back task, rather than the tasks in
behavioral training, was used. This orthogonal task was used to
ensure that differences in cortical activation, if observed, resulted
from the difference in the task context during the object learn-
ing and not from the difference in tasks performed during the
scan. As expected, the behavioral performance in the one-back
task was not significantly different between subject groups
(supplemental Fig. 2, available at www.jneurosci.org as sup-
plemental material).

To characterize the learning effect, the response to Trained
versus Novel within the predefined ROIs (Fig. 3A) was compared.
After the association learning, the magnitude of the response of
each ROI was analyzed in a two-way ANOVA where the fact-
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ors were object-selective cortical region
(VWFA versus LO) and stimulus (Trained
versus Novel). The main effects of both
cortical region (F(1, 15) � 11.05, p � 0.01)
and stimulus (F(1, 15) � 5.57, p � 0.05)
were significant. More importantly, the
amount of learning effects differed across
cortical regions, suggested by a significant
two-way interaction of cortical region by
stimulus (F(1, 15) � 5.20, p � 0.05). In fact,
a significantly higher response to the
trained objects (versus the novel objects)
was found in the VWFA (t(15) � 3.11, p �
0.01) but not in the LO (t(15) � 1) (Fig.
3B). To further examine how the learning
effect was distributed in the ventral visual
cortex, we examined whether the left FFA,
a cortical region that resides in the left
fusiform gyrus near the VWFA, was
shaped by the association learning. No
learning effect was observed in the left
FFA (t(15) � 1) (Fig. 4A), and the interac-
tion of the VWFA versus the left FFA by
stimulus was significant (F(1, 15) � 10.35,
p � 0.01), suggesting that the learning-
induced changes are restricted to specific
regions and are not widespread across the
visual system. Besides the object-selective
regions in the left hemisphere, no learning
effect was found in the right FFA (t(15) �
�1.35, p � 0.05) or right LO (t(15) � 1).

A similar two-way ANOVA was performed for cortical re-
sponses after the discrimination learning. This ANOVA found a
significant interaction of cortical region by stimulus (F(1, 11) �
7.44; p � 0.05), again indicating that the amount of learning
effect differs across ROIs. Neither the main effect of cortical re-
gion (F(1, 11) � 4.05, p � 0.05) nor that of stimulus (F(1, 11) � 1.20,
p � 0.05) reached significance. Interestingly, the VWFA, which
showed a higher response to the trained objects after the associ-
ation learning, responded equally to the trained and novel objects
after the discrimination learning (t(11) � �1.88, p � 0.05). The
LO, on the other hand, showed a significantly higher response to
the trained objects (t(11) � 2.67, p � 0.05) (Fig. 3C). However, no
learning effect was observed in the right LO (t(11) � �1.43, p �
0.05). The failure of observing the learning effect in the right LO
might be caused by the hemispheric asymmetry in object percep-
tion, because the left hemisphere prefers objects with high-spatial
frequency and the right hemisphere shows an opposite advantage
(Sergent, 1983; Grabowska and Nowicka, 1996; Mercure et al.,
2008). The stimuli in this study were high-contrast line-drawing
objects that are preferred stimuli for the left hemisphere, whereas
previous studies that reported the learning effect in the right LO
used objects with smoothed surfaces in object discrimination
tasks (Grill-Spector et al., 2000; Op de Beeck et al., 2006). In
addition, we found that discrimination learning did not significantly
induce a higher response to the trained objects in the FFA; instead,
both left and right FFA responses to the trained objects were even
lower than those of the novel objects ( p � 0.05) (Fig. 4B).

In sum, experience with novel objects produced a greater ef-
fect on the VWFA when those stimuli were associated with words
in the association learning, but it produced a greater effect on the
LO when learned in the discrimination learning. The finding that
the task context in object learning modulated the functional se-

lectivities of the high-level visual cortex is further supported by a
significant three-way interaction of stimulus (Trained versus
Novel), task context (association versus discrimination learning),
and cortical region (VWFA versus LO) (F(1, 26) � 12.41, p �
0.005). In addition, we also found a role of top-down task context
in overall activation levels of the cortical regions revealed by a
significant two-way interaction of cortical region by task context
(F(1, 26) � 13.67, p � 0.005). That is, after the association learning
the overall activation level was smaller in the VWFA (versus LO),
whereas after the discrimination learning the overall activation
level in the LO was smaller (not significant). Although this inter-
action was based on a comparison between subjects, it implies
that the task context may have different effects in modulating the
overall activation level between cortical regions and the learning
effect within a region. On the other hand, other factors such as
stimulus exposure time and subjects’ end performance might
play a role as well, but they surely did not differ more than the
top-down task context for this triple interaction. In fact, the anal-
ysis on individual differences in both exposure time and end
performance suggests that they did not correlate with learning-
induced neural changes observed in either the VWFA or the LO
(supplemental Fig. 3, available at www.jneurosci.org as supple-
mental material).

Transfer of learning to the variants of the trained objects
The variants of the trained objects were included in the discrim-
ination test before and after the discrimination learning to exam-
ine the transfer of learning from the trained objects to them (Fig.
2B, right). After the discrimination learning, the performance in
discriminating the variants was equal to that for the trained objects
(t(3) � 1), and significantly higher than the novel objects (t(3) � 4.10,
p � 0.05) but not before (t(3) � 1.36, p � 0.05). This result suggests

Figure 2. Behavioral training results. A, Association learning. Left, The RT monotonically decreased while the accuracy re-
mained �90%. Note that the data from subjects who had fewer than eight training sessions were not included. Right, The
association learning did not selectively increase subjects’ ability in discriminating the trained objects. B, Discrimination learning.
Left, The accuracy monotonically increased along with the number of training sessions. Right, After the learning, subjects’ discrim-
ination abilities on the trained objects were significantly improved over the novel objects and generalized to their variants. The
error bars show the SEM of the behavioral performance across subjects.
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that the learning effect on the trained objects was generalized to the
variants that shared the same parts with the trained objects. In line
with the behavioral transfer of the learning, the LO responded to the
variants as strongly as the trained objects (t(11) � 1) and significantly
more strongly than the novel objects (t(11) � 2.27, p � 0.05), sug-
gesting that the objects might be learned in a parts-based fashion
(Fig. 5A, right).

To examine whether the parts-based processing strategy took
place during the discrimination learning, we sorted the stimuli
based on the part information they contained. Among all 16 tar-
get candidates shown in the display in each trial (Fig. 1C), one
object was identical to the cue object (whole), two foil objects
contained one part component of the target object (part), and the
remaining distracters contained none (none) (Fig. 5A, left). If
subjects’ responses were based on one part component only, but
not the two part components in combination, the subjects might
have wrongly selected the foiled objects as the target. Therefore,
the false alarm rate of selecting the foil objects as the target was

proportional to subjects’ discrimination performance based on
one part component. Because the chance of correctly selecting the
target object based on one part component was 50%, the accuracy
of correctly discriminating only one part component was two
times of the false alarm rate. Similarly, the accuracy of correctly
selecting the target based on the combination of two part com-
ponents was the subtraction of the false alarm rate from subjects’
total correct responses. As shown in the middle of Figure 5A, the
performance based on only one part component first increased
and then decreased along the learning (part), whereas the accu-
racy in discriminating the objects based on the combination of
two parts was near 0% in the first session and then increased
monotonically (whole). Thus, the processing of the trained objects
in the discrimination learning was first based on one part compo-
nent and then the combination of two components (F(30, 330) �
30.09, p � 0.001). Note that the increased preference of using two
part components in object discrimination does not necessarily
imply the application of the holistic processing strategy. The con-
tribution of each part component for the object discrimination
may be additive (Macevoy and Epstein, 2009).

Similar parts-based processing strategy was observed in the
association learning as well (Fig. 5B). At each association judg-
ment, one of three types of dumbbell-shaped objects was pre-
sented: an object that was a correct associate of the presented
English word (whole), an object that shared one part component
with the target object (part), or an object that shared none (none)
(Fig. 5B, left). If the parts-based strategy were at work, objects
that contained only one part component would slow down the
reaction time and decrease the accuracy because they contained
conflict information for association judgment. This is exactly
what is shown in the middle of Figure 5B, where the accuracy was
decreased (F(1, 12) � 73.77, p � 0.001) and the reaction time was

Figure 3. The learning effects in the VWFA and LO. A, Object-selective regions, the VWFA and LO, from the fMRI localizer scan in the left hemisphere (Left Hemi) of a typical subject shown on an
inflated surface. Sulci are shown in dark gray and gyri in light gray. B, After the association learning, VWFA response to the trained objects was significantly higher than that of the novel objects, and
no learning effect was observed in the LO. C, After the discrimination learning, the learning-induced change in blood oxygenation level-dependent (BOLD) responses was only observed in the LO, but
not in the VWFA. The y-axis indicates the percentage signal change. The error bars show the SEM of the BOLD responses across subjects.

Figure 4. A, B, FFA responses to the trained objects and the novel objects after the associa-
tion learning (A) and the discrimination learning (B). lFFA, Left FFA; rFFA, right FFA.
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delayed (F(1, 12) � 21.93, p � 0.001) on objects that shared one
part component with the target objects. In line with the parts-
based processing strategy during the association learning, VWFA
response to the variants that shared the part components with the
trained objects was not significantly different from the trained
objects (t(15) � 1.72, p � 0.05) and was significantly larger than
the novel objects (t(15) � 2.19, p � 0.05) (Fig. 5B, right).

In sum, the learning effect observed in the VWFA and LO was
transferred from the trained objects to their respective variants
regardless of their behavioral relevance to the learning task. The
behavioral learning curves further indicate that the transfer of the
learning is caused by the parts-based strategy that was implicitly
adopted during the learning.

Discussion
In this study, we investigated where and how learning-induced
object representations were constructed in the visual system un-
der different top-down task contexts. Subjects were trained to
either associate a set of novel objects to English words or discrim-
inate their shapes. We found that the association learning in-
duced a larger VWFA response to the trained objects relative to
the novel objects, whereas after the discrimination learning a
larger response to the trained objects was only observed in the
LO. The double dissociation of the VWFA and LO in response to
the trained objects under different task contexts suggests that not
only does the task context have differential learning effects on
neurons within a cortical region, but it also determines which
cortical regions are recruited in object learning. In addition, the
transfer of learning to the variants that shared part components

with the trained objects was observed after both association and
discrimination learning, suggesting that the trained objects were
learned in a parts-based fashion.

Our study devised several novel designs to examine the role of
task context in object learning. First, unlike most previous fMRI
studies on object learning in which only one type of learning task was
used, we presented two different computational problems in learn-
ing the same set of novel objects: association learning and discrimi-
nation learning. The physical properties and exposure time of the
trained objects and subjects’ end performance were approximately
matched between learning tasks, so the difference in the spatial dis-
tribution of learning effects was mainly caused by the difference in
top-down, task-relevant visual experience. Second, most previous
studies included only trained and novel conditions, which is unlikely
to illustrate how object learning takes place. Here, we included all
three necessary conditions: the trained objects, the variants, and the
novel objects. This design enabled us to directly examine how spe-
cific the object learning was and which perceptual processing strat-
egy, parts-based or holistic, was used during the learning. Finally,
although different tasks were used during learning, subjects per-
formed an orthogonal task (i.e., the identity one-back task) in the
scanner when learning effects on the visual system were mapped.
The application of the orthogonal task largely avoids potentially con-
founding influences by the task itself and other possible confounding
factors such as task difficulty or attention.

Although our study is one of the first ones to directly compare
object learning under different task contexts with fMRI (see also
Wong et al., 2009b), our results dovetail nicely with a number of

Figure 5. The parts-based processing strategy and the transfer of learning. A, Discrimination learning. Left, Subjects may match the cue object with the target object based on one part component
or two part components in combination. Middle, The one-component-based performance (part) increased in early sessions and then decreased in the later sessions, whereas the two-component-
based performance (whole) increased monotonically along the learning. Right, LO response to the variants that contained the part components of the trained objects was not different from the
trained objects and was larger than the novel objects. B, Association learning. Left, The pairs for association judgment were three types: an object that was a correct associate of the presented English
word (whole), an object that shared one part component with the target object (part), or an object that shared none (none). Middle, The association judgment on the incorrect pairs that shared one
component was less accurate and slower. Right, VWFA response to the variants was as large as the trained objects and significantly larger than the novel objects.
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recent studies using either association or discrimination learning
tasks in object learning. Neurophysiological studies on associa-
tion learning in nonhuman primates have found that neurons in
the inferior temporal cortex responded to both pictures of the
paired associates after association learning regardless of the geo-
metrical differences between them (Miyashita and Chang, 1988;
Sakai and Miyashita, 1991; Erickson and Desimone, 1999; Erick-
son et al., 2000; Messinger et al., 2001; Schlack and Albright,
2007). Similarly, when novel objects were trained as navigation
landmarks (Janzen and van Turennout, 2004), tools (Weisberg et
al., 2007), or words (McCandliss et al., 1997; Hashimoto and
Sakai, 2004; Sandak et al., 2004; Bitan et al., 2005; Breitenstein et
al., 2005; Xue et al., 2006; Xue and Poldrack, 2007), regions in-
volved in spatial navigation, manipulation of common tools, or
word shape analysis, respectively, were activated. However, the
learning effect observed in the VWFA may come from mental
imagery instead, because through association subjects might have
translated the trained objects to their corresponding words,
which then activated the VWFA. Although intuitive, the mental
imagery alternative was unlikely to account for our finding;
VWFA response to the variants was as large as the trained objects,
whereas the variants were unable to be veridically translated to
any English words. In short, through association learning, object
representations were developed in regions whose preferred stim-
uli were experientially associated with the new objects.

In parallel, neurophysiological and neuroimaging studies
have also revealed that after discrimination learning the selectiv-
ity of neural responses to trained objects is increased in the infe-
rior temporal cortex of monkeys (Kobatake et al., 1998; Baker et
al., 2002) or in the LOC of humans (Grill-Spector et al., 2000; Op
de Beeck et al., 2006; Jiang et al., 2007; Li et al., 2009). Recently,
Op de Beeck et al. (2006) examined the spatial distribution of
learning effects in shape discrimination and found that activated
voxels for trained objects formed multiple discrete small clusters,
many of which overlapped with the LOC. Similarly, our study
also showed that, after the discrimination learning, the learning
effect was observed in this shape analysis region but not in other
specialized regions tested, such as the FFA or the VWFA.

The double dissociation of the VWFA and LO in response to
the trained objects after learning under different top-down task
contexts indicates that the size of the learning effect is not asso-
ciated with the prior existing cortical responses to the to-be-
trained objects (see also Op de Beeck et al., 2006). Learning does
not simply produce a constant overall change of neural responses
in the ventral system; instead, the spatial distribution of learning
effects is largely restricted to specific regions. More importantly,
it is not the responsive characteristics of these regions that justify
its exclusive site for object learning. Rather, learning-induced
object representations are constructed in regions that are posited
to perform computations unique to the objects based on how
they are learned. Thus, cortical regions of plasticity for object
learning do not purely result from bottom-up visual processing;
instead, this process appears to be dynamic and task dependent.
The task-dependent plasticity in object learning may help explain
why visually different objects (e.g., houses and scenes) are en-
coded in the same cortical region (e.g., parahippocampal place
area) (Epstein and Kanwisher, 1998), possibly because they may
be founded on the same computation (e.g., spatial navigation).

Interestingly, the learning-induced changes were not re-
stricted to the trained objects. Instead, the learning was trans-
ferred to the variant objects that shared part components with the
trained objects (see also Weisberg et al., 2007), suggesting that the
trained objects were not encoded as a holistic entity but rather as

a collection of relatively independent parts (Marr, 1982; Biederman,
1987; Golcu and Gilbert, 2009). In fact, the transfer of learning was
not affected by the relation among components, because combina-
tions of the part components in the variants were novel and task
irrelevant. This finding is consistent with previous neurophysiolog-
ical results showing that neurons are sensitive to simplified parts of
objects (Desimone et al., 1984; Tanaka et al., 1991; Tsunoda et al.,
2001), and it may explain why object-selective regions also respond
to the parts of their preferred stimuli without veridical configura-
tions, such as the FFA responsive to scrambled faces (Liu et al., 2009)
and the VWFA responsive to pseudowords and consonant letter
strings (Cohen et al., 2003; McCandliss et al., 2003; Vigneau et al.,
2005; Baker et al., 2007; Vinckier et al., 2007). On the other hand, the
representation did not generalize to visually similar objects that did
not contain the parts of the train objects, suggesting that similarity in
visual appearance is not sufficient for the transfer of learning. To-
gether, our results suggest that the learning-induced representation
is tolerant of a certain amount of deviance away from the trained
objects through a parts-based process during the learning.

In sum, our findings help specify factors that shape the functional
selectivities of the high-level visual cortex through learning. The top-
down task context determines where object representations are con-
structed, whereas the parts-based perceptual process enables the
representations tolerant to a broad range of variations through
learning a small number of exemplars. In our study, several ques-
tions remain unaddressed that are important topics for future re-
search. First, we examined learning effects in ROIs as most previous
studies did; however, it is also important to characterize the spatial
distribution of learning effects with a voxelwise whole-volume anal-
ysis so as to examine the interactive processing between different
cortical regions, ranging from the bottom-up encoding object fea-
tures in the occipitotemporal cortex to the top-down categorical
object representations in the prefrontal cortex (Jiang et al., 2007).
Second, although the representation is tolerant to a certain amount
of deviance, the variants may not be coded as efficiently as the trained
ones, even though the net magnitude of the responses was the same
(Gillebert et al., 2009; Glezer et al., 2009). Finally, here we only di-
rectly manipulated the top-down task context (association versus
discrimination learning). It is also plausible that the distribution of
learning effects may be influenced by how informative the selectivity
of regions is for to-be-trained stimuli as well (Op de Beeck and
Baker, 2010). Consistent with this hypothesis, we found that the
learning effect was restricted to the left hemisphere when high
spatial-frequency stimuli were used, whereas previous studies using
stimuli with smoothed surfaces reported a right-hemisphere advan-
tage in object learning (e.g., Grill-Spector et al., 2000; Op de Beeck et
al., 2006). Future studies that directly manipulate stimulus
properties may help investigate this bottom-up mechanism in
object learning.
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